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Abstract
This paper addresses the challenge of extreme multi-label query classification (XMQC) in e-commerce,
where short, ambiguous queries must be categorized into a vast label space to improve search relevance.
We propose a supervised attention-based neural network framework that leverages clickstream data for
automatic multi-label query annotation. Our approach employs a DistilBERT language model fine-tuned
with a sparsemax loss function to effectively model the sparse category distribution for each query.
Experiments on a real-world e-commerce dataset demonstrate that our model outperforms baseline
approaches, achieving 78.96 precision@1, 73.75 recall@1, and 78.21 nDCG@1 overall. The sparsemax
loss enables the model to handle label sparsity and ambiguity, with strong performance on head, torso,
and tail queries. Qualitative analysis shows the model’s robustness to challenges like misspellings and
the ability to identify relevant categories for ambiguous queries.
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1. Introduction

E-commerce platforms offer customers access to catalogs with millions of products categorized
into taxonomies and thousands of hierarchically organized categories. Products are continuously
updated through inventory feeds from partners and suppliers, including images, attributes, and
other metadata utilized to populate the product detail pages. In such a dynamic environment,
product search engines must continuously reindex products and optimize relevance through
users’ behavioral signals when available [1].

Both in conventional and semantic product search [2, 3], categorizing product search queries
into single or multiple predefined target categories [4] can aid search engines in boosting
relevance by passing the category to which the query belongs as a ranking signal and mitigating
the cold start scenario when new products are added. Since an e-commerce catalog encompasses
taxonomy trees with several thousand leaves, a query classification (QC) model must classify
typically short and ambiguous text into a large label space [5].

This presents several challenges. Firstly, due to the large, unbalanced label set and ambiguity, a
QC model must be framed as an extreme multi-label, multi-class classification problem in which
a query can simultaneously belong to more than one non-mutually exclusive class. The model
loss function must consider the multi-labels’ sparseness and allow the model to return a sparse
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posterior probability where some classes can have zero probability while others can represent
a probability distribution among the sparse labels that sum to one.

Secondly, as we frame the task as a supervised learning problem, a substantial amount
of high-quality annotated data is required. Since manual data annotation is expensive,
time-consuming, and non-scalable for e-commerce traffic volumes, click-stream data that
captures the user’s behavioral signals is the only viable option for annotating data for a supervised
model. However, labels need to be carefully denoised to represent query categories accurately.

Finally, data partitioning must respect the natural distribution across classes and labels.
Conventional stratified sampling used in single-label classification tasks must be revised to
consider stratified sampling in a multi-label scenario, where the sparse label distribution is
preserved across training, validation, and test data.

To overcome these challenges, we propose a supervised attention-based neural network
framework that leverages clickstream data to automatically annotate query search data using the
user’s behavioral signals in a multi-label fashion. To preserve the correct label distribution, we
adopted a multi-label stratified sampling technique [6] that avoids the issues introduced using
the traditional random distribution where the derived data subset may miss samples for rare
labels, causing evaluation metrics problems. To model the multi-label sparseness, we adopt a
sparsemax loss function [7] that optimizes the model to assign probability zero to most of the
output predicted labels consistently with the users’ clickstream data.

We demonstrate that the above process is significantly better than multiclass models,
reporting robust generalization capabilities for torso and tail data. The resulting sparse category
distribution can also capture ambiguous queries that apply to a broader range of categories and
generic queries that may be better represented by intermediate nodes in the taxonomy tree.

The rest of the paper is organized as follows. Section 2 provides an overview of query
classification in e-commerce. Section 3 formulates the extreme multi-label query classification
(XMQC) problem. Section 4 discusses multi-label sampling and probability estimation techniques.
Section 5 details the experimental setup, including dataset preprocessing, evaluation metrics,
and model configuration. Section 6 presents the main results, analysis, and discussion. Section 7
reviews related work, and Section 8 concludes the paper and suggests future research directions.

2. Query classification

When searching for a particular item on an online retail platform, a user might input a search
query briefly describing the product. Depending on how closely the search results align with
the user’s initial intent, the user may click on a relevant product, modify their query to refine the
results, or leave the site if the displayed products are not accurately related to what was expected.

Manually classifying user queries into product categories is challenging and time-consuming.
This difficulty arises from the complex interpretation of user intentions based on brief query
texts and the large number of categories found in an e-commerce catalog, which can easily reach
several thousand classes [8]. However, if a user selects a product immediately after receiving a
list of products in response to their search query, the selected product category can be considered
an accurate but sometimes noisy indication of the category associated with the query [9]. In
practical terms, if multiple users use the same search query within a reasonable time frame (e.g.,
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Figure 1: Examples of multi-label query classification for commercial e-commerce grocery and home
improvement domains

30-90 days) and this generates at least several clicks on products with the same category label,
then that selected category can be viewed as a valid label for that particular query.

Using behavioral signals like clicks, adding items to the cart, and completing purchases offers
a practical method for automatically creating category labels. Annotating query classification
datasets with behavioral signals suggests that a given query might interact with multiple
taxonomy labels (e.g., product categories) to some extent. This interaction with various product
categories could be viewed as a distribution of probabilities over the labels corresponding to
a specific query. Approaching the issue as a standard multi-class problem allows each label to
be treated independently from others, where they cannot coexist and have probabilities of zero
or one in the training dataset. However, this approach fails to accurately represent real-world
data by overlooking crucial insights into the ambiguous nature of search queries that can
simultaneously pertain to multiple taxonomy category labels.

