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ABSTRACT
Pre-trained language models (PLM) excel at capturing semantic

similarity in language, while in e-commerce, customer shopping

behavior data (e.g., clicks, add-to-cart, purchases) helps establish

connections between similar queries based on behavior on products.

This work addressed the challenges of using sparse behavior data to

build a robust query-to-query similarity prediction model and apply

it to a product search ranking system. Our contributions include a

straightforward method for data generation, testing different model

structures on both public PLMs and in-house PLMs fine-tuned with

Amazon internal data. The fine-tuned in-house PLM model shows

a 27.4% NDCG improvement compared with the BERT. And we

designed an end-to-end pipeline that incorporates model outputs

into prior feature. The prior scores can be used to impact ranking,

matching, and recommendation systems. We tested the prior in an

online experiment, which led to a significant improvement of 0.08%

in the search click rate and a 0.03% reduction in the search refor-

mulation rate. Overall, our approach has significant implications

for improving search ranking and matching applications.
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1 INTRODUCTION
Behavior features constructed based on user feedback towards cor-

responding queries are one of the most crucial features in ranking

models [1]. They have been a key revenue driver in applications like

search ranking and matching, click-through rate prediction, and

sourcing. Though powerful, the user feedback signals are sparse.

Taking Amazon’s US website as an example, it receives several

billion unique queries every year, but the majority of them do not

have sufficient customer behavior signals (e.g., clicks, add-to-cart,

and purchases) to build high-quality behavior features used in rank-

ing. The same pattern happened on YouTube as well [5]. Thus, for

long-tail unique queries, customer signals are too sparse to gener-

ate features. Although many queries are semantically similar [16]

(for example, "acoustic noise-canceling panels", "soundproofing

acoustic studio foam," and "sound-absorbing acoustic panels"), their

corresponding signals differ significantly, resulting in unbalanced

feature quality.

Pre-trained language models (PLMs) have a significant impact

on query-related tasks. PLMs convert raw text into continuous,

high-dimensional vectors that encode the semantic meaning of the

text [19]. The distance (e.g., cosine similarity) between two vectors

can measure whether the two queries are semantically related. We

tested several PLMs, including BERT-base [8], Sentence-BERT [23]

and InfoXLM [4] on a zero-shot setting. For the above mentioned

query "acoustic noise-canceling panels", it introduces some defects

like "noise canceling headphones" and "noise cancelling earbuds

for sleep" which are undesirable. Some methods in e-commerce typ-

ically require several additional auxiliary tasks [31] to keep query

intent or the creation of a query-product knowledge graph [13].

This is not practical to implement due to its complexity in generat-

ing training data with special requirements.

Our work leveraged the large amount of anonymized and aggre-

gated customer behavior data to create training data and labels, then

tested our model structures in several PLMs, including in-house

PLMs trained with e-commerce data. We use this model to estab-

lish better query representation and ultimately improve feature

coverage by mapping tail queries (usually longer, specific queries

have low search volumes) to head queries (usually short, common

queries have high search volumes) with better behavior signals. For

production applications, we designed a two stage pipeline (retrieval
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Figure 1: Example of candidate queries for "sunglass trendy woman"

and re-ranking) to incorporate the model outputs into behavior

feature priors [3].

In this paper, we present three contributions:

• Introduced a straightforward yet effective method for col-

lecting similar queries and creating labels from search logs

only.

• Tested different model structures on several PLMs, including

two in-house PLMs fine-tuned with Amazon internal data.

Our experiments highlight the superior performance and

necessity of the in-house PLM, with a 27.4% improvement

in offline NDCG.

• Designed amethod to extract similar query behavioral scores

into priors used for product search ranking models. The on-

line A/B test conducted on 100M search sessions achieved

significant improvement in both the revenue-aware met-

rics and user-engagement metrics, with the search click rate

increasing by 0.08% and the search reformulation rate de-

creasing by 0.03%. By adopting similar queries’ behavioral

signals, we also observed a significant reduction in search

defects in production.

