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ABSTRACT
Many tasks in e-commerce involve providing users with relevant and
personalized information that reflects their particular interests and
affinities. Although tasks such as search and recommendation are
commonplace in most large-scale e-commerce platforms nowadays,
there is a growing need in providing new features and capabili-
ties, most of which would benefit from personalized user-centric
strategies. However, designing custom solutions takes a considerable
amount of time and effort, so the availability of generic behavioral
representations that can be used in a variety of tasks, is of great
practical importance

In this work, we propose a generic feature extraction model that
effectively reduces the time and costs of building personalized so-
lutions by leveraging a diverse and general set of tasks suitable to
e-commerce. During pre-training, the model predicts attribute em-
beddings of the next and purchased items in a navigation session.
At run-time, instead of discarding the output prediction heads, we
use them to build a novel item representation that incorporates user
preferences observed in the navigation session.

Equipped with these representations, we perform experiments on
two different datasets, demonstrating competing performance and a
high degree of complementary with other approaches.
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1 INTRODUCTION
Being able to generate personalized responses is key for e-commerce,
as it improves the overall user experience by presenting results that
align with their interests and affinities. Applications of personaliza-
tion range from generating customized product recommendations
[6, 27] and showing personalized responses to search queries [1, 15],
to the prediction of size and fit of fashion [19]. These applications
require a way to encode user behavior and preference dynamics
concisely. These are variables that are difficult to grasp, and can
not be captured from historical data only, e.g. user purchase and/or
recommendation history. They are modulated by external factors
such as trends, social and seasonal events, etc. [25, 27]. This makes
session-based personalization [18] appealing, as sessions account
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for all these variables implicitly by looking at the actual interaction
behavior of users in a continuous period of time [25]. Session-based
methods have several advantages over more traditional ones [12],
namely: they do not assume the availability of user preference data,
they can be readily applied to new and/or anonymous users, and
reflect the dynamics of user preferences over time.

Besides the modeling capabilities of these designs, another im-
portant factor is scale, especially in high-traffic scenarios like large
auction platforms/marketplaces, and streaming service providers. In
these cases, the large number of items that change over time (items
being constantly added or removed) or the real-time nature of the
interactions (low latency response), make the actual design face
constraints that go beyond downstream performance. Furthermore,
given the variety of problems that involve deciding what to present
to a specific user in a given context, there is a practical need for
developing generic approaches that reduce the effort required by
designing custom solutions.

In this work, we tackle these problems and propose a generic
learning framework that leverages user navigation data to learn a
generic model that allows us to compute session-based represen-
tations that perform well on various tasks. We learn the model by
leveraging supervision signals well suited for e-commerce appli-
cations. Importantly, generating such signals does not require any
additional effort since they can be inferred automatically from his-
toric navigation logs.

Our contributions can be summarized in the following:

• We propose a multi-task self-supervised pre-training approach
from user activity logs. Our approach is designed to be inde-
pendent of the size of the product catalog.

• A feature extraction mechanism that leverages the trained
sequential model and enables its use across multiple appli-
cations. This mechanism can be easily integrated into exist-
ing solutions and incorporate problem-specific features in a
straightforward manner.

• We show that the model and the new representation can be
computed incrementally with a minimum effort, making them
suitable for online personalization settings.

• We report experiments on two different e-commerce datasets
and show consistent improvements w.r.t a variety of mod-
els. We also provide a disaggregate analysis of the session
data that provide new insights into the particularities of the
problem.

2 RELATED WORK
In this section, we review relevant work on personalization and
representation learning in the context of e-commerce. We refer the
interested reader to [25] for a thorough survey of the subject.
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In [14], the authors propose a user representation learned across
multiple tasks. The model consists of an LSTM network and an
attention mechanism trained on user sequences that include a variety
of interaction events (clicks, bookmarks, purchases). The model is
learned over five different tasks. Some tasks are specific to Taobao
(shop preference prediction, fashion icon following prediction) while
others are relevant to any e-commerce platform (click-through rate
prediction, ranking, and price preference prediction). Although the
authors demonstrate a gain from fine-tuning to a new task, it is
not clear how a machine learning practitioner should incorporate
problem-specific features such as placement for ads, or contextual
information for push notifications.

Instead of fine-tuning the model for each downstream task, [29]
proposes to "patch" the learned model in order to use it downstream.
The approach is based on pre-training a convolutional architecture
on a large set of user navigation sequences, using a context-based
masked item prediction objective (single task). During fine-tuning,
the authors propose to insert small sub-networks across the archi-
tecture in order to reduce the number of parameters needed to be
fine-tuned for a given new task. Note, however, that the convolutional
nature of the model makes it difficult to apply to an online/streaming
scenario, where incremental computation capabilities are desirable.