Figure 1 shows three product search query examples for home improvement and grocery do-
mains from two large e-commerce organizations. For instance, in the home improvement domain,
the query “number stencils for painting” would have relevant products in the category Stencils at
the third level of the taxonomy tree, under Signs, Letters & Numbers and Hardware. A more realistic
view of the problem should also consider the interaction with other labels in the taxonomy tree.
Figure 1 also shows the categories that are selected less frequently but are still a legitimate category
since number stencils can also be categorized as Craft Supplies under the broader Paint category.

Similarly, in the grocery domain, the query “chicken broth organic gluten free” may refer to
products that are sharing the top two categories Canned Goods & Soup Stocks / Broth & Bullions
but with relevant products in both leaf nodes Broth & Stocks and Bouillon & Base.

Yet, simply considering the presence of multiple labels is not sufficient to correctly represent a
query classification prediction model. A given query 𝑞𝑖 that has an interaction of 1% with label 𝑐𝑗



Figure 2: Search result examples for the query “organic bananas” for a commercial e-commerce search
engine in the grocery domain with (right) and without (left) query understanding.

and 99% with label 𝑐𝑘 would be considered in the same way a query 𝑞𝑖′ that has 99% interaction
with label 𝑐𝑗 and 1% interaction with label 𝑐𝑘 , producing a skewed prediction where the minority
label 𝑐𝑘 could take precedence on the more popular usage of the query. This is particularly
important when the predicted query labels are used as input features to optimize (or re-rank)
a search result returning matching products from a catalog. Considering the first example in
Figure 1, a search engine could return a majority of products from the Craft Supplies minority
class rather than boosting results from the Stencils category, compromising the actual result
relevance and potentially missing product conversion opportunities.

The image in Figure 2 illustrates the potential benefits of integrating query understanding
capabilities, such as query classification, into an e-commerce search engine. By accurately
classifying the intent behind the query “organic bananas”, the search engine can significantly
improve the relevance of the results.

Without query understanding (left side), the search engine relies primarily on lexical matching,
focusing on the individual terms “organic” and “bananas” independently. This leads to the
retrieval of less relevant items such as organic baby food, tea, and onions, which happen to
contain the word "organic" but are not related to the core intent of the query. The lack of
understanding of the query’s true meaning results in a suboptimal user experience.

In contrast, when query understanding is integrated (right side), the search engine can classify
the query “organic bananas” as belonging to the category of fruits. This deeper understanding
allows the engine to prioritize and boost categories and products directly related to organic
bananas, such as fresh bananas, plantains, mangoes, and other fruits. By leveraging the query
classification, the search engine can assign higher relevance scores to these categories and
products, pushing them to the top of the search results.

Besides query classification in the e-commerce domain, other domains have similar challenges.
For example, movies can have more than one genre label, and each label can also contribute
a different weight to the overall movie genre. Negative online behaviors classification, which
has been recently getting attention to improve social media and online content quality [10], is
also considered a multi-label problem since toxic comments can have different labels at the same



time. The main difference with the e-commerce domain is that e-commerce is also considered
an extreme classification task due to the number of labels that often reach several thousand.

3. Extrememulti-label query classification

Extreme multi-label query classification (XMQC) tries to find the most relevant subset of class
labels associated with a short query text from an extremely large number of categories.

In the XMQC problem for e-commerce, we are given a set of 𝑛 queries 𝒬= {𝑞1,𝑞2,...,𝑞𝑛},
where each query 𝑞𝑖 is represented by a 𝐷-dimensional feature vector x𝑖 ∈ R𝐷. The feature
vector x𝑖 can encode various attributes of the query, such as the textual content, user context, etc.
Additionally, we have an extremely large set of 𝐿 product categories 𝒞={𝑐1,𝑐2,...,𝑐𝐿}, where
typically 𝐿≫𝐷 and can be in the order of hundreds of thousands or millions in e-commerce
applications [11]. Each query 𝑞𝑖 is associated with a binary label vector y𝑖 ∈ {0,1}𝐿, where
𝑦𝑖𝑗 =1 if query 𝑞𝑖 belongs to category 𝑐𝑗 , and 𝑦𝑖𝑗 =0 otherwise. A query can simultaneously
belong to multiple categories, i.e.,

∑︀𝐿
𝑗=1𝑦𝑖𝑗≥1.

The objective is to learn a classifier 𝑓 :R𝐷→{0,1}𝐿 that accurately maps each query feature
vector x𝑖 to its corresponding label vector ŷ𝑖, i.e., 𝑓(x𝑖)= ŷ𝑖≈y𝑖.

However, instead of predicting the binary label vector directly, we aim to predict a sparse
label distribution p𝑖∈Δ𝐿−1, where Δ𝐿−1 :={p∈R𝐿|1𝑇p=1,p≥0} is the 𝐿−1 dimensional
simplex. Each entry 𝑝𝑖𝑗 represents the probability of query 𝑞𝑖 belonging to category 𝑐𝑗 .