2 BACKGROUND AND RELATEDWORK
2.1 Query Normalization
Query normalization is important in helping match user queries

with relevant products when the query contains different forms

or alternative expressions of the same concept. It consists of some

common techniques [18] including tokenization, filtering, and stem-

ming. In e-commerce, the user queries are short in length, so we

found via experiments that sorting tokens alphabetically within

a query could further reduce the number of unique queries while

maintaining a high level of precision at Amazon. Figure 1 (left)

shows 37 user queries like "women trendy sunglasses", "womans

sunglasses trendy", and "trendy woman sunglass", etc. After query

normalization like filtering (e.g., women’s -> women), stemming

(e.g., women -> woman) and sorting tokens, they can all use one

query, "sunglass trendy woman" to represent. This significantly

facilitates customer feedback signal sharing for building behavior

features. Though powerful, it is limited at the lexicon level and thus

cannot establish associations with queries that contain different

tokens. Figure 1(right) shows some semantically related queries

grouped by different types that our work aims to generate on top

of query normalization.

2.2 Query Rewriting
Query rewriting is a crucial aspect of information retrieval and

ranking, and it has been an active research field [14, 21, 30]. Three

primary rewriting techniques exist: replacement-based, generation-

based, and retrieval-based methods. Replacement-based methods

employ synonym replacement [15, 17] or query term-dropping [26].

Figure 1 (right) showed some results in the [synonyms] and [token

drop] sections that can be achieved using the replacement-based

method. But these methods could lead to some poorly rewritten

queries like "trendy woman" or "stylish sunglass women" that may
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not reflect the actual terms customers use in real-world scenarios.

Generation-based methods typically utilize Seq2Seq models [25]

or transformer models (BERT [8] and GPT [22]), which lead to

significant improvements compared to traditional rule-based and

statistical methods. Zhang et al. [31] developed a multi-task learn-

ing model that predicts the target query while also fulfilling query-

matching, category classification, and product name prediction

tasks to preserve the query’s shopping intent. However, this in-

creases the original task’s complexity and makes label collection

more challenging. Another challenge with generation-based mod-

els is the long inference time. Hofstatter’s analysis [10] on the

Fusion-in-Decoder model shows that the decoding latency is 10X

of encoding thus is hard to meet the online latency requirement

for our applications. To simplify the training task and better lever-

age the power of pre-training PLMs, we choose a retrieval-based

method and build our work on top of PLMs. This ensures that simi-

lar queries come from the pre-defined candidate set that has good

customer signals.

Collecting labeled data for query rewriting can be challenging

and expensive. E-commerce queries are usually short in length and

lack customer shopping context; thus, it’s difficult to set judgment

standards and train people to generate consistent labels. This made

the weakly supervised technique of mining query pairs from search

logs [6, 7] a widely accepted approach. The implementation varies

in practice. Ozertem et al. [20] collect customer-rewritten queries

within the same session; Fujita et al. [9] use co-click data to gather

similar queries with higher click data rankings; Baeza-Yates et al. [2]

create query clusters by extracting tokens from queries and clicked

URLs, then identify similar queries within the input query’s corre-

sponding cluster. In this work, we designed a divide-and-conquer

method to collect similar query pairs that can be effectively applied

to large amounts of data.

3 PROBLEM FORMULATION
We formally define the problem of predicting query similarity based

on customer behavior data in e-commerce applications. We denote

all input queries of all users by 𝑄 , which consist of a collection

of queries 𝑞𝑖 . Given an input query 𝑞𝑖 , there could exist a set of

candidate query set 𝐶𝑖 = {𝑐1, 𝑐2, ...} from 𝑄 that are close to 𝑞𝑖 . We

train model to predict the similarity between 𝑞𝑖 and each candidate

query 𝑐 𝑗 , denoted as 𝑦𝑖 𝑗 , ranging from 0 to 1. So the training data

can be denoted as T = {(𝑞𝑖 , 𝑐 𝑗 , 𝑦𝑖 𝑗 )}𝑁𝑖∈{1,2,..., |𝐶𝑖 | } . In fact, it is not

possible to generate a similarity score that precisely represents the

relationship between two queries, as the actual score does not have

a meaning in a real-world scenario. We tried to approximate this

value by considering the co-purchase actions between them.

Traning Label Design To compute the similarity score 𝑦𝑖 𝑗
between two queries (𝑞𝑖 , 𝑐 𝑗 ), we define two types of similarity

between queries: overlap similarity (𝑂𝑆) and jaccard similarity (𝐽𝑆).