[28] use a contrastive learning strategy and different data augmen-
tations to train a transformer architecture from sequence data. In this
model, input sequences are transformed by two randomly sampled
augmentations and the model has to predict if a pair correspond to
the same underlying sequence or not. The negative pairs correspond
to other randomly sampled sequences from the training dataset. The
authors focus exclusively on the recommendations, and it is not clear
how could be applied to other e-commerce tasks.

[11] adapts the BERT model [5] to e-commerce data by self-
supervision. The model adopts an architecture that explicitly dif-
ferentiates between short- and long-term interactions. This bidi-
rectional transformer model is trained using self-supervision on
different masked-language modeling tasks specially formulated for
e-commerce.

[21] trains a recurrent model by applying two different augmen-
tation strategies, namely: considering all prefix sequences with a
training instance as new samples and applying random item deletions
across training sequences. The use of recurrent models for session-
based recommendation allows for incremental data processing. This
is an important aspect in online and streaming scenarios [25].

A particularity of most of the models described above is that they
are trained on some variation of the "next-item prediction" task. This
task is usually formulated as a classification problem over the items
in the catalog. In an e-commerce setting, this number can be too large
from a practical standpoint (number of parameters in the last layer
of the model). Moreover, with new items being added and removed
constantly, the effectiveness and traceability of such a system over
time becomes an issue. An alternative formulation, proposed by
[21] is to reformulate the problem as an embedding regression task.
In this way, the output of the model becomes independent of the
number of entries in the catalog. We take this approach and extend
it across different tasks in a unified manner.

Lastly, none of the described models provide a mechanism to
incorporate problem-specific features when using them for new
downstream tasks. That means that all downstream tasks must rely

Figure 1: Schematic view of the auxiliary tasks for a session
that ends in a purchase (left) and a session that does not (right):
next item attributes (upper arrows), purchased item attributes
(bottom arrows), an item being purchased (✓) or not (✗), the
session ends in a purchase or not. We say a session is a purchase
if the last event in the session is a purchase.

solely on the user session and not on other features that may be
relevant to the specific problem [17, 20, 25].

3 PROBLEM SETTING
Let Z be the set of items1 available to the user. An item 𝑧 ∈ Z can be
described by a collection of 𝑀 different attributes 𝑎(𝑧) = {𝑎𝑖 (𝑧)}𝑀𝑖=1,
e.g. its price, title, product description, etc. Let Q be the set of events
that capture the different ways a user can interact with an element
in Z, e.g. viewing it, buying it, marking it as a favorite, etc. A
user session can be modelled as a sequence 𝑆 = {(𝑧𝑖 , 𝑞𝑖 )}𝑁𝑖=1, with
(𝑧, 𝑞) ∈ Z×Q of item-event pairs. We use (𝑧, 𝑞) or 𝑞(𝑧) instinctively
to denote the event 𝑞 acting on item 𝑧.

In our work, we aim at learning a representation that is efficient
(can be computed incrementally) and generic (exhibits good off-
the-shelf performance on a variety of tasks), and which encodes
information about the behavior of users exploring Z based on their
preferences.

We focus on two types of events that are particularly relevant
in our setting: viewing an item and/or buying it. In what follows,
we present a model and learning formulation that account for these
goals.

4 MULTI-TASK PRE-TRAINING OVER USER
NAVIGATION DATA

Let us assume the availability of a large set of user session data
S = {𝑆𝑖 }𝑛𝑖=1. As mentioned above, we restrict the event set to
Q = {𝑞𝑣𝑖𝑒𝑤 , 𝑞𝑏𝑢𝑦}. Let us further assume an item 𝑧 ∈ Z can be
encoded based on any given attribute by a mapping 𝜙𝑎 : Z → R𝑑 ,
𝑎 ∈ {𝑎1, . . . , 𝑎𝑀 }, i.e. embeddings for the publication title, price
and/or product description. These representations are item-centered
and capture generic knowledge about the type of data (modality)
being represented. They do not account for anything related to user
behavior during navigation. We propose to train a model on top of
these representations in order to capture the dynamics induced by
the user during a navigation/shopping session.

We choose a recurrent network (GRU) [3] as our base model.
This choice is motivated by the following. First, predictions have
to be carried out on-the-fly (as the user interacts with the system)
and fast (low latency). In this context, a representation that can be

1While a product represents a manufactured object or commodity, an item depicts
something being sold at a given price and conditions.
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computed incrementally is thus desirable. Second, user sessions can
be arbitrarily long and spread over time. Having to store the whole
data for each user and session becomes impractical.

To train our model we define a series of tasks tailored to the type
of events we mentioned above. Concretely, given a large collection
of user session data, we train a model to predict if an item is being
viewed and/or purchased. At a given time step, the query item can
be the current, the next, or the last one along the sequence. If the
last element in the sequence is being purchased, we say the whole
session corresponds to a purchase event. Identifying these types of
sessions early is important from a business perspective. Sessions and
events types are shown schematically in Fig. 1.

