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ABSTRACT

In e-commerce, head queries account for the vast majority of gross
merchandise sales and improvements to head queries are highly
impactful to the business. While most supervised approaches to
search perform better in head queries vs. tail queries, we propose
a method that further improves head query performance dramat-
ically. We propose XWalk, a random-walk based graph approach
to candidate retrieval for product search that borrows from recom-
mendation system techniques. XWalk is highly efficient to train
and inference in a large-scale high traffic e-commerce setting, and
shows substantial improvements in head query performance over
state-of-the-art neural retreivers. Ensembling XWalk with a neural
and/or lexical retriever combines the best of both worlds and the
resulting retrieval system outperforms all other methods in both
offline relevance-based evaluation and in online A/B tests.
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1 INTRODUCTION

Modern large-scale search systems are tiered [13] with at least
two layers. The candidate retrieval layer generates a small subset
of potentially relevant documents from a corpus many orders of
magnitude larger in size, while emphasizing efficiency and recall.
The re-ranking layer uses more computationally expensive methods
to re-rank the candidates generated by the retrieval stage to produce
a high-precision final result list. Better recall in candidate retrieval
leads to better overall accuracy. In this paper, we focus on improve
search through improving recall in the candidate retrieval layer.
Most evaluations for search systems use an evaluation query set
in which every query is assumed to be equally important and has
equal impact on the accuracy metric. However, in reality, query
frequency distributions are exponential [1]. Consequently, in e-
commerce, head queries account for the vast majority of gross mer-
chandise sales and head query performance is far more impactful
to business metrics than torso or tail performance. State-of-the-art
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supervised neural dense retrievers [2, 6, 7, 14, 16] typically perform
better in head queries than tail, due to the higher availability of
training data in the head region. However, we show that further
substantial improvements to head query performance are possible.
We borrow ideas from the recommendation systems community
and propose XWalk, a graph-based approach to candidate retrieval.

Historically, graph-based approaches in search were used to
create features (e.g. PageRank, click graphs [5, 19]) for the re-ranker
layer, but have not been used directly for retrieval. Recently, graph
neural networks (GNNs) have achieved state of the art performance
in recommendation and are being adapted for search [8, 15, 18, 20].
However, large-scale GNNs are complex and slow to train.

The recommendation systems have long used implicit interaction
graphs to directly generate recommendations. Commonly, users
and product listings are represented as nodes in a graph and edges
represent a logged interaction between a user and product listing
(e.g. the user purchasing the listing). Random walks in graphs is
a powerful technique used to generate recommendations from in-
teraction graphs [3, 4, 11, 12]. Random walk based approaches are
frequently used in large, real-time recommendation systems due to
their effectiveness and efficiency [4, 12]. In addition, when using
implicit feedback (e.g. logged interaction data such as user clicks)
Park et al. [11] showed that random walk based approaches can
perform better than matrix factorization approaches.

XWalk uses a random walk based approach to perform candidate
retrieval for product search. In XWalk, we cast search as a query-
to-listing recommendation problem (as opposed to user-to-listing),
that is, we transform our query log into a implicit interaction graph
between queries and product listings, and perform candidate re-
trieval by “recommending” listings to queries. Our approach trains
using a fraction of the time and resources used by neural dense
retrievers and GNNs, and is highly efficient in inference — XWalk
scales to real-time search over graphs of billions of nodes and tens of
billions of edges. XWalk also excels in head queries, where implicit
feedback signals are plentiful.

While XWalk on its own suffers in tail and novel queries, we
show that when results from XWalk are ensembled with a typical
retriever that uses text similarity, even one as basic as plain BM25,
it substantially improves overall candidate retrieval accuracy com-
pared to strong neural dense retrieval and hybrid retrieval baselines,
especially over the head query region, which is responsible for the
overwhelming majority of sales in e-commerce. Furthermore, we
show that XWalk is complementary to both dense retrieval and
BM25, and demonstrate the strength of ensembling all three ap-
proaches.