The 𝐿−1 dimensional simplex is a geometric object that represents the set of all probability
distributions over 𝐿 discrete categories. Using the simplex is necessary for representing sparse
label distributions, capturing label uncertainty, enabling the use of appropriate loss functions,
and facilitating the application of label embedding techniques to handle the extremely large
number of categories in e-commerce applications.

The objective is to learn a classifier 𝑓 :R𝐷 →Δ𝐿−1 that maps each query feature vector x𝑖

to its corresponding sparse label distribution p̂𝑖, i.e., 𝑓(x𝑖)= p̂𝑖≈p𝑖. This can be achieved by
minimizing a loss function that measures the discrepancy between the predicted label distribution
p̂𝑖 and the ground truth distribution p𝑖, e.g., using KL divergence or sparsemax loss [7].

The learned classifier 𝑓 will predict the relevant categories for a given query 𝑞𝑖, taking
into account the label distribution’s sparsity. The label embedding approach helps reduce the
computational complexity and mitigate the data sparsity issue associated with the extremely
large label space.

3.1. Extrememulti-label learning

To address the challenges of extreme multi-label query classification, we propose a distillation-
based approach using a pre-trained DistilBERT model [12] as the student model and the
sparsemax loss function [7] for fine-tuning.

DistilBERT is a distilled version of BERT [13] that retains 97% of BERT’s performance while
being 40% smaller and 60% faster at inference time. The key idea is to leverage knowledge
distillation during the pre-training phase to learn a compact model that can be fine-tuned for



downstream tasks. By using the pre-trained DistilBERT model, we can take advantage of the
knowledge already distilled into the model during its pre-training phase.

In our approach, we first fine-tune the pre-trained DistilBERT model on the query-category
pairs using the sparsemax loss function. The sparsemax loss is a sparse alternative to the softmax
loss that encourages the model to predict sparse probability distributions. The sparsemax loss
is defined as:

𝐿sparsemax(𝑧;𝑘)=−𝑧𝑘+
1

2

∑︁
𝑗∈𝑆(𝑧)

(𝑧2𝑗 −𝜏2(𝑧))+
1

2

where 𝑧 is the input vector, 𝑘 is the target label, 𝑆(𝑧) is the support set of sparsemax(z), and
𝜏(𝑧) is the threshold function given by:

𝜏(𝑧)=

∑︀
𝑗≤𝑘(𝑧)𝑧(𝑗)−1

𝑘(𝑧)

with 𝑧(1) ≥ 𝑧(2) ≥ ... ≥ 𝑧(𝐾) being the sorted coordinates of 𝑧, and 𝑘(𝑧) = max{𝑘 ∈ [𝐾] |
1+𝑘𝑧(𝑘)>

∑︀
𝑗≤𝑘𝑧(𝑗)}.

The sparsemax loss has several desirable properties, including convexity, differentiability
everywhere, and a connection to the Huber classification loss in the binary case [14]. It can be used
as a loss function for training multi-label linear classifiers and in attention-based neural networks.

During fine-tuning, we minimize the sparsemax loss between the predicted label distribution
and the ground truth sparse label distribution. This allows the model to learn to predict sparse
label distributions that align with the true label sparsity in the XMQC task.

During inference, we apply the sparsemax transformation to the output logits of the fine-tuned
DistilBERT model to obtain a sparse label distribution over the categories. We then select the
categories with non-zero probabilities as the predicted labels for the query.

By leveraging the pre-trained DistilBERT model and fine-tuning it with the sparsemax loss,
our approach can effectively handle the extreme multi-label classification problem while being
computationally efficient. The use of a pre-trained model allows us to benefit from the knowledge
already distilled into the model, while the sparsemax loss encourages the prediction of sparse
label distributions, which is crucial for XMQC.

4. Multi-label sampling and probability estimation

Sechidis et al. [6] discusses two approaches for stratified sampling in multi-label data: a) stratified
sampling based on distinct labelsets, and b) iterative stratification. The latter is particularly
relevant XMQC where the number of distinct label sets is very large compared to the number
of examples.

Iterative stratification aims to ensure that the ratio of positive to negative examples for each
label is approximately maintained in each subset of the data. It does this by greedily assigning
examples to subsets based on the desired number of positive examples for each label in each subset.

More formally, let 𝐷 be the full dataset, 𝐿={𝑐1,...,𝑐𝑞} the set of labels, 𝑆1,...,𝑆𝑘 the desired
subsets, and 𝑟1,...,𝑟𝑘 the desired proportion of examples in each subset. The algorithm calculates
the desired number of examples in each subset 𝑆𝑗 as 𝑛𝑗 = |𝐷|𝑟𝑗 , and the desired number of



positive examples for each label 𝑐𝑖 in subset 𝑆𝑗 as 𝑛𝑖
𝑗 = |𝐷𝑖|𝑟𝑗 , where 𝐷𝑖 is the subset of 𝐷

containing positive examples of label 𝑐𝑖.
The algorithm then iteratively assigns examples to subsets. In each iteration, it considers the

label 𝑐𝑖 with the fewest remaining positive examples, and for each example of this label, assigns it
to the subset 𝑆𝑗 that maximizes the current desired number of positive examples for this label 𝑛𝑖

𝑗 .
The Labels Distribution (LD) measure is used to evaluate how well the ratio of positive to nega-

tive examples for each label is maintained in each subset compared to the full data. It is defined as:

𝐿𝐷=
1

𝑞

𝑞∑︁
𝑖=1

⎛⎝1

𝑘

𝑘∑︁
𝑗=1

⃒⃒⃒⃒
⃒ |𝑆𝑖

𝑗 |
|𝑆𝑗 |−|𝑆𝑖

𝑗 |
− |𝐷𝑖|
|𝐷|−|𝐷𝑖|

⃒⃒⃒⃒
⃒
⎞⎠

where 𝑆𝑖
𝑗 is the subset of 𝑆𝑗 containing positive examples of label 𝑐𝑖.

