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ABSTRACT
Recommendation systems provide personalized product and ser-
vice recommendations by learning latent user preferences. Most
recommendation systems nowadays are static, and do not con-
sider real-time factors when making recommendations. However,
purchasing behaviors are easily influenced by real-time events hap-
pening in society. Such real-time events can be extracted from social
media, as previous works have shown. In this paper, we propose
using social media as a background information source to improve
e-commerce recommendationmodels. In contrast to previous works
that created shallow representations of social media, we propose
two representations of real-time social media information, that
captures the dynamics of word usage trends and evolving semantic
word relations. Taking a popular neural recommendation system
as the base system, we show that the attention mechanism allows
us to integrate the rich, matrix-like representation of social media.
We conduct experimental evaluations on a real-world e-commerce
dataset and a Twitter dataset. The results show that our method of
social media background representation and integration is effective
in integrating social media predictiveness in recommendation mod-
els, and the representation is superior compared to several other
representations.

KEYWORDS
recommendation system, social media, user behavior modeling

ACM Reference Format:
Yihong Zhang, Xiu Susie Fang, and Takahiro Hara. 2018. Real-time Inte-
gration of Social Media Background in Dynamic Recommendation Sys-
tems. In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June
03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Using a recommendation system to provide personalized service
has become a popular practice in e-commerce and online shopping
platforms [25]. Typically, the goal of a recommendation system is
to discover latent user preferences from data [30]. In such a system,
the data useful for discovering user preferences include implicit
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feedback and explicit feedback, which are usually user purchase
records and user ratings, respectively [15, 25, 39]. These data are
also called interaction data, as they are generated from user-item
interaction. Recently, it has been found that interaction data-based
recommendation systems have some inherent weaknesses. The first
is so-called the cold-start problem. Given some users and items in
an e-commerce platform, sometimes there is no past record of user-
item interaction, because the user or the item is a new one in the
system. To make recommendations in such cases, using information
other than user-item interaction is necessary [16]. A group of such
information is called contextual information [14]. Contextual infor-
mation that has been shown useful in cold-start recommendation
includes user demographic data [18], item attributes [40], and item
review texts [20].

The second weakness is related to temporal context awareness.
In the traditional interaction data, there are records of users pur-
chasing or rating items, but these data are not timed. Intuitively,
one might think that user preferences can be influenced by real-
time events, and data closer to the time of recommendation may
better indicate the user’s current preference [12]. In order to make
time-aware recommendations, we need both timed data and a modi-
fication to traditional recommendation models. Previously, we have
shown that a neural recommendation system can be modified to
incorporate time [36]. As the next step, we need to find temporal
context. Social media can be considered a universal real-time in-
formation source. Social media updates repeatedly according to
real-time events happening around the world, on macro and micro
scales. Therefore we propose an extension to dynamic recommen-
dation systems based on social media.

Some existing works have proposed to use social media to im-
prove recommendation systems. However, these works rely on the
assumption that common users exist in social media and the recom-
mendation domain and can be identified [10, 38]. This is a strong
assumption as many e-commerce platforms do not have user social
media data. In contrast to these works, the social media in our
study is considered a temporal background that reflects the general
social interests of the moment. By analyzing temporal patterns, we
have found some associations between social media discussions and
purchase behavior. For example, when some local natural disaster
happened and received attention on social media, people’s interest
for disaster prevention would temporarily increase, and disaster
prevention products on an e-commerce site would become tem-
porarily fast-selling. With such associations, what was discussed in
social media can have an impact on e-commerce user preferences
even though users were not linked across platforms.

While some interesting cases can be observed, Given the large
number of words used on Twitter, it is hard to handpick which word
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correlates to which e-commerce product. There will be a lot of noise.
A found correlation may be fake (false positive) and real related
words may not be found (false negative). Instead of using heuristics
to discover positive cases, we propose a more general approach.
We convert social media into matrix-like representation and fuse
them with a neural network recommendation system through the
well-known attention mechanism [19, 28]. In this way, our method
allows the system to automatically select relevant real-time context
without explicitly specifying the association between the context
and the item. In the preliminary study, we proposed a method
that captures changing trends of words [36]. While shown to be
effective, this method considers words as independent information
unit, and overlooks their inter-relationships. Thus in this paper, we
propose a new representation to capture semantic word relations
that may also change in real-time. The method is based on graph
convolutional network, the state-of-the-art structural information
representation [34]. More specifically, we extend the Evolve-GCN
method [22] with real-time capabilities.

Our work focuses on an e-commerce dataset collected by a spe-
cific platform, provided by our industry partner1. However, we
argue that our proposed method has generality that can be adopted
and applied to other e-commerce platforms. First, social media plat-
forms such as Twitter make data access available to the general
public, and data can be easily collected. Second, nowadays more and
more recommendation systems use a deep neural network as the
recommendation model [35], and our method that fuses temporal
context information with a specific model can be easily applied to
other models. Our contribution with this paper can be summarized
as the following:

• We generalize the problem of using social media background
to support dynamic recommendation systems. This is a rare
study that use social media to support recommendation with-
out common and identifiable users.

• In addition to the previously proposed frequency-based rep-
resentation, we propose a graph-based representation for
social media. We extend Evolve-GCN so that the model can
be used to provide real-time representations.