Regarding view events, instead of trying to predict the id of the
following item in a navigation session, we seek to predict each of its
attributes. The rationale behind this approach over the more usual of
casting the problem as a classification task is as follows. First, many
items in e-commerce correspond to the same product being sold by
different users, each of which has a different identifier. Casting the
problem as a classification over the set of item ids not only makes
the number of free parameters grow but also makes training such a
model difficult due to the long-tailed distribution of item interactions,
i.e. most items in the catalog would not have enough samples to
properly train the classification layer. Our formulation, on the other
hand, is independent of the catalog size and it can be easily adapted
to accommodate new attributes and tasks.

The set of pre-training tasks and associated losses our model
is trained on will be discussed in the sections below. The tasks
correspond to predicting whether the current item is purchased or
not, whether the session ends in a purchase or not, the attributes of
the next item viewed by the user, and, if applicable, the attributes of
the item being purchased.

In what follows, we use ℎ𝑖 = 𝑔(𝜙 (𝑧𝑖 )) to denote the hidden state
of the recurrent network 𝑔 at the 𝑖-th step of the sequence.

4.1 (This) Item Purchase
Given an item 𝑧 we would like to predict if the associated event is a
purchase or not. This task is posed as a binary classification problem
with the loss:

L𝑏𝑢𝑦 𝑖𝑡𝑒𝑚 =
∑︁
S∈S

|S |∑︁
𝑖=1

ℓ𝑐𝑒 (𝑓1 (ℎ𝑖 ), 𝑞𝑖 ) (1)

where 𝑓1 : R𝑑 → Q is a classifier and ℓ𝑐𝑒 (·, ·) the cross entropy loss.

4.2 Session Purchase
This is similar to the above but instead of predicting if the current
item is being purchased, we try to anticipate if the session will end
on a purchase based on the navigation history up to the current step.

L𝑏𝑢𝑦 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 =
∑︁
S∈S

|S |∑︁
𝑖=1

ℓ𝑐𝑒 (𝑓2 (ℎ𝑖 ), 𝑞 |S | ). (2)

Here, 𝑞 |𝑆 | denotes the event associated with the last item in S and 𝑓2
a classifier as before.

4.3 Next Item Attributes
Given an item 𝑧, we aim at predicting the attributes (their embed-
dings) of the next item in the sequence. The loss term associated
with attribute 𝑎𝑚 can be written as:

L𝑎𝑚 =
∑︁
S∈S

|𝑆 |−1∑︁
𝑖=1

ℓ𝑎 (𝑓𝑎𝑚 (ℎ𝑖 ), 𝑎𝑚 (𝑧𝑖+1)) . (3)

where 𝑎𝑚 (𝑧𝑖+1) is the𝑚-th attribute of the (𝑖 + 1)-th item.
The overall loss for this task, L𝑣𝑖𝑒𝑤 𝑛𝑒𝑥𝑡 , is the combination of

the following partial terms:

• Item title, L𝑡𝑖𝑡𝑙𝑒 : regression to the average word embedding of
the next item publication title. We use the cosine loss, i.e. one
minus the cosine similarity between the attribute embedding and
its prediction, as the regression loss for this task.

• Product ID, L𝑖𝑑 : same as before, but regressing towards an embed-
ding of the product ID. Note that different items can be mapped
to the same ID, e.g. same product offered by different sellers. By
regressing towards (an embedding of) the product ID, we make
the model independent of the number of products in the catalog
[3], a number that can be rather large and change over time.

• Item price, L𝑝𝑟𝑖𝑐𝑒 : regression towards the log of the item price
using a mean square error loss. We also explore a variation of this
term based on the classification of the "price bucket" in which the
product falls. In this case, the size and number of buckets can be
set from statistics computed over the training set or guided by the
application, e.g. pre-defined price ranges.

4.4 Purchased Item Attributes
This task is the same as the above but instead of predicting the
attributes of the next item in the sequence, we try to predict those of
the one being purchased. In this case, we consider only sequences
that end in a purchase. Eq. (3) can be modified as follows:

L′
𝑎𝑚 =

∑︁
S∈S

1𝑞 |𝑆 |=𝑞𝑏𝑢𝑦

|𝑆 |−1∑︁
𝑖=1

ℓ𝑎 (𝑓 ′𝑎𝑚 (ℎ𝑖 ), 𝑎𝑚 (𝑧 |S | )). (4)

where 1𝑝 is an indicator variable that takes the value one if 𝑝 y
true and zero otherwise. As before, the overall loss for this task,
L𝑏𝑢𝑦 𝑙𝑎𝑠𝑡 , will be the sum of the L′

𝑎𝑚
s corresponding to the at-

tributes of the purchased item.
There are many ways in which we can aggregate Eqs. (1)–(4)

into a single loss to be optimized. Aggregation methods vary both
in their technical details as well in the intuitions they rely on. For
linear aggregation, losses can be weighted by considering each task
uncertainty, learning speed, or per-task performance [4]. Other meth-
ods balance losses by modifying gradients by imposing constraints,
doing re-normalization, or performing gradient surgery to avoid
interference between tasks [31]. However, results are mixed and
while some of these techniques lead to improvements in the final
performance, results depend not only on the task but also on the
specifics of the architecture and model design [23, 30].