The paper empirically shows that iterative stratification achieves lower LD (i.e., better label
distribution) compared to stratification based on distinct label sets, especially when the ratio
of distinct label sets to examples is large. This makes it particularly suitable for XMQC problems.

4.1. Estimating Label Probabilities fromClick Data

In the XMQC problem, each query 𝑞𝑖 is associated with a sparse label distribution pi ∈Δ𝐿−1,
where 𝑝𝑖𝑗 represents the probability of query 𝑞𝑖 belonging to category 𝑐𝑗 . To estimate these
probabilities, we leverage the click data associated with each query-category pair.

Let 𝑤𝑖𝑗 be the number of clicks received by category 𝑐𝑗 starting from query 𝑞𝑖, and let
𝑤𝑖 =

∑︀𝐿
𝑗=1𝑤𝑖𝑗 be the total number of clicks starting from query 𝑞𝑖 across all categories. We

estimate the probability 𝑝𝑖𝑗 as: 𝑝𝑖𝑗=
𝑤𝑖𝑗

𝑤𝑖
.

For example, consider the query 𝑞𝑖 = “wood for crafts” in Table 1. The total number of
clicks for this query is 𝑤𝑖 = 197. The category Outdoors/Outdoor Games & Toys/Kids Tools &
Building Kits/Toy Miniatures received 𝑤𝑖𝑗 =99 clicks, resulting in an estimated probability of
𝑝𝑖𝑗=

99
197 =0.502538. Similarly, the category Paint/Craft Paint & Supplies/Craft Supplies received

𝑤𝑖𝑗=49 clicks, leading to an estimated probability of 𝑝𝑖𝑗= 49
197 =0.248731.

This approach allows us to obtain a distribution over labels for each query, rather than relying
on one-hot label vectors. The estimated probabilities 𝑝𝑖𝑗 capture the strength of association
between query 𝑞𝑖 and category 𝑐𝑗 based on user click behavior.

To reduce label noise and ensure consistency, we apply a heuristic-based filtering approach.
We remove labels with 𝑝𝑖𝑗<0.1, as the clicks for these labels are too sparse and may not reliably
represent the query’s intent. Similarly, we remove queries with max𝑗𝑝𝑖𝑗<0.4, as these queries
lack a consistent category association and may introduce noise into the training process.

By estimating the label probabilities based on click data and applying noise reduction
techniques, we obtain a sparse label distribution p𝑖 for each query 𝑞𝑖. This distribution provides
a more informative representation of the query’s category associations compared to binary label
vectors, capturing the uncertainty and multiplicity inherent in the XMQC task.

The sparse label distributions p𝑖 serve as the target probabilities for training the DistilBERT
model using the sparsemax loss, as described in the previous section. By learning to predict
these sparse distributions, the model can effectively handle the extreme multi-label nature of
the problem and provide more accurate category recommendations for queries.



𝑤𝑖𝑗 𝑝𝑖𝑗 Category 𝑐𝑗

99 0.502538 Outdoors/Outdoor Games & Toys/Kids Tools & Building Kits/Toy Miniatures
49 0.248731 Paint/Craft Paint & Supplies/Craft Supplies
16 0.081218 Building Supplies/Lumber & Composites/Appearance Boards
10 0.050761 Building Supplies/Decking/Deck Board Samples
8 0.040609 Flooring/Tile & Tile Accessories/Tile
6 0.030457 Home Decor/Furniture/Furniture Parts/Table Tops
3 0.015228 Home Decor/Wall Art & Decor/Wall Art
2 0.010152 Storage & Organization/Shelves & Shelving/Wall Mounted Shelving
2 0.010152 Building Supplies/Lumber & Composites/Plywood & Sheathing/Plywood
1 0.005076 Moulding & Millwork/Moulding/Crown Moulding
1 0.005076 Moulding & Millwork/Moulding/Window & Door Trim/Window & Door Moulding

Table 1
Category click counts (𝑤𝑖𝑗 ), estimated probabilities (𝑝𝑖𝑗 ), and category labels (𝑐𝑗 ) for the query 𝑞𝑖 = “wood
for crafts”. The total number of clicks for this query is 𝑤𝑖=197.

5. Experimental setup

5.1. Dataset Overview

The data used for the experiments was collected from the clickstream of an online store of a large
home improvement retail corporation. The dataset consists of query-category pairs, where the
labels are inferredbased on the frequencyofuser clicksonproductsbelonging tospecific taxonomy
categories. In total, there are 4,462 categories in the taxonomy tree with different levels of nesting.