• Weevaluate ourmethod extensively using real-world datasets.
The evaluation results show that both the frequency-based
representation and the graph-based representation, and the
combination of them, have positive impacts on the recom-
mendation performance. They are also shown to be superior
to other representations.

The remainder of this paper is organized as the following. In
Section 2, we will discuss related work. Section 3 will introduce the
problem and the base solution. Then in Section 4, wewill present our
method for representing social media background and use attention
to integrating it into the base solution. Section 5 will present our
experimental evaluations, including an analysis of the dataset and
experiment setups, followed by result discussions. Finally Section 6
will conclude this paper.

1Due to our agreement with the industry partner, we cannot make the dataset publicly
available.

2 RELATEDWORK
A number of research efforts have been made to address the prob-
lem of cold-start recommendation using contextual information
[14]. We are most interested in the temporal context, which is close
to our work. Cebrian et al. proposed a music recommendation sys-
tem that used time in the day (morning, afternoon, evening) as the
temporal context [6]. Similarly Dias and Fonseca proposed a music
recommendation system that considered time in the day, weekday,
day of the month, etc., as well as session information [11]. They
also clustered songs into latent topics by treating sessions as docu-
ments to further improve recommendations. Xiao et al. proposed a
probabilistic matrix factorization technique that considers day of
the week as the temporal context [32]. Beutel et al. [3] proposed
another work that incorporates temporal context to recurrent neu-
ral networks. In these works, though, the temporal context is only
discrete values of time of the day, and there is no other information
associated with such times.

In addition, some works attempted to use social media as the
context in recommendations. For example, Alahmadi and Zeng
proposed using linked Twitter accounts to address cold-start rec-
ommendation [1]. In order to connect social media to purchase
behavior, they explicitly asked e-commerce users to provide their
Twitter accounts. Gao et al. studied the problem of location recom-
mendation with location-based social networks [13]. They modeled
temporal check-in preferences from users’ past check-in records. In
their case, both the contextual information and the recommenda-
tion target were on the same platform, thus explicit user links were
available. Yang et al. proposed a method to predict sudden raise
of product sales by studying social media user interest diffusion
[33]. Their method was based on product text snippets that can link
social media text to products. In this paper, however, we consider
social media purely as a background. We assume no explicit link
is available for social media and the e-commerce platform, either
through user or item. This makes our problem harder, but also in-
creases the generality of our solution. A work with a similar goal as
ours was proposed by Deng et al., who use Twitter as a background
to recommend YouTube video clips [10]. Their solution is feasible
because many Twitter posts and YouTube video clips are generated
by the same news event. However, in more common scenarios, such
as Twitter and e-commerce, this correlation is difficult to establish.

Outside of the research field of recommendation systems, social
media as a background has been used in different kinds of data
analysis and applications. For example, Wei et al. found that Twit-
ter volume spikes could be used to predict stock options pricing
[31]. They used the tweets that contained the stock symbols. Asur
and Huberman studied if social media chatter can be used to pre-
dict movie sales [2]. They conducted sentiment analysis on tweets
containing movie names, and found some positive correlations. Pai
and Liu proposed to use tweets and stock market values to pre-
dict vehicle sales [21]. They found that by adding the sentiment
score calculated from the tweets, prediction model performance
substantially increased. Broniatowski et al. made an attempt to
track influenza with tweets [5]. They combined Google Flue Trend
with tweets to track municipal-level influenza. Tweets were put
through three classifiers to isolate health-related, influenza-related,
and case-reporting tweets, and finally the count of relevant tweets



was added to the prediction model. These works, however, only
used high-level features of social media, such as message counts
or aggregated sentiment scores. In contrast, our proposed solution
captures richer information from social media, while also keeping
them machine-readable.

3 PRELIMINARIES
In this section, we will first introduce the problem of using social
media background to support dynamic neural recommenders. Next
we will briefly introduce an existing dynamic neural recommenda-
tion system, in which we will integrate social media information.

3.1 Problem Formulation
Technically, the problem a dynamic neural recommendation system
tries to solve is to rank candidate items based on user preferences
at a certain time. Given a product description 𝑑 (𝑝), a user descrip-
tion 𝑑 (𝑢), and the time 𝑡 , the system should make a prediction
𝑦𝑢𝑡𝑖 = 𝑓 (𝑑 (𝑢), 𝑑 (𝑝), 𝑡), where 𝑦 is a score indicating the strength
of preference, and 𝑓 is the recommendation model. This model
is normally learned through supervised learning. In the implicit
feedback recommendations, the training dataset normally contains
a number of positive triples, (𝑑 (𝑢), 𝑑 (𝑝), 𝑡) = 1, if user 𝑢 has pur-
chased product 𝑝 at time 𝑡 , and a number of randomly sampled
negative triples (𝑑 (𝑢), 𝑑 (𝑝), 𝑡) = 0, from all triples where user 𝑢
have not purchased product 𝑝 at time 𝑡 .

To use social media background to support the system is to
add the temporal background 𝐵 as an extra input to the model, so
that the prediction becomes 𝑦𝑢𝑡𝑖 = 𝑓 (𝑑 (𝑢), 𝑑 (𝑝), 𝑡, 𝐵𝑡 ). We assume
preprocessing has been done on social media texts and 𝐵𝑡 can be a
vector or a matrix, depending on the representation method.