In light of these results, we opt for the following strategy. We
combine losses linearly. We first balance each term by multiplying
it by a constant value so that all loss terms have roughly the same
magnitude. During training, we follow [9] and learn importance
weights along with the parameters of the model. In preliminary
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experiments, we observed this automated approach leads to a very
similar pre-training performance compared to the case of setting
these values manually using cross-validation.

5 TOWARDS PERSONALIZED ITEM
REPRESENTATIONS

Training a model on the tasks described above allows us to capture
important yet generic user behavior patterns from data. We can
think of these representations as user-generic as they originate from
learning from a large collection of real user interactions within an e-
commerce context. Some applications, however, would benefit from
building a more personalized characterization of the user, based on
their particular interests.Examples are search personalization, where
we have to reorder search results in relation to the recent navigation
behavior, or push notification selection, where we have to select a
set of candidates, dates, and times to send a push notification to a
user.

To build such representations, first note that most prediction heads
in our model correspond to regression heads, i.e. their output ac-
count for the model’s best guess for the attribute embeddings of
the next/purchased item in a navigation sequence. We leverage such
predictions and build a representation that contrasts the predicted
embeddings with those of the attributes of each item in a (short) list
of candidates. Formally, let 𝑓𝑚,𝑖 = 𝑓𝑎𝑚 (ℎ𝑖 ) denote the embedding
predicted by the model for attribute 𝑎𝑚 at the 𝑖-th step. Let 𝑧𝑘 denote
the 𝑘-th product in a list of candidates (e.g. items returned by an
initial search query) and consider the following set of descriptive
statistics:

max
𝑖=1,...,𝑛

𝑠 (𝑓𝑚,𝑖 , 𝜙𝑚,𝑘 ) (5)

1
𝑛

𝑛∑︁
𝑖=1

𝑠 (𝑓𝑚,𝑖 , 𝜙𝑚,𝑘 ) (6)

𝑠 (𝑓𝑚,𝑛, 𝜙𝑚,𝑘 ) (7)

where 𝜙𝑚,𝑘 = 𝜙𝑚 (𝑝𝑘 ) is the representation for attribute𝑚 of product
𝑧𝑘 and 𝑠 (𝐴, 𝐵) denotes a similarity measure between 𝐴 and 𝐵, e.g.
cosine similarity for vector embeddings or 1 minus a distance for
scalar attributes (e.g. price).

Eq. (5)–(7) compute simple descriptive statistics that seek to cap-
ture generic patterns from the items the user has recently interacted
with, in relation to a candidate item. Eq. (5) computes the maximum
similarity of the current model prediction with all the items in the
navigation history. Eq. (6) aims at capturing 𝑧𝑘 ’s average relevance
to the current session. Finally, (7) computes the similarity between
𝑧𝑘 and the prediction for the last item visited by the user.

In this context, the computation of 𝑠 (𝑓𝑚,𝑖 , 𝜙𝑚,𝑘 ) can be thought
of as a simple attention mechanism with item-to-item similarity at
its core, and can retrieve properties about the relationship between
a given candidate and all past interactions. This formulation can be
extended with more problem-dependant statistics as long as the final
vector has a fixed size.

All these coefficients can be computed efficiently with a minimum
of caching, i.e. by maintaining a running max and running average
of the similarities. Using the regression heads presented in Sec. 4 we
compute a total of 18 coefficients: 9 correspond to heads predicting
the next event, and 9 to session purchases. In both cases, we extract

Figure 2: Computing SCID features. We take advantage of the
prediction heads for pre-training and compute similarity sta-
tistics with (the attributes of) a candidate item (in blue). Each
attribute provides us with a set of coefficients (in red) that we
stack into a vector to form a personalized representation for that
item.

3 features for each of the 3 attributes of the item. This is a compact
representation that can be computed for any new item given a user
session.

We term this representation session conditioned item descriptor
(SCID). Figure 2 illustrates the processes to compute the SCID
coefficients for a given attribute and a session of length 𝑛. In the
experiments, we also consider replacing the GRU with a simple
moving average model, while pre-training using the same heads and
tasks configurations. The computation of this SCID variant remains
the same.

6 EXPERIMENTAL SETUP
In this section, we present our experimental setup, show results on
different datasets, and discuss our findings.