Each data instance consists of three elements: 1) the search query typed by the user 𝑞𝑖, 2) the
label referring to the product category related to the query 𝑐𝑗 , and 3) the number of clicks 𝑤𝑖𝑗

associated with the query-category pair in a specific time interval. Since a query can lead to clicks
on products from different categories, queries are duplicated per label, and the total number
of clicks for a query 𝑤𝑖=

∑︀𝐿
𝑗=1𝑤𝑖𝑗 is also computed, where 𝐿 is the number of categories for

the query 𝑞𝑖 (see also example in Table 1).
Following the same approach as described in [15], the total number of clicks for a query is

used to categorize queries into head, torso, and tail distributions. Queries with a total click count
equal to or higher than 100 are considered head queries, while queries with a click count of one
are considered tail queries. All queries in between are classified as torso queries.

Table 2 provides a description of the dataset in terms of query and label counts, as well as
their distribution among head, torso, and tail queries. When considering the entire dataset, the
majority of unique queries (86.4%) are associated with a single label. However, the distribution
of single-label and multi-label queries varies significantly when examining head, torso, and tail
queries separately.

In e-commerce data, tail queries often form a long tail distribution. By definition, tail queries
have a click count of 1 and are, therefore, all single-label. For torso queries, the percentage of
single-label queries drops to 66.2%, and for head queries, it further decreases to 8.5%.

Head queries represent 69% of total traffic, with multi-label head queries accounting for 67.9%.
Combined, multi-label head and torso queries comprise 81.1% of total clicks (112,742,307), indi-
cating their high relevance for conversion rates. Tail queries, on the other hand, are known to be



Total Head Torso Tail

Total clicks (sum of 𝑤𝑖) 138,965,331 96,233,946 33,705,963 9,025,422
Total clicks (%) 100.0% 69.3% 24.3% 6.5%

Total clicks for multi-label queries 112,742,307 94,425,519 18,316,788 0
Total clicks for multi-label queries (%) 81.1% 67.9% 13.2% 0.0%

Unique queries (𝑞𝑖) 14,841,471 102,619 5,713,405 9,025,422
Unique query-category pairs 18,234,809 647,811 8,559,713 9,025,422

Single-label queries 12,818,844 8,748 3,784,674 9,025,422
Single-label queries (%) 86.4% 8.5% 66.2% 100%

Unique categories (out of 4,462) 3,121 3,102 3,115 3,109
Categories with 50+ queries 2,992 2,057 2,865 2,869

Table 2
Query and category counts for the whole dataset and head, torso, and tail queries.

challenging to classify due to their low frequency. Text preprocessing techniques are often applied
to tail queries to reduce their variability and improve classification performance (see Section 5.2.1).

The query classification model is intended for the classification of unseen data. From Table
2, we observe that only 3,121 out of the total 4,462 categories are represented in the dataset. The
number of well-represented categories, arbitrarily defined as those with more than 50 unique
queries, is even lower. To increase the number of well-represented categories and mitigate data
sparsity, we apply label pruning and aggregate queries on parent categories, as described in the
following sections.

5.2. Data preprocessing, pruning, and partitioning
5.2.1. Preprocessing

Product search queries often contain various extraneous characters and information that may
not be directly relevant to the classification task. To reduce data noise and space dimensionality,
it is beneficial to apply several preprocessing and normalization steps to the query data. These
steps typically include measurements normalization, punctuation normalization and removal,
non-ASCII characters removal, mixed alphanumeric tokens replacement, numeric tokens
replacement, and lowercasing. The specific preprocessing steps and their order have been
calibrated for the home improvement domain, where measurements, quantities, and specific SKU
numbers are frequently used in search queries. The preprocessing pipeline has been designed
and fine-tuned based on empirical analysis and domain knowledge to ensure optimal results
for this particular domain. After preprocessing, the cleaned and normalized query data is ready
to be used as input to the DistilBERT model for training and inference.

5.2.2. Noise Removal

Search engine queries are not always directly related to product searches, and consequently,
they may not correspond to any specific product category. To remove frequent non-product
queries and improve the quality of the training data, we apply two threshold-based filtering
techniques: label removal threshold and query removal threshold.

For multi-label queries, such as the example shown in Table 1, we remove all category labels
with an estimated probability 𝑝𝑖𝑗 below the label removal threshold (𝑡𝑙). This step helps to
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Figure 3: Reduce sparseness: Taxonomy tree pruning/merging

eliminate labels that have a weak association with the query based on user click behavior.
If none of the remaining category labels for a given query has an estimated probability 𝑝𝑖𝑗

higher than or equal to the query removal threshold (𝑡𝑞), the entire query is removed from the
dataset. This step helps to filter out queries that lack a strong association with any product
category, even after removing weakly associated labels. The values of the label removal threshold
and query removal threshold were determined through experimental tuning, with 𝑡𝑙 set to 0.1
and 𝑡𝑞 set to 0.4. These thresholds were found to effectively remove non-product queries while
retaining relevant query-category pairs.

Referring back to the example in Table 1, the noise removal procedure would remove the
last two rows, corresponding to the categories Moulding & Millwork/Moulding/Crown Moulding
and Moulding & Millwork/Moulding/Window & Door Trim/Window & Door Moulding, as their
estimated probabilities 𝑝𝑖𝑗 are below the label removal threshold of 0.1. However, the query
“wood for crafts’‘ would be retained in the dataset because it has at least one category label
(Outdoors/Outdoor Games & Toys/Kids Tools & Building Kits/Toy Miniatures) with an estimated
probability above the query removal threshold of 0.4.