To summarize, our novel contributions are: a) showing that
XWalk substantially improves performance in the head query re-
gion, which accounts for the overwhelming majority of sales in
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e-commerce; b) presenting an efficient random walk inference al-
gorithm that can effectively serve queries at scale; c) showing that
XWalk is complementary to other common retrieval methods and
showing the strength of a simple ensemble approach that combines
XWalk, BM25, and dense retrieval.

2 METHOD

We take inspiration from the recommendation space and recast
the search problem as a query-to-product listing recommendation
problem using implicit feedback: predict the best k product listings
Ly, to “recommend” to a query g;, by learning from implicit user
feedback, i.e. a query log. From the query log, we construct an
undirected, weighted bipartite graph G = (Q, L, E, W) where Q
are nodes representing queries, L are nodes representing product
listings, E are edges E = {e; j = (¢i,]j) | gi € QAlj € L}, and W
are edge weights.

2.1 Graph Construction (Offline Training)

Given a query log which records for each query g; the set of list-
ings LfliCk, Ll.cur t P urchase that the user clicked on, added to their

A
shopping cart, and purchased, respectively, we construct our graph

through the following process:

(1) For each unique (by text string) query in the query log §;,
add g; to Q.

(2) For each unique (by listing ID) listing in the query log I}, add
ljto L.

(3) Collate the query log by query-listing pairs (g;, [j), counting
the number of occurrences of click; j, cart; j, and purchase; ;
interactions for each unique (§;,[j) pair.

(4) Foreach (gi,;), add e; ; to E and its weight w; j to W, where
wj,j is calculated Equation 1.

Intuitively, edge weights represent the popularity or trustworthi-
ness of the edge, i.e. if many different users bought listing /; from
query q;, w; j will be higher because we are more confident in the
relationship represented by the edge. To weight edges, we use a
simple linear combination:

wij = Cy - |clickij| + C2 - |cart;j| + C3 - |purchase j| (1)

In practice, the best coefficients are C; < Cz < Cs, as the goal is
to bias walks toward listings which convert well for a given query.

2.1.1 Graph representation for efficient inference. XWalk is de-
signed for sparse graphs scaling up to billions of nodes and tens of
billions of edges. The costliest part of random walk graph inference
is sampling edges to walk, especially from high degree nodes. For
efficient inference, we choose our graph representation carefully.

We store edge weights as cumulative distribution functions in
order to use Inverse Transform Sampling, which allows sampling
in O(log(N)) time. Note, we choose this approach over the alias
method, which allows for constant time sampling, due to the dou-
bling of memory needed for the transform. As XWalk’s space com-
plexity is dominated by edges and corresponding weights, we de-
velop other methods for efficient sampling (Section 2.2).

To transform edge weights in to CDF format, for each node n,
we sort its adjacent edges E, « in decreasing order of their weights
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Wh,s, such that wp; > wp i+1. We then compute the cumulative
distribution of all weights:

Z;':o Wn, j

CDFy; = L
n
Zi:O Wn,i

@)

To sample an edge from Ej, ., we randomly sample p ~ Uniform(0,1)

and find the corresponding edge through binary search. This for-
mulations provides us a few valuable advantages:

(1) Weighted sampling is O(log(|En,+|). Given some nodes have
degrees in the millions, logarithmic growth is critical for
performance.

(2) Normalizing the CDF to 1 allows us to reconstruct the the
transition probability for outbound edges. This is key for the
Metropolis-Hastings sampling strategy (Section 2.2).

(3) Better cache coherence as the bulk of the weights are located
near the front of the distribution.

Finally, we convert the graph into Compressed Sparse Row for-
mat, guaranteeing a O(1) lookup cost for edges.

Note that all of the above graph construction steps are simple ETL
(extract, transform, load) operations with no expensive parameter
training steps. Compared to neural dense retrievers, “training” an
XWalk graph model takes only a fraction of the cost and time.