6.1 Datasets and Tasks
We run experiments on two different datasets: Coveo Data Challenge
(CDC) [20] and MeLi-Sessions.

CDC is a publicly available session-level dataset reflecting 10M
interactions over 57K different products in an e-commerce website.
It accounts for more than 4M user sessions. Interactions in this
dataset include add to cart, remove from cart, view, purchase, and
search events. The associated challenge considered two different
sets of tasks: session-based recommendation and cart abandonment.
We focus on the former, i.e. given the first 𝑛 elements of a session,
the task is to predict future interactions. We consider the following
problems: next item prediction and search personalization. For the
first, we set the target as the last item in each sample sequence.
For the second, we use the available annotations and ask the model
to predict the item clicked by the user from the list shown after a
search query. In both cases, we use mean reciprocal rank (MRR)
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Property CDC MeLi-Sessions

# of unique items 57483 4036255
# of sessions 4934699 1019704
# of interactions 10431611 14924167
# of purchases 77848 78235
25/50/75 pct. of session length 2/3/8 7/12/21
Language English Spanish

Table 1: Statistics for the training set of the CDC and MeLi-
Sessions datasets.

as the performance metric. Preliminary results showed that other
ranking metrics such as NDCG, precision, and recall at k were
highly correlated with MRR, thus we decided to report only MRR
for simplicity.

MeLi-Sessions is an in-house dataset that we use to evaluate dif-
ferent scenarios relevant to our application domain. It consists of
1M user sessions over more than 4M items. Interactions include
view and purchase events. Samples in the dataset were collected be-
tween April 2021 and July 2021. Sessions in this dataset are longer
than CDC, with a median of 12 interactions (vs. 3 for CDC). For
evaluation, we consider the following tasks: search personalization,
session-based recommendation, and product ads. The recommenda-
tion task is similar to search personalization with the difference that
the trigger is an item instead of a search query. The list of candidates,
in this case, is obtained from co-occurrence statistics w.r.t the item
we use as trigger. As before, we use the MRR as our metric. The
product ads task corresponds to estimating the conversion rate of a
sponsored item. In this case, we use the area under the ROC curve
as our metric.

Table 1 shows summary statistics computed on the training set
of both CDC and MeLi-Sessions. From the table, we see that al-
though the number of session samples in MeLi-Sessions is four
times smaller than CDC, sessions are longer and the number of
unique items is considerably larger. Also, an important aspect of
MeLi-Sessions is that it accounts for e-commerce tasks in Spanish.

6.2 Architecture and Training Details
We split the datasets chronologically into two disjoint subsets. For
CDC, we use sessions occurring before May 20th for pre-training
(∼80% of the total) and those after this date for evaluation, unless
specifically stated otherwise. We follow similar criteria for the MeLi-
Sessions dataset. We use data from April to July for pre-training
and the subsequent month for evaluation. In both cases, there is no
overlap between train and test subsets, and the test sets are posterior
to the training sets in each case.

We pre-train a GRU network (single layer, 256-dimensional hid-
den state) using the losses described in Sec. 4. Prediction heads
consist of two-layer MLPs with ReLU non-linearities for CDC and
single-layer MLPs for MeLi-Sessions. (Pre-)training is run using
a learning rate of 0.001 and the Adam optimizer. We use an early
stopping heuristic with a patience parameter of 4. As mentioned
before, we follow [9] and combine Eqs. 4.1–4.4 linearly and learn
the importance weights along with the model parameters. During

preliminary experiments, we observed no significant difference from
setting these weights manually by cross-validation.

7 EXPERIMENTS
In the following, we present and discuss the results for the different
downstream tasks for both datasets.

7.1 Experiments On CDC
In this section, we show experimental results and discussions on the
CDC dataset.

7.1.1 Item and Attribute Encoders. We build a representation
using the embeddings provided with the dataset. We concatenate
the description and category embeddings, adding the normalized
price range as an additional scalar feature. Description embeddings
correspond to the ones provided with the dataset for textual meta-
data. We compute category embeddings as the average description
embedding for the items in each category.

7.1.2 Model Pre-Training. We adapt the attribute prediction tasks
in Sec. 4.3-4.4 to those available in the dataset. Price estimation is
approached as a 10-way classification problem using the provided
annotations. Instead of title embeddings, we use embeddings of
the item description provided by the authors of the dataset. Finally,
instead of category IDs, we regress towards an embedding of the
product category computed as the average of the description em-
beddings for the items of each category. We pre-train our model as
described above and use the trained model to extract the features that
feed a downstream predictor. We do not perform any task-specific
fine-tuning, i.e. we freeze the model weights and use it as a simple
feature extractor.