We use 𝑆 (𝑞) to denote the unique purchased products from query

𝑞 then 𝑂𝑆 is calculated by:

𝑂𝑆 (𝑞𝑖 , 𝑐 𝑗 ) =
|𝑆 (𝑞𝑖 ) ∩ 𝑆 (𝑐 𝑗 ) |

min( |𝑆 (𝑞𝑖 ) |, |𝑆 (𝑐 𝑗 ) |)
(1)

To prevent popular queries from dominating every query’s candi-

date query list, we introduce 𝐽𝑆 . Popular queries are those that have

many purchases of different products. For example, ‘nike shoes’ is

a popular query that has many different products purchased. Since

the denominator in 𝐽𝑆 uses the union of the purchased products

from two queries, it tries to avoid every shoe- or Nike-related query

having ‘nike shoes’ as the top similar candidate.

𝐽𝑆 (𝑞𝑖 , 𝑐𝑖 𝑗 ) =
|𝑆 (𝑞𝑖 ) ∩ 𝑆 (𝑐 𝑗 ) |
|𝑆 (𝑞𝑖 ) ∪ 𝑆 (𝑐 𝑗 ) |

(2)

We use the product of the two similarities as the label to represent

the similarity between two queries.

𝑄𝑢𝑒𝑟𝑦𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑞𝑖 , 𝑐 𝑗 ) = 𝑂𝑆 (𝑞𝑖 , 𝑐 𝑗 ) ∗ 𝐽𝑆 (𝑞𝑖 , 𝑐 𝑗 ) (3)

We consider label𝑦𝑖 𝑗 to be close to 1 when queries 𝑞𝑖 and 𝑐 𝑗 have

the most co-purchased products overlap among other candidate

queries, and close to 0 otherwise. We then create a model to fit on

(𝑞𝑖 , 𝑐 𝑗 , 𝑦𝑖 𝑗 ) to score the similarity between the two queries.

Once generate a candidate query set 𝐶𝑖 for a given query 𝑞𝑖 , we

could combine the signals from each query in𝐶𝑖 to generate a prior

score (details in Section 4.5). We then combine prior with query

𝑞𝑖 ’s behavioral signals to create a new ranking feature that is used

in tree-based ranking models to improve ranking quality.

4 METHODOLOGY
Our proposed framework (in Figure 2) consists of three main com-

ponents: the input layer, the encoder layer, and the similarity cal-

culation layer. We tested both bi-encoder (BE) and cross-encoder

(CE) structures in the encoder layer.

Figure 2: Q2Q model architecture

4.1 Input Layer
Input DataWe use co-purchased products to bridge similar queries.

After we retrieved a large pool of query pairs from the search log,

we designed the following steps to filter and label the number of

samples.

(1) The two queries had at least three different co-purchased

products within a year. This is to prevent weak query pairs

from being generated.

(2) For each query, we rank its similar queries based on a defined

QuerySimilarity score.
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(3) For each query’s ranked queries, we select the top 30
1
or

top 60% queries. We chose the top 60% threshold here for

very popular queries that could have thousands of similar

queries.

Model Input For BE models, the search query and candidate

query are fed separately into the pre-trained model, which outputs

two separate embeddings. For CE models, we concatenate the two

queries using the special tokens <CLS> and <SEP>. The input is

like <CLS> Search Query <SEP> Candidate Query <SEP> and then

feed it into pre-trained models.

4.2 Encoder Layer
4.2.1 Bi-encoder model. Under the bi-encoder structure (Figure 5
in Appendix A), each encoder uses a representation-based model

that takes one query as input and outputs one feature embedding

vector. Then, the generated embeddings of two queries can be fed

into a simple dot product or perception to calculate the similarity.

The advantage of a BE model is the low inference cost that enables

online deployment with low latency requirements.

4.2.2 Cross-encoder Model. The CE model (Figure 6 in Appendix

B) has multiple inputs, and they allow informational interactions at

the early stage by leveraging their attention heads to exploit inter-

query interactions. This interaction can be as simple as feeding two

connected feature embeddings into a multi-layer perceptron (MLP)

or be more complex, such as leveraging an attention mechanism

between two input queries.