2.2 Graph Inference (At Query Time)

Inferencing a graph with random walks is challenging to do effi-
ciently. Despite the O(1) edge lookup guarantee of the Compressed
Sparse Row format used in graph construction, a naive walk ap-
proach that uses depth first search and binary search node lookups
create random memory access patterns which result in high rates
of costly cache misses [17]. We present an approach for XWalk that
scales to graphs of billions of nodes and tens of billions of edges.

At query time, XWalk retrieves relevant listings for a query g;
by sampling nodes in G using k-hop fixed paths [3, 4] with node
qi as the starting point. When k is an odd number, the last node in
a k-hop path will always be a listing node (L) due to the bipartite
nature of G. XWalk returns listings ranked by the frequency of
which they were sampled.

To reduce costly random memory access patterns, we use a
breadth first search instead of depth first search for our random
walks. We also improve upon the Inverse Transform Sampling
strategy by using the Metropolis-Hastings algorithm (a Markov
chain Monte Carlo method) in most places. Given the sorted CDF
format of edge weights (Eq. 2), we can reconstruct the original
edge transition probabilities: P(nj|Ep, «) = Wn,j — Wn; j—-1. As
Metropolis-Hastings requires a symmetric distribution, we take the
absolute value of the proposal index for each edge and sample from
the Normal distribution. Ablation testing indicated XWalk is not
sensitive to the variance for the proposal distribution, o2. We set
o?=0.2.

Metropolis-Hastings improves the cost of ¢ edge samples to
O(log(|En,«|)) + ¢ compared to ¢ * O(log(|Ep,«|)) of Inverse Trans-
form Sampling. In cases where c is large (e.g. the initial query node),
the computational improvements are substantial. A known limita-
tion of MCMC methods is the auto-correlation of samples, usually
requiring a mix time prior to sampling. Therefore, for our first
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sample, we use Inverse Transform Sampling to get an unbiased
starting point and use Metropolis-Hastings for subsequent samples.
In preliminary testing we found no reduction in model accuracy
for this implementation compared to using only Inverse Transform
Sampling while seeing the expected substantial latency benefits.
Our overall random walk strategy is presented in Algorithm 1.

Algorithm 1: XWalkBFSSampler
2

1 Global variables: Var of Normal distribution o=,
Dictionary of nodes to counts Counter
2 Input: Starting node n, Number of walks ¢, Walk-length k,
Edges E, Weights W, Multiplier m (default 1)
3 p ~Uniform(0,1)
4 i = BinarySearch(Ey «, Wy s, p)
/* the i’th node of ordered neighbors of n */
5 Counter[node(E, )]+ =m
¢ for step = {2, .., ¢/ do
7 Jj = Metropolis(i, Ep, «, W, «, o?)
/* the j’th node of ordered neighbors of n; */
8 Counter[node(Ep, )]+ =1

9 i=j
10 end
11 if k> 0then
12 counts =0
13 for {nj, count} € Counter do
14 counts =
counts UXWalkBFSSampler(n;, count, k — 1, E, W)
15 end
16 return counts
17 lelse
18 Nodes = Sort(node €

Counter) in non-increasing order {Counter[nq] >
Counter[nz] ... > Counter[n|counter|1}
19 return Nodes

20 fend

2.3 Extending the Graph

Our e-commerce platform is a two-sided marketplace and our in-
ventory comes from independent sellers. Thus, listings are naturally
grouped by shops. In addition, sellers may add tags to their listings
to better describe them (e.g. “christmas”, “gift”, etc.).

For the sake of notation simplicity, we described the graph con-
struction and inference above assuming our graph only contains
two types of nodes, Q and L. However, in practice, we extend the
graph by adding shop nodes (S) and tag nodes (T) to the graph; this
allows us to retrieve listings without implicit user feedback (e.g. the
cold start problem) and further increase connectivity of the graph.
Note that G remains bipartite: {Q, S, T} is a separate partition from
L and thus the algorithms described in this section can be used
unchanged. The weights of edges between shops/tags and listings
are set to 1. wg, s, = wg,,1; = 1.