3.2 Base Dynamic Recommendation System
There is a large number of proposals for learning the recommenda-
tion model 𝑓 . We select the recommendation system proposed by
Wang et al. [29] because their system is a context-based cold-start
recommendation system that takes user and item embeddings as
the input, similar to our scenario.

Assuming for each item, there is no user-item interaction past
records available, and also assuming from the contextual data, vec-
tor representations have been learned for users and items, which are
treated as 𝑑 (𝑢) and 𝑑 (𝑝). The task of the cold start recommendation
model is thus to learn preference relationships between users and
items based on their embeddings. Wang et al. generalize a neural
matrix factorization (NeuMF) model [15] that excludes the part of
learning embeddings with latent vectors. Their model is shown in
Figure 1.

This model is an ensemble of generalized matrix factorization
(GMF) and multi-layer perceptron (MLP). Two copies of user em-
beddings and item embeddings are input into the GMF and MLP
components, both of which produce an output embedding in their
last layer. NeuMF concatenates the two output embeddings and
runs them through a fully-connected layer to produce a prediction.
The functions in this process are defined as the following:

z𝐺𝑀𝐹 = p𝐺𝑢 ⊙ q𝐺𝑖 , (1)
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GMF Item 
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Figure 1: Base recommendation model
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𝑦𝑢𝑖 = 𝜎 (h𝑇 ·
[
z𝐺𝑀𝐹
z𝑀𝐿𝑃

]
), (3)

where p𝐺𝑢 and p𝑀𝑢 denote user embeddings for GMF and MLP, while
q𝐺
𝑖
and q𝑀

𝑖
denote item embeddings for the two components. 𝑦𝑢𝑖

denotes prediction results.
Since the dataset contains only observed interactions, i.e., user

purchase records of items, when training the model, it is necessary
to bring up some negative samples, for example, by randomly choos-
ing some user-item pairs that have no interaction. They defined
the loss function as the following:

𝐿 =
∑︁

(𝑢,𝑖) ∈Y∪Y−
𝑦𝑢𝑖 log𝑦𝑢𝑖 + (1 − 𝑦𝑢𝑖 ) log(1 − 𝑦𝑢𝑖 ), (4)

where𝑦𝑢𝑖 = 1 if user𝑢 purchased item 𝑖 , and 0 otherwise.Y denotes
observed interactions and Y− denotes negative samples.

Although it is possible to make recommendations at any moment
when a purchase intention is detected, we follow a more realistic
scenario by changing the recommendation three times a day, i.e.,
in the morning, afternoon, and evening, which correspond to hour
10, 16, and 22 of the day. Since in our e-commerce dataset, each
purchase is associated with a time, we can modify the target vari-
able to incorporate timing. Specifically, we change 𝑦𝑢𝑖 to 𝑦𝑢𝑡𝑖 such
that 𝑦𝑢𝑡𝑖 = 1 if user 𝑢 purchased item 𝑖 in the next time segment
following 𝑡 , and 0 otherwise. The length of next time segment fol-
lowing hour 10 and 16 is set to 6 hours, and for hour 22 it is set
to 12 hours2. In our dataset, these three time segments separate
purchases records evenly, with 29,799, 28,266 and 27,898 purchases
in each of the three segments.

It is an important problem to determine whether the user has
purchase intention at hour 𝑡 or not, before making the recommen-
dation. Here we assume this information is already obtained, for
example, from the fact that the user visited the e-commerce website.
We use the training label 𝑦𝑢𝑡𝑖 such that there is guaranteed to be
an item 𝑖 that user 𝑢 will purchase for time 𝑡 . In other words, time
𝑡s when user 𝑢 made no purchase at all are ignored.

2The hour of the day is taken as the remainder of 𝑡 /24.



4 SOCIAL MEDIA BACKGROUND ATTENTION
The social media background in our scenario is a collection of
social media posts. They need to be transformed before they can
be added to a neural recommendation model. We fuse social media
background with the base recommendation system in two steps.
First we convert the social media background to machine-readable
matrix inputs. Then we use attention [28] to fuse this input with
the neural recommendation model.

4.1 Frequency-based Representation
We design a method that aims to capture the 𝑐ℎ𝑎𝑛𝑔𝑒 or 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 of
the social media words that comes from interesting phenomenon
happening in real-world. When something interesting or stimulat-
ing happens, some topics on social media may become trending.
When this happens, we say certain social media aspects are emerg-
ing. We capture this emergence by observing the change in word
frequency. The frequency of the social media words is taken as
the count of messages that contains the word. Thus we first ob-
tain the frequency table of social media words against time units.
We then devise a method for emergence detection based on word
frequencies. Following an approach of previous works on social
media event detection [7], our method involves a foreground and
a background. The foreground is a period closer to the current
time, and the background is a period farther from the current time,
before the foreground. Suppose the period for foreground is 𝑓 𝑝 ,
and for background is 𝑏𝑝 , so that word frequencies in these periods
are 𝐹𝑓 𝑝 = {𝑓𝑡−𝑓 𝑝 , ..., 𝑓𝑡−1} and 𝐹𝑏𝑝 = {𝑓𝑡−𝑓 𝑝−𝑏𝑝 , ..., 𝑓𝑡−𝑓 𝑝−1}. We
set 𝑖𝑛𝑐 𝑓 𝑝 to 𝑇𝑟𝑢𝑒 , if 𝑓𝑡−1 > ` (𝐹𝑓 𝑝 ), where ` (·) is the mean func-
tion, i.e., the frequency on the last day in the foreground period
increases compared to the mean of foreground period, and 𝐹𝑎𝑙𝑠𝑒
otherwise. Similarly we set 𝑖𝑛𝑐𝑏𝑝 for the background period. Finally
the emergence 𝑒𝑡 of the word at time 𝑡 is set as:

𝑒𝑡 =

{
1, if 𝑖𝑛𝑐 𝑓 𝑝 OR (𝑖𝑛𝑐𝑏𝑝 AND ` (𝐹𝑓 𝑝 ) > ` (𝐹𝑏𝑝 ))
0, otherwise

(5)

With this formula, we aim to capture two phases of surges of
words in social media. First, 𝑖𝑛𝑐 𝑓 𝑝 captures a new surge. Second,
𝑖𝑛𝑐𝑏𝑝 AND ` (𝐹𝑓 𝑝 ) > ` (𝐹𝑏𝑝 ) captures the sustenance of a previous
surge. Both phases can be considered a part of an emergence. With
this calculation, we obtain for each time unit the emerging words
in product sales and social media. This representation can be called
bag-of-emerging-words (BOEW).

Practically, the time unit for the prediction can be set to a day,
while the emergence calculation can be done on a smaller unit, such
as an hour. In this way, for each day, we obtain a vector of length
24 for each word, indicating its emergence status in each hour of
the day. Assuming we have |𝐷 | words in the dictionary 𝐷 . For each
day, we can have a matrix 𝐵𝐸𝑡 that has |𝐷 | rows, each row is an
emergence vector of a word across 24 hours.

4.2 Graph-based Representation
The above method can capture the trends of individual word us-
ages. However, words have inter-relationships, and treating words
independently would lead to loss of information. As the semantics
of words also change in real-time, and such changes need to be
captured. Therefore we propose a graph-based method to capture

the inter-relationship between words that evolves in real-time. Here
we will first introduce the graph construction, and then propose a
graph embedding method that can be applied in real-time.

Our graph is constructed based on the co-occurrence of words
in tweets. Suppose at time 𝑡 we have a new collection of social
media tweets 𝑇 . We use mutual information [23] to represent the
co-occurrence behavior. Specifically, we have

𝑚𝑖 (𝑤1,𝑤2) = 𝑙𝑜𝑔
(
𝑁 (𝑤1,𝑤2) |𝑇 |
𝑁 (𝑤1)𝑁 (𝑤2)

)
,

where 𝑁 (𝑤1,𝑤2) is the frequency of co-occurrence of words 𝑤1
and𝑤2, |𝑇 | is the total number of tweets, and 𝑁 (𝑤) is the frequency
of occurrence of a single word𝑤 . We use a threshold 𝜙 to determine
the co-occurrence relation, such that if𝑚𝑖 (𝑤1,𝑤2) > 𝜙 , we create
𝑟𝑒𝑙 (𝑤1,𝑤2) = 𝑐𝑜_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 . For 𝑛 time units, we would have 𝑛
graphs, each of which can be represented as an adjacency matrix
𝐴𝑡 .

Graph convolutional network (GCN) [34] currently is the com-
mon method to generate embeddings for graphs. Given an adja-
cency matrix 𝐴 and the node embedding matrix of layer 𝑙 , 𝐻 𝑙 , we
set a weight matrix𝑊 𝑙 , so that the embedding in the next layer
𝐻 𝑙+1 is mapped through graph convolution:

𝐻 𝑙+1 = GCONV(𝐴,𝐻 𝑙 ,𝑊 𝑙 ) (6)

= 𝜎 (𝐴𝐻 𝑙𝑊 𝑙 ) (7)

where 𝐴 is a normalization of 𝐴, and 𝜎 is the activation function
(typically ReLU) for all but the output layer. Utilizing the spectral
graph theory, the validity of this approach has been shown in
several existing works [9, 26].

Given a series of graphs across several time units, a naive solution
would be applying GCN and generating a set of node embeddings
in each graph. However, the embeddings in different times would
then be irrelevant to each other, and thus cannot be used for learn-
ing a single recommendation model. Recently, a technique called
EvolveGCN has been proposed to address this problem [22]. The
basic idea of this technique is to transfer the weights in one time
unit to the next through some activation function. Specifically, it
proposed:

𝑊 𝑙
𝑡 = LSTM(𝑊 𝑙

𝑡−1) (8)

where LSTM is a long short-term memory. The LSTM may be
replaced by other recurrent architectures, as long as the roles of
𝑊 𝑙
𝑡 and𝑊 𝑙

𝑡−1 are clear
3.

While EvolveGCN can be used to generate node embeddings
peculiar to each time segment, it has a drawback. The training
of this network requires holistic data, with each training epoch
processing all time segments, thus it cannot directly be used in
real-time. To address this problem, we propose an incremental
version of the EvolveGCN (IEGCN). The basic idea is that instead
of processing all time segments in one epoch, we process one time
segment at a time. Algorithm 1 shows the process.