7.1.3 Next Item Prediction. For this task, we train a gradient
boosting model as implemented in LightGBM [8] on top of differ-
ent feature combinations. The use of LightGBM offers numerous
advantages in a production environment such as avoiding the need
for feature normalization, outlier handling, and explicit treatment of
missing values and categorical feature encoding. We consider the
following features: a baseline (BL) consisting of the concatenation
of the item description embedding provided by the authors of the
dataset and an additional feature that encodes the expected click-
through rate, given the ranking position within a list of candidates
derived from co-counts, a simple sequential model consisting of a
moving average (MA) of input embeddings, using the hidden state
of the GRU network (GRU), and two variations of the SCID features
computed using either a moving average or GRU network as the base
sequential model (SCID). Feature combinations consist of simple
concatenations, without any normalization or pre-processing. We
show disaggregated results for cases in which the target item was
already seen by the user during navigation and cases in which it
has not. These two cases reflect different expected behaviors. In
the first case, the model should provide a confirmation of the user
interests as shown during navigation (e.g. by revisiting the same
item multiple times) while in the second, the model should bring to
the user’s attention a more diverse set of items that match hers/his
immediate interests. We report MRR scores for each case. For these
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experiments, we report results in the challenge test set2. We use
the last item of each sequence as the target item for that session.
Although the evaluation setup might differ from that used during the
competition, it provides us with a sensible reference.

When reporting results using SCID features (first block in the
table), we show two different scores. The first corresponds to the case
of SCID features computed using GRU embeddings, and the second
to SCID features computed based on moving average embeddings.

Results are shown in Table 2. From the table, we see that com-
bining either MA or GRU with the BL features gives a slight but
consistent improvement. If we consider the combination of BL with
either of the SCID features (based on MA or GRU models), we
observe an additional improvement mostly coming from sessions in
which the target item was already seen. The improvement brought
by adding SCID is higher for the GRU-based model. If we compare
the effect of adding the GRU-based SCID to the BL baseline, the
relative improvement for the "Seen" case is 9.6% while for the "Not
Seen" case is only 1.2%. This can be attributed to the fact that when
the target item was seen during navigation, its similarity with the
items in the navigation session is a strong indicator of user interest,
i.e. the max similarity statistic is a maximum (for a cosine similarity)
and the average similarity increases with the number of times the
user visited the target item during navigation. From the table, we
also observe little improvement for the combination of more than 2
descriptors.

As a reference, we show results obtained by the top-performing
teams during the competition. Teams DeepBlueAI and NVIDIA
Merlin [13] obtained almost the same results. The first relied on
complex heuristics and the former used a transformer-based solution.
The tsotfsk team [10] relied on a graph-based approach and
learned node embeddings over interaction graphs. Although the
results are not strictly comparable, we observe that our approach is
highly competitive on average.

7.1.4 Search Personalization. We leverage the data provided
with the CDC dataset and evaluate the performance of our model in
search personalization. We use the data before May 20th for training
and validation and the rest for testing. We consider only sessions
containing search events and crop them so that they are the last in
the sequence. For each such entry, we are also provided with a list of
candidates and the item being clicked. We approach this problem as
a binary classification problem and use the classifier’s score to rank
the items in the candidate list. Table 3 show the results for different
combinations of input embeddings. Since all entries in this dataset
are already processed and embedded, methods such as TF-IDF or
BM25 [16] cannot be applied. However, we observed that shortlists
in the dataset are already sorted by their relevance w.r.t the query. If
we compute the MRR score of the data as is, we observe a score of
0.469. This score drops to 0.350 if we shuffle the list of candidates for
each query. We include this default CDC baseline for reference. We
also include a custom baseline model built from the concatenation
of the description and query embeddings along with the price of the
query item. As before, we show disaggregate results for sessions in
which the item clicked by the user was previously seen or not.

2Challenge organizers kindly provided us with the test data. Since target labels were
not available, we followed their recommendation and used the last item in each session
as the prediction target.

BL MA GRU SCID
Next Item Prediction

All Seen Not Seen

✓ 0.279 0.490 0.234
✓ ✓ 0.281 0.493 0.235
✓ ✓ 0.281 0.495 0.235
✓ ✓ 0.286/0.288 0.534/0.537 0.233/0.235

✓ ✓ ✓ 0.287 0.534 0.234
✓ ✓ ✓ 0.289 0.540 0.235

DeepBlueAI / NVIDIA 0.277 - -
tsotfsk 0.271 - -
scitator 0.228 - -

Table 2: Results for the next item prediction task on the CDC
dataset, as measured by the MRR metric. For SCID, we show re-
sults for the descriptors built on top of MA/GRU models. Results
were computed on the challenge test data using the last item as
the target. We also show results obtained by the top-performing
teams during the challenge. These results are not disaggregated
within the seen/not seen categories since these were obtained
from the challenge leaderboard.