3 EXPERIMENTS

For our experiments, we sought to closely emulate a real-world e-
commerce setting, where the main source of training data is implicit
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user feedback from query logs, and models are evaluated under a
realistic query popularity distribution. Unfortunately, most public
search datasets do not reflect a realistic query distribution and rarely
have implicit user feedback as training data. While recommendation
system datasets have implicit user feedback, they do not have a
text query that is usable by BM25 or dense retrieval, which retrieve
based on query to listing text similarity. Therefore, we curated a
training and evaluation dataset from our e-commerce platform.

3.1 Dataset Creation

For training data, we collected 365 days of implicit feedback data,
comprising of records of queries and the product listings that were
clicked, added to cart, or purchased from a given query. Queries are
represented by their query text. Listings are represented by their
unique ID and the title of the product. In addition, as mentioned in
Section 2.3, listings are associated with seller-provided tags, and
each listing belongs to exactly one seller’s shop.

Over the time period used for this experiment there were 137,824,871
unique listings, 147,174,817 unique queries, 62,803,463 unique tag,
and 3,018,713 unique shops. There were a total of 1,349,734,328
query-listing interactions recorded, where 3.46% were purchases,
6.19% were cart adds and 90.3% were clicks. Altogether, there were
1,395,759,140 edges. Example records are found in Table 1.

Evaluation data was curated to be a representative query dis-
tribution, sampled from a single day immediately following the
last day of the training data window. We randomly sampled 11,521
queries that resulted in at least one purchase. As the sample is in-
tended to be reflective of the true query popularity distribution, we
did not de-duplicate the query set. Figure 1 shows the distribution
of the query frequency in the evaluation set.

For each query, the listings that were purchased from that query
are considered the relevant document. 82.3% of queries had only
one purchase, 12.0% had two purchases and 5.6% had more than
two purchases. For each one of these queries, we assigned them
to a head/torso/tail frequency bin based on how frequently they
occurred in the previous 365 day period. The bins were created such
that the total counts of requests are roughly equal among those
bins. Of the evaluation queries, 31.0% were in the head bin, 47.9%
were in the torso bin, and 43.9% were in the tail bin.

co

[+)]

log(gquery occurrence count)
N B

o

Figure 1: Distribution of evaluation queries’ log frequency,
ordered from least frequent to most frequent.

3.2 Experiment set up

We compare XWalk against two other methods of candidate re-
trieval. First is lexical retrieval using BM25 scoring (BM25). We use
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query listing ID listing title interaction type shop tags
wedding dress 112 beautiful bridal wedding gown click s00 white, gown
wedding gown 112 custom embroidered wedding dress purchase s00 white, gown
wedding dress 134 ethereal champagne dress with chiffon skirt click s11  fancy, dress, chiffon

Table 1: Hand-created example of implicit feedback training data.

Pyserini [9] to build a Lucene index based on listing titles in our
dataset and then retrieve candidates using BM25 rankings using
bag-of-words representations. We used the default analyzer and
default BM25 parameters (k1=1.2, b=0.75).

The second baseline is a state of the art neural dense retrieval
system [10] trained on search traffic for candidate retrieval (NIR).
NIR uses a smaller time window of training data (30 days) due
to the time and expense of training on larger data sets. NIR is a
Transformer-based, two tower model that uses a multi-part hinge
loss to distinguish between interactions that involve a purchase,
cart add, favorite, click, or nothing. Model was trained over one
epoch for YYY hours. It was designed for better semantic matching
between queries and listings by incorporating title, query as well
as additional features such as tags, and listing taxonomy.

In addition to the above, we also compare results against hy-
brid systems of NIR+BM25 [2]. To ensemble the results from each
retrieval engine, we use Reciprocal Rank Fusion, a simple but ef-
fective fusion technique [2]. Higher recall in candidate retrieval
result in higher overall search accuracy [2]. As we are focusing
on the first-pass candidate retrieval stage of search, we use recall
and mean average precision (MAP) at 100, and 1000 to measure the
quality of candidates retrieved.