Updating parameters (line 5) can be done through some pseudo
learning tasks such as link prediction. While in the first few time

3This is also known as the𝑂 version of EvolveGCN. There is also a less-known 𝐻
version. We omit it here for simplicity, but the details can be found in the referred
paper.



Item Embedding

GMF Item 
Embedding

MLP Item 
Embedding

GMF

User Embedding

GMF User 
Embedding

MLP User 
Embedding

MLP

Concatenation

Fully-connected

ŷuti

Semantic Representation

Attention
Transformed Item 

Embedding

Attention

Trend Representation

Social Media

Frequency change 
analysis

Word co-occurrence 
graph construction

Figure 2: Extending a recommendation system with social media background attention

Algorithm 1 Learning an incremental EvolveGCN (IEGCN) model
INPUT: 𝐴𝑡 for all 𝑡 ∈ 𝑡𝑠 , nEpoch
OUTPUT: 𝐻 𝑙+1𝑡 for all 𝑡 ∈ 𝑡𝑠
1: for each 𝑡 ∈ 𝑡𝑠 do
2: 𝑊 𝑙

𝑡 = LSTM(𝑊 𝑙
𝑡−1)

3: for each 𝑖 in nEpoch do
4: 𝐻 𝑙+1𝑡 = GCONV(𝐴𝑡 , 𝐻 𝑙𝑡 ,𝑊 𝑙

𝑡 )
5: update parameter through a loss function
6: end for
7: end for

segments, the embeddings are not accurate due to the lack of infor-
mation, in later time segments the embeddings should have similar
representativeness as the native EvolveGCN. With this algorithm,
for each time 𝑡 , we can obtain a matrix 𝐵𝐺𝑡 , each row of which is
the embedding of a word in the dictionary 𝐷 .

4.3 Fusing Base System with Social Media
Background Through Attention

If the social media is represented as a vector, such as the average
embedding of all hours, a simple way to integrate it into the model
is by concatenating the vector with outputs of a middle layer. If
we denote the vector as b𝑡 , a possible position to add it is in the
concatenation layer where the outputs of GMF and MLP are jointed.
If we do so, the prediction from the final layer becomes

𝑦𝑢𝑡𝑖 = 𝜎 (h𝑇 ·

z𝐺𝑀𝐹
z𝑀𝐿𝑃
b𝑡

), (9)

and the loss function defined in Equation (4) is modified so that the
temporal aspect is considered

𝐿 =
∑︁

(𝑢,𝑡,𝑖) ∈Y∪Y−
𝑦𝑢𝑡𝑖 log𝑦𝑢𝑡𝑖 + (1 − 𝑦𝑢𝑡𝑖 ) log(1 − 𝑦𝑢𝑡𝑖 ) . (10)

However, the above method aggregates information in a higher
dimension to a lower dimension (i.e., from a matrix to a vector),

which can lead to information loss. If social media is represented
as a matrix, we can use better methods, for example, by using the
attention. In recent years, the attention mechanism in deep learning
has been shown to be helpful by allowing the model to focus on
some aspects of input data [28]. The goal of an attention module
is to produce a weighted average of candidate embeddings of a
reference source, called keys, based on their relationships with a
query embedding. In our case, the keys are vectors of different rows
in the representation matrix and the queries are item embeddings.
The item embeddings can be obtained by concatenating the item
embedding learned for GMF and MLP, q𝐺

𝑖
and q𝑀

𝑖
.

For clarity, we will focus on the frequency-based representation
matrix first. Denote the matrix as 𝐵𝐸𝑡 for time 𝑡 , The output of an
attention module is thus a context vector 𝑐𝑖 for item 𝑖

c𝐵
𝐸
𝑡 =

∑︁
𝑗

𝑎𝑖 𝑗𝑏 𝑗 (11)

where 𝑏 𝑗 is the vector in row 𝑗 , and 𝑎𝑖 𝑗 is called attention weights.
The attention weights can be generally obtained using the following
formula

a𝑖 = softmax𝑓𝑎𝑡𝑡 (ℎ𝑖 , 𝑏 𝑗 ) (12)

where ℎ𝑖 is the embedding of item 𝑖 , and 𝑓𝑎𝑡𝑡 is an attention score
function calculated on ℎ𝑖 and 𝑏 𝑗 . Several ways have been proposed
to calculate attention weights. In this paper we choose a simple
approach called the 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 attention function [19]. Basically, it is
calculated as

𝑓𝑎𝑡𝑡 (ℎ𝑖 , 𝑏 𝑗 ) = ℎ⊺𝑖 𝑊𝑏 𝑗 (13)

where W is a randomized weight matrix. Although theoretically
simple, it has been shown that this function can capture the rele-
vance of keys with respect to the query. Clearly, we can obtain the
attention output for graph-based representation matrix 𝐵𝐺𝑡 in the
same way.

We consider that the attention mechanism is what we need for
finding relevant real-time aspects with respect to an item. The
model after fusing the real-time information through the atten-
tion mechanism is shown in Figure 2. The gray components are



unchanged components in the base model, while the bright compo-
nents are new additions or components that have changed because
of the fusion.