The noise removal procedure effectively filters out non-product queries, such as URLs,
frequently asked questions, commands, and chitchat (e.g., "we are," "sign out," "change store’‘ ).

5.2.3. Labels pruning

To reduce data sparsity for the category labels with less frequent clicks, a large catalog taxonomy
tree can be pruned to increase the density of less frequent queries. Labels with less than K-tagged
examples (e.g., K=50) can be merged with the upper taxonomy node and their labels are replaced
with the upper-level taxonomy label (see Figure 3). For each label in the taxonomy tree, the
number of examples per node is tracked to capture the real queries distribution. After applying
the pruning procedure, every leaf in the taxonomy tree will include at least K samples [4].

In the example illustrated in Figure 3, the taxonomy tree is pruned based on a threshold of K=50
samples per node. The Pool Chemical Monitoring Systems category, which has only 14 samples, is
merged with its parent node Pool Maintenance. The Pool Skimmer Systems category, having 38 sam-
ples, is first merged with its sibling node Pool Filtration & Skimmer Systems, which is initially empty
because it is not a leaf of the tree. The combined category now has 38 samples and is further merged



Total Head Torso Tail

Total clicks (sum of 𝑤𝑖) 129,130,839 87,715,635 32,395,413 9,019,791
Total clicks (%) 100.0% 67.9% 25.1% 7.0%

Total clicks for multi-label queries 38,198,328 26,511,025 11,687,303 0
Total clicks for multi-label queries (%) 29.6% 20.5% 9.1% 0.0%

Unique queries (𝑞𝑖) 14,719,934 95,505 5,604,638 9,019,791
Unique query-category pairs 16,699,427 133,475 7,546,161 9,019,791

Single-label queries 13,030,572 64,234 3,946,547 9,019,791
Single-label queries (%) 88.5% 67.3% 70.4% 100%

Unique categories (out of 4,462) 2,964 2,774 2,964 2,964
Categories with 50+ queries 2,964 656 2,795 2,869

Table 3
Query and category counts for the whole dataset and head, torso, and tail queries after the application of
the pre-processing and pruning.

with the parent node Pool Maintenance. The Pool Sanitation Systems category, which has only 16
samples, is alsomergedwithPoolMaintenance. After thesemergingsteps, thePoolMaintenance cat-
egory accumulates a total of 68 samples, surpassing the required threshold of 50 samples per node.
On the other hand, the Toilet Lid Decals category, which has only 31 samples, is merged with its par-
ent node Bathroom Accessories & Hardware. However, even after merging, the combined category
still does not reach the threshold of 50 samples. As a result, the Toilet Lid Decals category is elimi-
nated from the pruned taxonomy tree. After applying the pruning procedure, every leaf in the tax-
onomy tree will include at least K samples, ensuring a minimum density of examples per category
label. Categories that fail to meet the threshold after merging with their parent nodes are removed
from the tree. This process helps to mitigate the issue of data sparsity for less frequent queries and
enables more effective training and prediction in the extreme multi-label classification setting.

5.2.4. Data split procedure

After preprocessing and pruning, the data is split into training, development, and test folds
using a K-fold stratified partitioning procedure for multi-label data as described in [6] where
the number of folds could be, for instance, three with a large training set (95%) and two smaller
testing (2.5%) and development sets (2.5%). The iterative stratified splitting procedure described
in [6] has been adapted to accommodate frequency-weighted samples. Query weights can be
derived from the click data associated with each query-category pair as described in Section 4.1.

The adapted procedure allows weights to be used instead of raw query counts to compute
the fold label requirements. Since a query can have multiple labels, each of these is multiplied by
the query weight and added to the total label count. During the data splitting, the query weights
are deducted from the fold label requirement values. The procedure ensures that the queries
with higher weights are distributed first, thus maintaining the distribution of head/torso/tail
queries across the folds. As a result, the data is split such that it keeps the folds disjoint in terms
of samples while maintaining the same label distribution. This approach helps to mitigate
the issue of missing labels or underrepresented classes that can occur when using the more
traditional random sampling process to split data folds by taking into account the importance
of each query-category pair based on user click behavior.

The data description after the application of the preparation steps is presented in Table 3.



Notable changes include the overall decrease in the number of head queries and a significant
increase in single-label head queries (from 8.6% to 67.3%). There is also a reduction in the number
of multi-label queries and a decrease in the number of categories with 50+ unique queries among
head queries, indicating shifts in category popularity. For the experimentation, the data was
split into training (95%), development (2.5%), and testing (2.5%) folds.

5.3. EvaluationMetrics

We employ several evaluation metrics to assess the performance of our proposed XMQC approach,
considering various aspects such as precision, recall, and ranking quality1. Let y𝑖∈{0,1}𝐿 be
the ground-truth label vector and p̂𝑖∈R𝐿 be the predicted score vector for query 𝑞𝑖.