4 ANALYSIS

As shown in Table 2, when compared independently against other
methods, XWalk out-performs other methods in most metrics de-
spite the fact that it is unable to return results for novel queries, due
to its strength in the head query bin. When combined with BM25,
it outperforms in every metric, both NIR and the hybrid NIR+BM25.
Finally, the ensemble of all three methods (XWalk+BM25+NIR)
substantially outperforms all other configurations.

We see in Table 2 that BM25 is significantly weaker in perfor-
mance compared to NIR and XWalk and does not always improve
the overall results of NIR and XWalk, especially for MAP. While
BM25 can improve recall by adding listings that were not retrieved
by NIR and XWalk, its poor ranking drags down MAP in the hybrid
systems. For the most popular short queries, BM25 is not able to
distinguish between the many listings with titles that token match
similarly to the query. Whereas methods like XWalk and NIR are
able to provide a more reliable ranking of the highly purchaseable
listings based on training data.

However, in Table 3 we see that XWalk is complementary to
BM25; XWalk is stronger in the head and torso bins while BM25
outperforms XWalk in the tail bin. This is due to the fact that
XWalk suffers from cold start problems: it performs best with many
prior examples and is unable to handle novel queries. BM25, as
a lexical matching system, is more able to handle novel queries.
Furthermore, XWalk+BM25 is still yet complementary with NIR.
The semantic matching of dense retrieval excels in the tail, where
queries are typically longer. When all three systems are ensembled,

it is the highest performing across all query bins. XWalk’s success
in the head query bin is particularly notable — in an e-commerce
setting, the head query bin is responsible for a large majority of
merchandise sales.

r@100 r@1000 M@100 M@1000

BM25 0.192 0.394 0.034 0.035
NIR 0.547 0.740 0.107 0.109
XWalk 0.600 0.723 0.153 0.154
NIR+BM25 0.497 0.780 0.097 0.100
XWalk+BM25 0.599 0.829 0.129 0.132

XWalk+BM25+NIR  0.701 0.915 0.194 0.198
Table 2: recall (r@100, r@1000) and MAP (M@ 100, M@ 1000)
for retrieval models and combinations.

tail torso  head

BM25 0.471 0.420 0.299
NIR 0.738  0.728  0.759
XWalk 0.260 0.813  0.899
NIR+BM25 0.804 0.779 0.762
XWalk+BM25 0.595 0.875 0.914

XWalk+BM25+NIR  0.836 0.931 0.942

Table 3: Comparison of retrieval models in terms of re-
call@1000 stratified by query popularity.

5 ONLINE TESTING

We tested XWalk in a live online A/B experiment on a large e-
commerce platform. The experiment ran for 23 and 25 days on our
mobile and web version of our platform, respectively. Our search
system is a two-stage search system, which uses an ensemble of
candidate retrievers in the first pass, followed by a second pass
re-ranker. In our A/B experiment, an ensemble of NIR+Solr as the
candidate retrieval system was compared against an ensemble of
XWalk+NIR+Solr.

We saw a statistically significant and substantial increase in
conversion rate for the search system including XWalk in both the
web and mobile platforms, +1.2% on web and +1.98% on mobile.
In addition, in a production setting, we saw that XWalk was our
lowest latency retrieval engine. The 99th percentile latency is only
58% of the NIR engine and 22% that of our Solr inverted index.

6 CONCLUSION

Head queries are responsible for the large majority of purchases
in e-commerce. We presented XWalk, a novel candidate retrieval
engine, which by frames search as a query-to-product recommen-
dation problem, leverages powerful, highly efficient graph methods
to substantially improve head query performance in product search.
XWalk is also complementary to other common retrieval engines
such as BM25 and dense retrieval, and ensembling produces a pow-
erful retrieval engine.
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