4.2.3 Pre-trained Language Model. PLMs are trained on massive

multi-lingual corpora from the internet and have proven to be foun-

dational game-changers for various natural language processing

(NLP) and natural language understanding tasks. Amazon, which

operates in over 20 countries worldwide, has a vast amount of prod-

uct abd search log data. Thus, within Amazon, we also have PLMs

fine-tuned for e-commerce. Table 1 summarizes the four different

PLMs we tested in this project.

• BERT base [8] is transformer model pre-trained on a large

corpus of English data in a self-supervised fashion using a

masked language modeling (MLM) objective.

• Sentence-BERT [23] is a project that aims to train sentence

embedding models on very large sentence level datasets

using a self-supervised contrastive learning objective. It is

pretrained on a dataset of 1 billion sentence pairs, i.e. given

a pair of sentences, the model should predict which is the ac-

tual pair of sentences from other sentences randomly paired

in the dataset. This pre-training method is similar to the Q2Q

model task.

• Amazon in-house PLM V1 (A-PLMv1) model [12] is pre-

trained using translation languagemodeling andMLM,which

is trained on 1 billion distinct queries and 266 million parallel

translations.

1
We found that as we included more than 30 queries, the differences between the later

ones were small and less relevant. We tested using the top 150 in model training and

found the offline NDCG dropped by 1000 bps.

Table 1: PLM Comparisons

Pre-trained
model name

Number
of layers

Hidden
size

Self-attention
heads

Param-
-eters

Training
method

Training
data

BERT base 12 768 12 110M MLM

Book Corpus of

11,038 books and

English Wikipedia

Sentence-BERT 12 384 12 33M

contrastive

learning

1B sentence

pairs dataset

A-PLMv1 6 768 12 158M

MLM

+ TLM

1B distinct

queries +

266M parallel

translations

A-PLMv2 24 1024 16 300M MLM

Amazon

internal data

• Amazon in-house PLM V2 (A-PLMv2) model is obtained by

continual pretraining public InfoXLM [4] on Amazon inter-

nal parallel data. InfoXLM is a multilingual and multimodal

pre-trained model by Microsoft Research.

To generate the final embedding representation from different

encoders, we explored using <CLS> special token embeddings and

average pooling in our experiments.

4.3 Similarity Calculation Layer
We calculated the similarity between the two generated embeddings

using three methods: cosine similarity, MLP, and a combination

of the two. Details of these methods are provided in Appendix C

Figure 7.

4.4 Supervised Learning
4.4.1 Pointwise Training.

• 𝑦𝑖 𝑗 → (0, 1], when 𝑞𝑖 and 𝑐𝑖 𝑗 have co-purchased products.

• 𝑦𝑖 𝑗 → 0, when 𝑞𝑖 and 𝑐𝑖 𝑗 have no co-purchased products.

During training, we artificially created negative pairs (𝑞𝑖 , 𝑐𝑖 𝑗 , 0)

where there was no co-purchase for 𝑞𝑖 and 𝑐𝑖 𝑗 , and mixed them

with positive pairs (𝑞𝑖 , 𝑐𝑖 𝑗 , 𝑦𝑖 𝑗 ), and trained a model on the label.

During inference, we use the model to rank a list of candidates with

the input form [(𝑞𝑖 , 𝑞 𝑗 )]. In this study, we use two different loss

functions:

• Binary Cross Entropy Loss (BCE) [24]:

𝐿BCE = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 𝑗 𝑙𝑜𝑔( ˆ𝑦𝑖 𝑗 ) + (1 − 𝑦𝑖 𝑗 ) · 𝑙𝑜𝑔(1 − ˆ𝑦𝑖 𝑗 ) (4)

• Mean Square Error Loss (MSE):

𝐿MSE =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 𝑗 − ˆ𝑦𝑖 𝑗 )2 (5)

4.4.2 Negative Contrastive Learning. To mine hard negative train-

ing pairs, we adopted Approximate nearest neighbor Negative Con-

trastive Learning (ANCE) [28] on our representation model to gen-

erate a set of negative candidates for a given query 𝑞𝑖 . We denote

𝑄𝑖 to include one positive candidate 𝑞+
𝑖
and 𝐾 − 1 negative can-

didates {𝑞−
𝑖1
, 𝑞−
𝑖2
, ...}. Then we use infoNCE [27] loss to optimize

the negative log probability of identifying the positive sample 𝑞+
𝑖

amongst noise samples.