Precision at K (P@K) measures the proportion of relevant categories among the top K predicted
categories, while Recall at K (R@K) measures the proportion of relevant categories found in
the top K predictions. They are calculated as follows:

P@K=
1

𝐾

∑︁
𝑙∈topK(p̂𝑖)

𝑦𝑖𝑙 R@K=
1

|𝑌𝑖|
∑︁

𝑙∈top-K(p̂𝑖)

𝑦𝑖𝑙

where top-K(p̂𝑖) represents the set of top K predicted categories, 𝑦𝑖𝑙 is the ground truth label,
and 𝑌𝑖 is the set of true categories for query 𝑞𝑖.

Normalized Discounted Cumulative Gain (nDCG@K) is a ranking-based metric that considers
the position of relevant categories in the top K recommendations. It is calculated as:

nDCG@K=
DCG@K
IDCG@K

DCG@K=

𝐾∑︁
𝑖=1

2𝑦𝑖𝑙−1

log2(𝑖+1)

where DCG@K is the Discounted Cumulative Gain at K, and IDCG@K is the Ideal Discounted
Cumulative Gain at K, representing the maximum possible DCG@K score. These metrics provide
a comprehensive evaluation of the proposed XMQC approach, assessing its ability to recommend
relevant categories, considering precision, recall, and ranking quality.

5.4. Model Configuration

We trained our proposed model using the DistilBERT pre-trained language model [12]. We
added a multi-layer perceptron (MLP) layer with 512 units, ELU activation function, and L2
regularization, which acts as a pre-classifier. A dropout layer with a dropout rate of 0.4 was also
included to prevent overfitting.

The model was trained for 18 epochs using an Adam optimizer with a learning rate of 1e-5 and an
epsilon value of 1e-8. We employed the sparsemax loss function, which is a variation of the softmax
function that encourages sparse output distributions [7]. This is particularly suitable for the
XMQC task, where the model needs to predict a small subset of relevant categories for each query.

We also trained two baseline models for comparison: a DistilBERT model with the cross-
entropy loss function and a fastText model. FastText is a lightweight text classification model
that represents documents as an average of their word embeddings and uses a linear classifier
[16]. It serves as a simple and efficient baseline for the XMQC task.
1https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)


6. Main Results and Examples
Table 4 presents the evaluation results comparing our proposed DistilBERT model with
sparsemax loss function against the DistilBERT and fastText models using the cross-entropy
loss function. Our model consistently outperforms the baselines across all evaluation metrics,
achieving 78.96 precision@1, 73.75 recall@1, and 78.21 nDCG@1 overall; demonstrating the
sparsemax loss’s effectiveness in capturing the XMQC task’s sparse nature.

Model Metric@K 1 2 3 4 5

SparseMax
Precision 78.96 46.74 32.74 25.07 20.27
Recall 73.75 84.82 88.32 89.83 90.64
nDCG 78.21 82.88 84.5 85.14 85.45

DistilBERT
Precision 66.50 34.75 23.19 17.4 13.92
Recall 66.71 69.74 69.83 69.85 69.85
nDCG 66.5 67.29 66.91 66.7 66.85

fastText
Precision 50.98 25.49 16.99 12.75 10.20
Recall 47.59 47.59 47.59 47.59 47.59
nDCG 50.13 48.65 48.60 48.60 48.61

Table 4
Evaluation results comparing the DistilBERT model with SparseMax loss function and DistilBERT and
fastText models using cross-entropy loss function

To further analyze our model’s performance, we evaluated it on different parts of the query
distribution: head, torso, and tail. Table 5 shows the comparison of metrics for these query
subsets. The model achieves higher precision, recall, and nDCG scores for head queries compared
to torso and tail queries. This is expected, as head queries have better query-category relevance.

However, our model still performs well on torso and tail queries, despite their lower
query-category relevance due to less customer behavior information for identifying relevant
categories. This can be attributed to the sparsemax loss function, which helps the model to focus
on the most relevant categories for each query, even when the number of relevant categories is
small. By encouraging sparsity in the output distribution, the sparsemax loss enables the model
to handle the ambiguity and uncertainty present in torso and tail queries more effectively than
the cross-entropy loss.

These results support our initial hypothesis that a sparse label model better addresses the query
classification ambiguity in the head and torso distribution. By inducing sparsity in the label space,
the sparsemax loss allows the model to make more confident predictions for queries with multiple
relevant categories. Furthermore, the model’s ability to focus on the most relevant category for tail
queries, where there is typically only one relevant category per query, highlights the benefits of the
sparse labeling approach in handling the long-tail distribution of queries in e-commerce search.

6.1. Analysis and Discussion

The multi-label model could also help to identify specific use cases where the predicted posterior
sparse probabilities provide further insights about the user’s intent. For instance, table 6
shows the query “leona silver”, which is a misspelling of the brand “Leonia Silver”. Despite the



Query distribution Metric@K 1 2 3 4 5

Head
Precision 97.89 62.63 43.86 33.42 26.87
Recall 80.97 94.09 96.55 97.39 97.62
nDCG 95.09 96.24 96.69 96.94 97.01

Torso
Precision 88.52 54.40 38.50 29.58 23.94
Recall 75.10 86.55 90.00 91.42 92.13
nDCG 86.59 87.85 89.24 89.83 90.11

Tail
Precision 72.84 41.83 29.06 22.19 17.93
Recall 72.84 83.66 87.19 88.77 89.64
nDCG 72.84 79.67 81.43 82.11 82.45