MA GRU SCID
Search

All Seen Not Seen

✓ 0.456 0.478 0.443
✓ 0.463 0.488 0.447

✓ 0.576/0.605 0.734/0.800 0.477/0.483

✓ ✓ 0.570 0.730 0.470
✓ ✓ 0.602 0.798 0.480

Baseline (CDC default) 0.469 0.494 0.452
Baseline (ours custom) 0.449 0.465 0.439

Table 3: Search personalization results on the CDC dataset. Re-
sults are shown for a baseline model, moving average, and GRU-
based models, both variants of SCID, and their combination.

From the table, we see that GRU performs on par with MA, show-
ing an improvement for sessions where the target item has already
been seen. All feature combinations perform better than the baseline
model alone. The performance of MA and GRU models gets sur-
passed by a large margin by either of the corresponding SCID. In this
case, the model that uses a GRU as the base sequential model shows
the best performance overall. It brings relative improvements of
63.9% and 8% for the "Seen" and "Not Seen" cases, respectively, over
the GRU-only counterpart. In this case, in contrast to the next item
prediction task, we see an increase in performance for sessions that
do not include the target item. When combined, either MA+SCID
or GRU+SCID seems to saturate over their SCID variants alone,
showing the expressiveness of the SCID on this task. Also, besides
the large gain brought by the SCID, we observe that CDC default
is a competitive baseline compared to both our sequential variants
(MA and GRU).



Don’t Lose Your Head(s): Model Pre-Training and Exploitation for Personalization SIGIR eCom’23, July 27, 2023, Taipei, Taiwan

7.2 Experiments on MeLi-Sessions
In this section, we show experimental results and discussions on the
MeLi-Sessions dataset.

7.2.1 Item and Attribute Encoders. We use a concatenation of
FastText [2] and Meta-Prod2Vec [24] embeddings as input to our
model for pre-training. They encode the item’s title and product,
respectively. These embeddings were trained internally on historical
data collected previous to the construction of the dataset. Once we
have a pre-trained model on session data, we use it as a monolithic
feature extractor as before, i.e. without performing any task-specific
fine-tuning.

7.2.2 Search Personalization and Session-based Recom-
mendation. We approach both of these problems by training a
binary classifier to predict the item clicked by the user from the
list of candidates shown after a search query (Search) or retrieved
using co-occurrence statistics with the last item the user interacted
with (Recommendation). We use the classification score as a rele-
vance measure to rank the items in this list. This model is trained on
top of different feature combinations, and results are shown in the
"Search" and "Recommendation" groups of Table 4. We consider a
set of problem-specific features (BL) used internally for each task
(concatenation of the embeddings for the search query / last item,
and the item being ranked in the candidate list) and MA, GRU, and
SCID features as before. We also consider different combinations
by concatenation and show disaggregate results for the search and
recommendation tasks.

When comparing the performances of individual models, we see
the problem-specific strategy without personalization performs on
par (search) or better (recommendation) than the sequential models
alone. Although there seems to be no difference between MA and
GRU when considered alone, the SCID descriptors computed from
them observe a clear improvement, with the GRU-based model per-
forming better than the MA-based one. For the SCID features, if we
consider the overall metrics ("All"), we observe a marked improve-
ment for both descriptor variants in search and recommendation.
The performance gain observed on these tasks is due mainly to a
large gain in sessions for which the target has already been seen.
For sessions in which the target was not previously seen, there is
a noticeable decrease in performance, possibly due to the intrinsic
difficulty of the task. The good complementarity between SCID and
the other representations allows us to recover and boost this loss by
a margin. We observe that, when combining the BL features with
either MA or GRU, there is no gain in the overall performance. It is
only after combining these models with the SCID that we observe
a large increase on all sides, especially for the GRU-based SCID.
These improvements are more noticeable for sessions in which the
target item has already been seen. For instance, in the search person-
alization task, while there is a 21% relative improvement after adding
the SCID features to the BL+MA combination, the improvement
is 30% for sessions in which the target has been seen and 1.6% for
those in which has not. For session-based recommendation, the over-
all/seen/not seen improvements are 14.6%/16.1%/4.5%, respectively.
For the combination of BL+GRU, the improvements after adding
the SCID features are even more noticeable: 28.8%/45.2%/4.4% for
search and 21.2%/23.8%/4.1% for recommendations.

7.2.3 Product Ads. This task is similar to session-based recom-
mendation, but where the candidates originate from a list of adver-
tised products. The goal here is to predict if an item within this list
was finally bought or not. The last column of Table 4 shows the re-
sults using the ROC-AUC metric. As before, we consider a baseline
model using problem-specific features describing the placement and
past performance of the ad, and two models that combine session
embeddings with the SCID features from Sec. 5. We observe similar
trends as before but with lower relative improvements overall. In
this case, we do not show disaggregated results since we observed
very similar behavior in both cases. Interestingly, although there
is a switch in the best-performing SCID model when considered
alone, the GRU-based SCID seems to exhibit better complementarity
compared to the one based on a moving average, showing a 2.7%
relative improvement compared to BL alone or combined with either
of the sequential models.