4
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LNCE = − 1

𝑁

𝑁∑︁
𝑡=1

log

exp(𝑦+
𝑖
)∑𝐾

𝑡=1 exp(𝑦𝑖𝑡 )
(6)

4.5 Application: Product Search Ranking
Two Stage Q2Q Pipeline CE models generally outperform BE

models, but the computational cost increases significantly. For ex-

ample, given 100 million search queries and 100 million historical

candidate queries, the model will be called 100𝑀2
times and will

take 100 million GPU-days. With an optimal 10x inference speed

and 1000 GPUs, it will take 10,000 days to finish. So it is not practical

to use it on a very large set of query candidates like the Amazon

search scenario, where the number of queries to be ranked is on

a million scale. To design an end-to-end framework, we employ a

two-stage procedure (Figure 3): retrieval and reranking.

For the first stage, we select the best representation-based model

and run every non-tail query through it to generate embedding.

We built an ANN graph for fast retrieval. Here we choose to use

PECOS-HNSW [29], a graph-based ANN library for large-scale

vector-similarity search that achieves state-of-the-art performance

on ANN benchmark evaluations, to index all these embeddings. For

any given input query embedding, the similarity computation is

conducted using the inner product.

In the second stage, after each query retrieves its top k (k = 300

in our experiments) most similar queries from the previous stage,

we deploy the best performing interaction-based model to rerank

the retrieved candidates and output similarity scores.

Figure 3: Retrieval-Reranking Pipeline

Prior Calculation To improve search ranking using the Q2Q

model output, we designed a method to augment tail queries where

behavior signals are sparse with prior scores. Prior score measures

the initial likelihood of an event before observing any data, which

is a key concept in Bayesian methods that are commonly adopted

in combination with observed data to make predictions. For a given

query 𝑞, the Q2Q model finds 𝑞’s similar queries 𝐶𝑞 = {𝑐1, ..., 𝑐𝑚}
sharing similar customer actions, then build the 𝑃𝑟𝑖𝑜𝑟 with 𝐶𝑞 ’s

behavior signals. For query𝑞 and a related product 𝑝 , we use𝐻 (𝑞, 𝑝)
to represent their history signal score

2
. Then we have 𝑃𝑟𝑖𝑜𝑟 (𝑞, 𝑝)

defined as:

2𝐻 (𝑞, 𝑝 ) is a weighted combination of clicks, adds and purchases of the (q, p) pair,

normalized by the sum of its impressions and a query-level constant

𝑃𝑟𝑖𝑜𝑟 (𝑞, 𝑝) = 1

|𝐶𝑞 |
∑︁

𝑖∈[1,𝑚]
𝐻 (𝑐𝑖 , 𝑝) (7)

To calculate the final feature 𝐹 (·), we combine the 𝑃𝑟𝑖𝑜𝑟 (·) with
𝐻 (·):

𝐹 (𝑞, 𝑝) = 𝛼 · 𝐻 (𝑞, 𝑝) + (1 − 𝛼) · 𝑃𝑟𝑖𝑜𝑟 (𝑞, 𝑝) · 𝛽 (8)

where 𝛼 is defined as:

𝛼 = 𝑡𝑎𝑛ℎ


𝑚𝑖𝑛(𝛾, 𝐼𝑞,𝑝 )

𝑚𝑖𝑛(𝛾,max

𝑝
𝐼𝑞,𝑝 )

 (9)

𝐼𝑞,𝑝 denotes the number of impressions for product 𝑝 under

query 𝑞. 𝛾 is a constant to cap the very large numbers. We chose

10,000 here, and it depends on different application traffic. So 𝛼

is computed from query-product impressions. The more query-

product impressions, the higher 𝛼 will be. It is used to balance the

weight between observed historical signals and prior scores. We

introduce 𝛽 as the confidence rate used to further adjust the weight

of prior.

5 EXPERIMENTS AND EVALUATION
5.1 Data Preparation
We utilized the anonymized Amazon search logs for our experi-

ments. Compared to click signals, purchase signals are more sparse

but of higher quality. To reduce the training data noise, we consid-

ered query similarity based on the customer’s purchase signals only.

And we aggregated at the (query, product) tuple across all search

sessions recorded over a one year period. For example in search

log, if a user searches "harry potter", then all the returned products

from the search would be listed out as separate rows. And each row

contains the elementary metrics associated with a query-product

impression and its subsequent actions (click, add-to-cart, purchase).