With this extension, the concatenation layer takes the output of
the encoder and thus becomes

𝑦𝑢𝑡𝑖 = 𝜎 (h𝑇 ·


z𝐺𝑀𝐹
z𝑀𝐿𝑃
c𝐵

𝐸
𝑡

c𝐵
𝐺
𝑡

), (14)

Essentially, fusing with real-time social background information
this way allows the final layers of the model to learn the latent rela-
tionship between the social media background and user-item pairs.
More specifically, the co-occurrence of real-time aspects and posi-
tive/negative instances will be captured. In the case of social media
word 𝑠𝑡𝑒𝑎𝑘 , for example, when the model receives many times the
co-occurrence of the emerging word 𝑠𝑡𝑒𝑎𝑘 and the purchase be-
havior of products containing the word 𝑠𝑡𝑒𝑎𝑘 , it will reinforce this
pattern. By allowing attention on different rows in the matrix, we
also capture finer context such as different delays in the causality
between the social media background and purchase behaviors.

5 EXPERIMENTAL EVALUATION
We conduct experiments with real-world data to test the effective-
ness of our approach. For this purpose, we implement the base
model and the new model with the extension to incorporate real-
time social media background. The first set of evaluations is con-
ducted by comparing these two models. We then test the advantage
of our model compared to other methods that have different ways to
represent the social media background. In this section we present
the experimental setup, including datasets and implementation
details, and discuss the evaluation results.

5.1 Datasets
We are provided with an e-commerce dataset by our industry
partner for the purpose of testing recommendation methods. The
dataset is collected from a flash sales platform, which offers dis-
count coupons that are made available for a limited period of time,
usually between 7 and 14 days, essentially making them flash sales.
The dataset contains the information of several thousands of prod-
ucts and users who purchased the product during the flash sales
events. Since the available periods of the products are short, the
market is rapidly changing, and thus the majority of the products
can be considered cold items that have no purchase records in an
earlier period. The products include several categories of items,
such as food, cosmetics, home appliances, hobby classes, and travel
packages. All products are associated with text descriptions written
in Japanese. Each user is associated with some user information
including gender, age, and the prefecture code of their home ad-
dress. The dataset is for a period of four months, between June and
September 2017.

Since the products are associated with text descriptions written
in Japanese, we can useword embeddings to represent products [17].
We use a natural language processing package called kuromoji4
to process the Japanese text. The package can effectively perform

4https://github.com/atilika/kuromoji

segmentation and part-of-speech (POS) tagging for Japanese text.
We use the package to tokenize the text description and run POS
tagging to select only nouns in the text. The vector representation
of a product is thus obtained as the average word embeddings of
the nouns in the description.

We obtain a social media dataset by collecting Japanese tweets
through Twitter API5. To align with the period of the e-commerce
dataset, we develop a procedure to search past tweets. In addition to
the time requirement, it is also desirable that the tweets are talking
about Japanese domestic affairs, which reflects the background in
which the e-commerce business was operated. Our procedure is thus
as the following. First, we collect a list of Japanese politician Twitter
accounts6. From them we remove a few top politician accounts
such as Abe Shinzo as they would attract foreign followers. Next
we collect the follower of these politicians, who are expected to
be Japanese citizens. Then we select from these citizen accounts
whose earliest tweets are dated earlier than June 2017. This is to
ensure that the accounts are active during the entire period of the e-
commerce dataset. Finally, we collect tweets in the said period from
these selected accounts. These tweets become our social media data
in this study. In total this dataset contains about 2,464,645 tweets
from 33,443 accounts. Intuitively, this social media dataset would
only be weakly related to user purchase behaviors, since consumer
products are not its topic of interest. But messages in this dataset
are more similar to typical social media discussions. If we can use
this dataset to improve recommendation performance, we can say
the totality of social media indeed contains predictive hints.

5.2 Implementation Details
We use Pytorch7 to implement the base and the extended models.
Model parameters are randomly initiated. We follow the base model
and use a tower pattern for the MLP component, which halves the
layer size for each successive higher layer. The sizes of three layers
in the MLP are thus [200, 100, 50]. The output size of GMF is set to
50. The size of the fully connected layer is set to 100. The number
of hours, 𝑘 , to consider as embeddings in time 𝑡 is set to 24.

We use the Adam optimizer with an initial learning rate of 0.001.
We run 50 training epochs for each model, before which model
performances generally become stable. When training the model,
we randomly sample 4 negative instances for each positive instance.
For the base model, the negative instances (𝑢, 𝑖) are user 𝑢 and item
𝑖 that have no interaction. While for the new model, the negative
instances (𝑢, 𝑡, 𝑖) are user 𝑢 and item 𝑖 that have no interaction for
time 𝑡 .

5.3 Evaluation Settings
We divide that dataset into a training set and a test set. The training
set is for a period from June 1 to September 16, 2017, and the test
set is between September 17 to 30, 2017, a period of two weeks.
We remove what are so-called free items, which are time-limited
discount coupons of 0 price, which anyone can get during the active
period without paying a fee. These items occupy a large portion
5https://developer.twitter.com/en/docs
6Such a list can be found online as political social media accounts are usu-
ally public. An example list is provided by the website Meyou with the url
https://meyou.jp/group/category/politician/
7https://pytorch.org/



of the dataset, but they do not reveal user-item preferences, so we
consider them noises. After removing the free items, the number
of users, items, and interactions are shown in Table 1.