Table 5
DistilBERT model performance with SparseMax loss function for different query distribution parts

Query Label Prob

leona silver
3/Flooring/Tile & Tile Accessories/Tile 0.94
3/Flooring/Tile & Tile Accessories/Tile Samples 0.03
3/Flooring/Tile & Tile Accessories/Accent & Trim Tile 0.03

brrom
3/Cleaning Supplies/Cleaning Tools/Brooms 0.74
3/Automotive/Automotive Accessories/Ice Scrapers 0.10
4/Cleaning Supplies/Cleaning Tools/Cleaning Brushes/Tile & Grout Brushes 0.06

616295
3/Home Decor/Wall Art & Decor/Wall Art 0.02
3/Flooring/Tile & Tile Accessories/Tile 0.02
3/Lighting & Ceiling Fans/Ceiling Fans & Accessories/Ceiling Fans 0.01

lighting for ceiling
3/Lighting & Ceiling Fans/Ceiling Lights/Flush Mount Lighting 0.6
3/Lighting & Ceiling Fans/Ceiling Lights/Pendant Lighting 0.35
3/Lighting & Ceiling Fans/Ceiling Lights/Chandeliers 0.02
3/Lighting & Ceiling Fans/Lighting Parts & Accessories/Ceiling Light Mounts 0.02
4/Lighting & Ceiling Fans/Ceiling Lights/Recessed Lighting/Recessed Downlights 0.01

Table 6
Examples of multi-label query classification.

spelling error, the model correctly identifies the most relevant categories, such as Flooring/Tile
& Tile Accessories/Tile and Flooring/Tile & Tile Accessories/Tile Samples, with high probabilities.
Similarly, for the misspelled query “brrom”. This demonstrates the robustness of the sparse label
model in handling misspellings and variations in brand names.

For the user query specified as product SKU number, “616295”, the model assigns relatively
uniform probabilities to multiple categories across the taxonomy, indicating that the SKU number
does not provide enough semantic information to confidently predict a specific category.

For the query “lighting for ceiling”, the model assigns the highest probabilities to categories
related to ceiling lighting, such asLighting & Ceiling Fans/Ceiling Lights/Flush Mount Lighting
and Lighting & Ceiling Fans/Ceiling Lights/Pendant Lighting.

These examples showcase the strengths of our proposed approach in handling diverse query
types, including misspellings, SKU numbers, and queries that map to generic taxonomy nodes.
However, there are still opportunities for improvement. For queries lacking clear semantic
information, such as SKU numbers, incorporating additional context from user sessions or
product metadata could potentially enhance the classification performance. Additionally, the



model’s ability to handle extremely rare or unseen queries can be further investigated and
improved through techniques like few-shot learning or data augmentation.

7. Relatedwork
Recent work on query classification in e-commerce has focused on leveraging hierarchical cate-
gory structures to improve representation learning and address challenges such as class imbalance
and query ambiguity. HCL4QC [17] introduces hierarchical loss functions to adjust category rep-
resentations and ensure semantic consistency, while [18] presents a framework utilizing enhanced
representation learning and neighborhood-aware sampling to improve classification accuracy.

Ahmadvand et al. [15] propose DeepCAT, a deep learning model that learns joint word-category
representations to enhance query understanding, particularly for minority classes and tail
queries in e-commerce search. Their approach incorporates category-category co-occurrences
through a novel loss function.

In contrast, our work emphasizes the multi-label aspect of query classification, recognizing that
a product may belong to multiple categories simultaneously. We employ a sparse label approach
using the sparsemax loss to effectively handle query ambiguity and data sparsity in XMQC.

Although large language models (LLMs) are seen as the future of e-commerce search [19],
traditional deep learning methods remain crucial for scalability and low latency. While LLMs
excel at leveraging pre-training knowledge, encoding structured data like product catalogs and
taxonomies as natural language text may lead to efficiency and latency challenges at large scales.
Until LLM optimization challenges are fully resolved, traditional deep learning architectures
tailored for query classification and understanding tasks are likely to remain core components
for scalable, low-latency query processing in e-commerce search.

8. Conclusions
In this paper, we presented a novel approach for extreme multi-label query classification in e-
commerce using an attention-based neural network optimized with a sparsemax loss function. Our
experiments on a large-scale e-commerce dataset validated the effectiveness of modeling queries
as a sparse distribution over product categories. The proposed DistilBERT model with sparsemax
loss outperformed baseline classifiers, demonstrating significant improvements in precision,
recall, and nDCG across different query types. The sparsemax loss proved crucial for handling
the sparsity and ambiguity inherent in XMQC, enabling the model to focus on the most relevant
categories for each query. Notably, our approach showed strong performance on both frequent
head queries and less common torso/tail queries, underlining its ability to capture meaningful cat-
egory associations even with limited training data. Qualitative analysis highlighted the model’s
robustness to real-world challenges such as misspellings and its capability to identify pertinent
categories for ambiguous or broad queries. These findings underscore the practical value of our
XMQC framework in enhancing query understanding and search relevance in e-commerce. Future
research could explore incorporating additional context, addressing data sparsity through tech-
niques like few-shot learning, and optimizing inference efficiency for real-time query processing.
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