The intuition is that if two different queries lead to purchases of the

same product, these queries are likely to represent similar customer

intentions.

Figure 4 illustrates an example of query-pairs scoring overview.

We have "full size bed sheet" and "cookie sheet pan" as input queries

with six candidate queries. For "full size bed sheet", three of them

have the same product purchase history. The thicker the line, the

more co-purchases there are between them. The connected queries

are used as positive samples and are assigned a similarity score.

Similarly, for "cookie sheet pan", there are three queries with co-

purchased products. Using this method, we build a group of positive

samples for the query. For negative samples, we randomly pair two

queries that do not have any co-purchased product history.

To improve the recall at the retrieval stage, we adopted noise

contrastive learning to mine hard negative pairs fromANN retrieval

results using our initial representation model.

Data Example
Table 2 presents the top queries that have similar purchase histo-

ries with the "goya lady fingers". "Lady finger" is a type of sponge

cake biscuits and "goya" is the brand name. In the "candidate query"

column, we observe that the top-ranked queries include "lady fin-

gers for tiramisu prime", "ladyfinger cookies". It is not straightfor-

ward to consider "goya lady finger" and "tiramisu cookies" as similar

5
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Figure 4: Overview of query pairs scoring schema

Table 2: Training Data Example of ‘goya lady fingers’

input query candidate query Number of
co_purchase

Number of
union

purchase

Number of
minimum
purchase

Jaccard
similarity

Overlap
similarity Target

goya lady fingers lady fingers for tiramisu prime 9 42 12 0.214 0.75 0.161

goya lady fingers lady finger cookies for tiramisu 8 34 12 0.235 0.67 0.157

goya lady fingers ladyfinger cookies 8 58 12 0.138 0.67 0.092

goya lady fingers sponge fingers biscuit 4 18 10 0.222 0.4 0.088

goya lady fingers lady fingers for trifle 4 18 10 0.222 0.4 0.088

queries at a lexical level. But rich behavior signals show the two

queries share similar purchased products, thus teaching the model

to learn this semantic level similarity.

Scalability Challenge
When the search logs have billions of unique query product pairs,

using the Cartesian product directly on all the queries would yield

over a trillion query pairs, resulting in an out-of-memory issue.

To reduce enormous communications between nodes and fully

leverage the parallel computation power in Spark, we aggregate the

query-product pairs at the product level and then enumerate query

pairs from all the corresponding products. The greater the number

of related queries for a product, the longer the enumeration time.

Thus, we implemented the divide-and-conquer strategy for this task.

We bucketed the product based on the number of corresponding

queries and then triggered the enumeration process. However, there

are some very popular products with a high number of related

queries. We first did a sampling of queries, then triggered this

process to save computation time.

Final Dataset
Table 3 shows the details of the training, validation, and test data.

For the training data, there were 1.67 billion query pairs with 27.9

million unique input queries. For validation data, there were 687,300

pair queries and 22,910 unique input queries. We have two test data

sets. A small test set can be used to quickly test model performance

as well as the best checkpoint selection. A large test set is needed to

evaluate the performance of a large pool and generate stable scores

for model comparisons.

Table 3: Datasets used in this project

Number of rows Unique query1

Training 1.67 billion 27.9 million

Validation 687,300 22,910

Test (Small) 7,083 284

Test (Large) 21 million 379,358

5.2 Offline Evaluation Metric
In this study, we use Recall@100, 1000 and NDCG@3 (Normalized

Discounted Cumulative Gain [11]) to evaluate the model’s perfor-

mance. Recall is to measure the retrieval stage performance for the

representation-based model. NDCG is to measure the reranking

stage performance, and we chose 3 here to align with our down-

stream applications for computing the prior score. In our task, the

6
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Table 4: Bi-encoder models. In Encoder finetuned column, T denotes True and F denotes False.

Model name Model config NDCG@3 Gain
Encoder backbone Encoder finetuned

Q2Q random init T 0.5713 -

bBv1

BERT-base

F 0.6748 10.35%

bBv2 T 0.6912 11.99%

bSTv1

Sentence-BERT

F 0.6650 9.37%

bSTv2 T 0.7275 15.62%

bAv1 A-PLMv1 F 0.6861 11.48%

Table 5: Cross-encoder models. For interaction layers, all use "MLP+cos" means a concatenation of MLP output (a score) and
cos-sim output, followed by a 2-to-1 layer.