7.3 Qualitative Analysis
Figure 3 show qualitative examples of the effect of our model on
search personalization for the query "bts kpop" (left) and "camperas
de abrigo dama" (lady coat jackets, right) in the MeLi-Sessions
dataset. The top row shows the last 5 items the user interacted with,
with the most recently viewed on the right. The middle and bottom
rows show the top-5 results as ranked (ordered in decreasing order
from left to right) by the baseline model and our BL+GRU+SCID,
respectively. The item clicked by the user is highlighted in green. In
both cases, we can observe that the results provided by our model
are more consistent with the user navigation history, regarding both
product type and price range. In the first example, results shown by
the baseline, although relevant to the search query, ignore the user
intent as reflected in hers/his recent navigation history. In the second,
the price range of the top-ranked results by the baseline is one order
of magnitude higher than what the user actually searched for.

8 CONCLUSIONS
In this paper, we proposed a multi-task feature learning and extrac-
tion model in the context of e-commerce. Our approach is based on
the pre-training of a sequential model using a set of auxiliary tasks
relevant to our application domain, for which supervision is easily
obtained from user navigation logs.

Instead of training a set of prediction heads that are subsequently
discarded, we leverage them and for each new item, we compute
a discriminative descriptor that shows consistent performance im-
provements w.r.t other alternatives on a variety of tasks. The pre-
sented approach allows its application on a broad set of e-commerce
problems using standard modeling techniques, thus lowering the
difficulty of deploying session-based solutions.

Our analysis considers two different scenarios that account for two
different user navigation/shopping behaviors, i.e. sessions for which
the target item was already seen by the user and sessions for which
it has not. We observe that the second is the more challenging case,
as it calls for a greater degree of diversity of the model responses, as
there is no proxy (item revisits) that helps the model to succeed on
the final predictions. However, the former option is relatively easier,
which raises the question of whether it may introduce a bias in the
training procedure towards simpler solutions.
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BL MA GRU SCID
Search Recommendation Product Ads

All Seen Not Seen All Seen Not Seen All

✓ 0.400 0.485 0.306 0.397 0.401 0.375 0.724
✓ 0.403 0.489 0.307 0.389 0.392 0.366 0.647

✓ 0.403 0.489 0.307 0.389 0.392 0.366 0.649
✓ 0.507/0.559 0.730/0.826 0.260/0.264 0.433/0.476 0.455/0.500 0.297/0.321 0.646/0.634

✓ ✓ 0.402 0.486 0.310 0.397 0.401 0.374 0.724
✓ ✓ 0.402 0.487 0.307 0.397 0.401 0.376 0.724

✓ ✓ ✓ 0.523 (+30.0) 0.710 (+47.9) 0.315 (+1.6) 0.455 (+14.6) 0.465 (+16.1) 0.391 (+4.5) 0.738 (+1.9)

✓ ✓ ✓ 0.565 (+40.5) 0.783 (+62.5) 0.324 (+5.5) 0.482 (+21.2) 0.496 (+23.8) 0.392 (+4.1) 0.743 (+2.7)

Table 4: Search personalization, session-based recommendations, and product ads results on the MeLi-Sessions dataset. Results are
shown for a baseline model, moving average, and GRU-based sequential models, both variants of SCID, and their combination. Relative
improvements after incorporating the SCID descriptors to the combination of baseline and MA/GRU are shown between parentheses.
We use the MRR metric for the search and recommendation tasks and ROC-AUC for product ads.

Figure 3: Qualitative example on the search personalization task for the queries "bts kpop" (left) and "camperas de abrigo dama"
(lady coat jackets) (right). The figure shows the navigation history (top), the results shown by the baseline system (middle), and the
results of our approach (bottom). The clicked (target) item is highlighted in green.

The findings and insights gained from this work can serve as a
foundation for further advancements in the following directions: a)
parametrizing SCID statistics, results have demonstrated the im-
portance of SCID in session-based recommendation systems. Mov-
ing forward, future research can focus on parametrizing SCID, en-
abling its learning instead of relying on heuristics; b) comparing with
efficiency-optimized transformer architectures, in this study, we ex-
amined our GRU model’s performance in session-based recommen-
dation. Future research can explore different optimized transformer
architectures like Block-Recurrent transformer [7], Linformer [26],
and Sinkhorn Transformers [22] for assessing computational com-
plexity and predictive performance trade-offs; and c) incorporating
long-range signals and user context, the integration of long-range

signals, such as a user’s purchase history, can further improve accu-
racy beyond users’ immediate interests.
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