Table 1: Training and test dataset statistics

no. users no. items no. interactions
training 33,624 14,875 116,743
test 1,465 726 2,000

Considering the consistency of the evaluation, for each interac-
tion in the test dataset (positive instances), we randomly sample
99 negative instances from items available of the same time seg-
ment. Combining the positive and negative instances, we have 100
candidate items in each recommendation.

We use hit-rate (HR) and Normalized Discounted Cumulative
Gain (NDCG) to measure recommendation performance. HR@K is
calculated as

𝐻𝑅@𝐾 =
number of hits in top K recommendation

number of recommendations
. (15)

HR@K measures whether the correct item is in the recommended
items, but it does not consider the rank of the item. NDCG on the
other hand counts the position of the correct item. It is calculated
as:

𝑁𝐷𝐶𝐺@𝐾 =

𝐾∑︁
𝑖=1

2𝑟𝑖 − 1
log2 (𝑖 + 1) , (16)

where 𝑟𝑖 = 1 if the correct item is ranked in the 𝑖-th position, and 0
otherwise. NDCG@K will be higher if the correct item is ranked
higher in recommended items. To simulate a realistic scenario,
where the recommended items are shown on a single web page
to e-commerce website visitors, we choose a number of K values
between 3 and 10.

5.4 Comparing Base Model and Extended
Models

We compare the base model (base) with three variations of our
extended model, the one with only trend information captured
by bag-of-emerging-words (BOEW), the one with only semantic
information captured by incremental Evolve-GCN (IEGCN), and
the one with both parts of information (BOEW + IEGCN). Recom-
mendation performances measured as HR@K and NDCG@K of
different models are shown in Table 2. For each measurement of
three variations of the proposed model, the relative performance
increases are shown below that measurement. The best-performing
results are highlighted in bold font.

The main insight from these results is that considering social
media background with our approaches generally improves the
recommendation prediction. Both the trend information and se-
mantic information are helpful in improving the accuracy, while the
combination of the two achieves even better accuracy than using
them separately. When using the trend information, the HR@K is
improved by 1.65% to 5.9% for different K values. Using semantic in-
formation achieves better accuracy, withHR@K improving between
5% to 11.89% for different K values. Using both parts of information
achieves the best accuracy in our evaluation, with HR@K improved

between 7.5% to 15.7% with different K values. Similar trends are
observed in HDCG@K results. Thus from the results we can see
that both trend information and semantic information contribute
to the predictiveness of social media background. Furthermore,
incorporating the combination of them achieves better accuracy
than using them separately, indicating that their contributions are
complementary to each other.

5.5 Comparing Different Methods of Social
Media Background Representation

We have shown that our method for representing and fusing the
social media background can improve recommendation accuracy
compared to the base model. We acknowledge that there are other
ways to represent social media background, from simple to complex
methods. In this set of experiments, we compare our method to
several other real-time representation methods for social media
background. We briefly introduce them as the following.

Bag-of-words (BOW). One of the most common methods for
text representation, BOW has been the baseline in many previous
researches in text mining [27, 37]. This method is time independent
and word independent. To integrate it with our model, we produce
a BOW representation for each word 𝑤 and each time 𝑡 , so that
𝑣𝑤,𝑡 is the frequency count of the word in that time period. This
will generate a frequency vector in each time 𝑡 of length |𝐷 |, which
we concatenate in the concatenation layer in Fig 1.

incremental tf-idf. Term frequency-inverse document frequency
(tf-idf) has been shown to be a more effective representation of
texts, with the additional information of total document count [24].
The formula for tf-idf is:

tf-idf(𝑤,𝐷𝑜𝑐) = 𝑓𝑤,𝑑𝑜𝑐 · log
𝑁

|𝑑𝑜𝑐 ∈ 𝐷𝑜𝑐 : 𝑡 ∈ 𝑑𝑜𝑐 |
where 𝑓𝑤,𝑑𝑜𝑐 is the frequency of word𝑤 in the document 𝑑𝑜𝑐 , and
𝐷𝑜𝑐 is the total collection of documents. To apply it, we consider
social media text posted in one time unit 𝑡 as a document. For the
total set of documents, we set a look-back window of length ℎ so
that 𝐷𝑜𝑐 = {𝑑𝑜𝑐𝑡−ℎ, ..., 𝑑𝑜𝑐𝑡 }. Again we can have a larger time unit
and a small time unit, i.e., a day and an hour. After applying tf-idf,
we can have a matrix, each row is a vector representing the tf-idf
value of a word 𝑤 across 24 hours of the day. The matrix has |𝐷 |
rows. Then it is integrated with the model using the samemethod as
the trend matrix or the semantic matrix in Section 4.3. This method
is time-dependent because the total set of documents depends on
the current time.

incremental bi-term topic model (IBTM). Over the past two
decades, topic-modeling such as Latent Dirichlet Allocation (LDA)
has become a popular method for text representation [4]. Such
methods consider the co-occurrence of words in texts, thus can cap-
ture word semantics. Bi-term topic model (BTM) is a new variation
of LDA that use bi-term instead of single-term for calculation [8].
The representation is based on the generative assumption below:

(1) Draw \ ∼ Dirichlet(𝛼).
(2) For each topic 𝑘 ∈ [1, 𝐾] draw 𝜙𝑘 ∼ Dirichlet(𝛽).
(3) for each biterm 𝑏𝑖 ∈ 𝐵, draw 𝑧𝑖 ∼ Multinomial(\ ), and draw

𝑤𝑖,1,𝑤𝑖,2 ∼ Multinomial(𝜙𝑧𝑖 ).
The parameters in this generative process can be learned through
techniques such as Gibbs Sampling. As the result of learning, the



Table 2: HR@K and NDCG@K accuracy improvement by fusing with the social media background, comparing to the base
model. The achieved accuracy and relative increase are shown.

HR@3 HR@5 HR@10 NDCG@5 NDCG@10
base 0.105 0.152 0.249 0.098 0.129
BOEW 0.111 0.163 0.253 0.104 0.133
increase 5.90% 7.39% 1.65% 6.33% 3.02%

IEGCN 0.118 0.167 0.261 0.110 0.140
increase 11.89% 10.03% 5.07% 12.80% 9.03%

BOEW + IEGCN 0.122 0.170 0.267 0.115 0.146
increase 15.70% 12.41% 7.40% 18.06% 13.53%

parameter \ represents a distribution of probabilities on which
a document is drawn from 𝐾 topics. The parameter 𝜙 represents
a distribution of probabilities a topic is drawn on |𝐷 | words. The
incremental version of the algorithm, provided by the same authors,
trains a single model over a bi-term stream using an incremental
Gibbs sampler. When applying to our problem, a tweet is considered
a document, and all tweets posted in time 𝑡 are considered the total
collection of documents. As the result, for each time step 𝑡 , we can
get 𝜙𝑡 , which is a matrix with |𝐷 | rows, each of which is a vector
of the probability value a word 𝑤 has for 𝐾 topics. Since it is a
matrix input, we can integrate it using the same method presented
in Section 4.3.

Emergence with Embedding (E-EMB). In a previous work, we
proposed a model that tries to combined both trends and semantics
[36]. Similar to this work, it performs emergence analysis on words.
However, instead of generating bag-of-emerging-words, it uses pre-
train word2vec embeddings to represent words, and each time unit
is represented as the average embedding of the emerging words.
In this way, it captures the trends and the global semantics. It also
operates on two levels of time units, i.e., day and hour. For each
day, we can have a matrix, each row is a vector of one dimension
of the embedding across 24 hours.

incremental graph convolutional network (GCN). GCN is
the base form of Evolve GCN [22]. We can obtain a GCN model
from Evolve GCN by setting the look-back period to zero. The
incremental version of GCN is similar to Algorithm 1, and we only
need to remove the weight transfer step (line 2). The incremental
GCN produces node embeddings in each time step aligning to the
same format as the IEGCN, and can be processed using the method
described in Section 4.3.

We apply all baselinemethods to the same Twitter data and gener-
ate different representations. And then we input the representation,
either in vector form or in matrix form, to the recommendation
model. Using the same test settings in the last set of experiments,
the accuracy results of all compared representations are shown in
Table 3.

As we can see from the table, our method steadily outperforms
all other representations in all measurements. The best compared
model seems to be IBTM, which achieves 0.139 for NDCG@10. Our
method, however, outperforms this value by about 5%. Looking at
other baselines, we see that BOW is the least effective representa-
tion. E-EMB, the previous proposed method, is comparable to GCN,
but is worse than our new method. The tf-idf method, while being
simple to implement, achieves a good HR@10, only 1% less than

Table 3: HitRate@K and NDCG@K accuracy results of dif-
ferent social media representations.

HR@3 HR@5 HR@10 NDCG@5 NDCG@10
BOW 0.076 0.107 0.182 0.070 0.094
tf-idf 0.107 0.158 0.265 0.103 0.137
IBTM 0.120 0.170 0.256 0.112 0.139
E-EMB 0.113 0.163 0.257 0.104 0.134
GCN 0.114 0.162 0.240 0.105 0.129
proposed 0.122 0.170 0.267 0.115 0.146

our method, although its HR@3 is poor. To conclude, while each
representation has its strength and weakness, our method achieves
the best performance, mostly due to its capability to consider trends
and semantics at the same time.

6 CONCLUSION
In this paper, we propose a method to integrate social media back-
ground in dynamic recommender systems in real-time. Our method
consists of a representation of social media, and an attention-based
fusingmethod. The representation takes into account both real-time
trends and evolving semantics of words. Experimental evaluations
with real-world e-commerce and social media datasets show that
our method is feasible, with steadily improved accuracy results
achieved by the extended model. The representation is also shown
to have an advantage over several other real-time representations
of the social media background. Our method is suitable to be de-
ployed practically because social media data can be easily obtained,
and there is no requirement to link user accounts. We would like to
make further investigations, however, because it is still difficult to
tell which social media contexts are predictive for which products.
To make our method easier to explain, in the future, we plan to find
ways to make the relationships between social media background
and product purchasing behavior more explicit. We also plan to de-
ploy our system on real e-commerce platforms and view its impact
on product sales in real-time.
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