Model name Model config NDCG@3 Gain
Encoder backbone Encoder finetuned Interaction Layers

cBv1

BERT-base

F MLP 0.6319 -

cBv2 F MLP+cos 0.6395 0.76%

cSTv1

Sentence-BERT

F MLP 0.6780 4.61%

cSTv2 F MLP+cos 0.7286 9.67%

cBv3 BERT-base T MLP+cos 0.7122 8.03%

cSTv3 Sentence-BERT T MLP+cos 0.7450 11.31%

cAv2 A-PLMv2 T MLP+cos 0.7968 16.49%

Table 6: Comparison of cross-encoder teacher and the distilled bi-encoder student.

Note encoder finetuned on architecture loss train inference NDCG@3 row
cAv2 (teacher) A-PLMv2 hard label CE MSE - - 0.7968 1

benchmark1 Sentence-BERT zero-shot BE - - cos 0.6395 2

benchmark2 Sentence-BERT hard label BE BCE cos cos 0.6875 3

student1 A-PLMv2 cAv2 score BE BCE MLP cos 0.7240 4

student2 A-PLMv2 cAv2 score BE BCE MLP MLP 0.7780 5

rank of the relevant queries is more important than the actual pre-

diction score. So we choose NDCG as it accumulates gain from the

top of the query list to the bottom, with the gain of each result

discounted at lower ranks. The metric ranges from 0 to 1.

5.3 Offline Evaluation
We trained models using different combinations of model compo-

nents, including BE and CE structure in the encoder layer, and MLP

and Cosine similarity in the similarity calculation layer.

Table 7: Models Recall with different techniques

Note Model name Recall@100 Recall@1000
baseline bi-q2q 0.59 0.92

+weight w-bi-q2q 0.64 0.92

+ANCE ANCE-w-bi-q2q 0.78 0.94

BE Model Comparisons Table 4 shows the NDCG@3 metric

on BE models with cosine similarity for interaction. We found that

1) Using the Q2Q model train from scratch as a baseline, the models

using PLMs as the backbone have lifted the NDCG range from

937 bps to 1562 bps. 2) Using our behavioral-driven query pairs

to fine-tune PLMs improved the performance, ranging from 2.4%

to 9.4% (compare bBv1 vs. bBv2 and bSTv1 vs. bSTv2). Specifically,

the best BE model, bSTv2 outperformed the vanilla Q2Q model by

27.4%.

CE Model Comparisons Under the CE model (Table 5) struc-

ture, we first frozen the encoder and tested different interaction

layers. We found combining MLP and cosine similarity, followed by

a 2-to-1 layer, is better than MLP or cosine similarity individually.

And the best CE model, cAv2 (using Amazon’s in-house A-PLMv2),

outperformed cBv1 (using BERT-base) with an improvement of 26%.

In addition, our evaluation shows that the model training using

A-PLMv2 is not sensitive to loss (MSE, BCE) or pooling choices

(avg, cls).

DistillationWe further evaluated whether we could improve

BEmodel performance by distilling the best CEmodel, cAv2.Instead

of using hard labels from the original training data, we use cAv2

to generate soft labels for student models. Table 6 shows that the

BE student1 outperforms the benchmark2 fine-tuned with hard

labels by 300 bps (rows 3, 4), but still trails the CE teacher by 700bps

(rows 1, 4). With one more linear layer to allow more embedding

interaction, the model narrows the gap and trails the CE teacher by

180 bps (rows 1, 5). As expected, fine-tuning public Sentence-BERT
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Table 8: Ablation Study

Results in this ablation study all use these configs: BE architecture, train with one MLP layer and BCE loss row

Note encoder finetuned on interaction (inference) NDCG@3 1

initial backbone InfoXLM zero-shot cos 0.63689 2

+ pretrain A-PLMv2 zero-shot cos 0.67044 3

+ finetune A-PLMv2 hard label cos 0.71784 4

+ distillation A-PLMv2 cAv2 cos 0.72396 5

benchmark Sentence-bert zero-shot cos 0.6395 6

benchmark Sentence-bert hard label cos 0.6875 7

CE teacher A-PLMv2 hard label - 0.7968 8

other configs

A-PLMv2 cAv2 MLP 0.77803 9

InfoXLM hard label cos 0.64157 10

InfoXLM hard label MLP 0.68549 11

A-PLMv2 hard label MLP 0.78599 12

using our label improved the performance by 7.5%. And replacing

cosine similarity with MLP brings a 7.5% gain (rows 4, 5) on the

distilled student model.

Model Recall In Table 7, the recall@100 for the initial trained

representation model is 0.59. To improve the model recall, we first

add the label as weight in training, and the recall increases to 0.64.

After we introduce the ANCE technique with the negative queries

coming from the model’s retrieval phase, the recall at 100 reaches

0.78 with 32% improvement compared with baseline.

5.4 Ablation Studies
To better understand the impact of the backbone models, pretrain-

ing, finetuning, and distillation. We conducted a series of evalu-

ations on our models trained with BE architecture, measured by

NDCG@3.Wemeasuredwhether Amazon’s in-house PLMprovided

additional benefits over its parent, InfoXLM. In Table 8, specifically,

we observed that pretraining with Amazon query/product datasets

brings 340 bps lift (rows 2, 3) to 1000 bps lift (rows 11, 12). For Q2Q

tasks, when find-tuned on Sentence-BERT and A-PLMv2 with hard

label, A-PLMv2 has 303bps lift over Sentence-BERT. On the other

hand, fine-tuning the behavior signal brings an additional 470 bps

lift (rows 3, 4). Distillation brings an additional 60 bps lift (rows 4,

5). Surprisingly, we found the simple MLP layer on top of the BE

layer could bring the model to similar performance as the best CE

model with negligible differences of 11 bps (rows 8, 12).

5.5 Production Experiment Results
Using the two-stage Q2Q pipeline, we conducted an online A/B test

on the Amazon US website for one week on 100 million search ses-

sions at a 5% level of significance. We use the best BE model, bSTv2,

in the retrieval stage and the best CE model, cAV2, in the reranking

stage. The model yielded significant revenue wins and significantly

reduced search defects, along with other search-related metrics im-

provements, including the number of searches increasing by 0.03%,

search page clicks increasing by 0.08%, search reformulation rate

decreasing by 0.03%, and the average click depth decreasing by

0.05%.

In particular, this experiment shows a stronger improvement

in clothing and fashion-related shopping categories across all the

metrics, than other categories. The stats show that these categories

have a lower conversion rate than electronics and kitchens. We con-

jecture that these significant wins are due to the fact that the prior

scores powered by the Q2Q model provide customers with more

related choices to browse and select. With the Q2Q augmentation,

we are able to improve this capacity and thus gain more customer

purchases.

6 CONCLUSION
In this study, we present a query similarity prediction framework

that leverages behavior data. We first mine the query pairs from

the yearly aggregated logs and design the training labels that can

approximate their similarities. These query pairs could go beyond

the semantic level when fused with domain-specific knowledge.

For example, the behavior data could link "cheap" with "amazon

basic" and have better domain-specific token representations like

"amazon", "prime", "gift card", and "brands". Then, we explored

various model components and compared their performance on

both public and Amazon in-house PLMs. The model fine-tuned

on Amazon’s in-house PLM has improved 27.4% over the BERT

baseline. To improve ranking quality in e-commerce, we designed

an end-to-end pipeline to utilize the model output to build prior

behavior features. The online experiments conducted in the US

showed significant improvements in search click rates and defect

reduction.

Our work provides a practical solution to leverage similar queries

to improve search ranking in e-commerce settings. This study em-

phasizes the value of combining customer behavior signals, which

contain precise and up-to-date knowledge, with the general knowl-

edge provided by PLMs. And we selectively combined them for

different applications with different latency requirements. While

CE models generally exhibited superior performance to BE models,

we found that with distillation techniques and combining MLP on

top of the best-performing BE model, we could achieve similar per-

formance as a CE model. This combination not only leads to better

precision in downstream applications but also facilitates online

deployment.
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A BI-ENCODER Q2Q MODEL

Figure 5: Bi-encoder Q2Q model

B CROSS-ENCODER Q2Q MODEL

Figure 6: Cross-encoder Q2Q model

C SIMILARITY LAYER
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Figure 7: 3 approaches to calculate similarity layer
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