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Abstract
Ensuring the relevance of text between user queries and products is vital for e-commerce search engines
to enhance user experience and facilitate finding desired products. Thanks to deep learning models’
capabilities in semantic understanding, they have become the primary choice for relevance matching
tasks. In real-time e-commerce scenarios, representation-based models are commonly used due to their
efficiency. On the other hand, interaction-based models, while offering better effectiveness, are often
time-consuming and challenging to deploy online. The emergence of large language model (LLM) has
marked a significant advancement in relevance search, presenting both value and complexity when
applied to e-commerce domain. To address these challenges, we propose a novel framework to distill a
highly effective interaction-based LLM into a low latency representation-based architecture (i.e. student
model). To further increase effectiveness of the LLM, we propose to use soft human labels and items’
attributes. Our student model is trained to mimic the margin between a relevant document and a less
relevant product outputted from the LLM. Experimental results showed that our model improves both
relevancy and engagement metrics. Our model increased NDCG@5 by 1.30% and the number of sessions
with clicks by 0.214% compared with a production system.
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1. Introduction

Major online shopping platforms such as Walmart, Ebay and Amazon cater to millions of users
daily with a vast array of products. Search engines play a crucial role in helping users find what
they are looking for, but in the realm of commercial e-commerce, search engines typically rely
heavily on user engagement signals to understand query intent and provide the best possible
search results [1, 2, 3]. Search queries from users are usually segmented into head, torso and
tail queries. Head and torso queries generally provide enough user engagement data to train
machine learning models for retrieving and reranking relevant items. However, it is difficult
to effectively retrieve and rerank the most relevant products for tail queries due to the lack of
engagement data. Ensuring that search results align closely with different types of queries from
users is vital for maintaining customer satisfaction and trust over time.
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Figure 1: Our proposed knowledge distillation framework. Item 𝑑+ is more relevant than item 𝑑−. The
LLM/teacher model is trained with human labels while the DistilBERT/student model is trained by
using soft targets outputted from the LLM

Traditional methods of matching queries to products have limitations, particularly in bridging
the vocabulary gap. To address this challenge, advanced neural network models have emerged as
a powerful solution. These models, categorized into representation-based and interaction-based
models, offer different approaches to textmatching. Representation-basedmodels encode queries
and product titles into fixed-dimensional vectors separately, and compute cosine similarity as a
semantic matching feature for reranking [4, 5, 6, 7, 8, 9], enabling efficient online computation
but potentially sacrificing detailed matching information.

On the other hand, interaction-based models excel at capturing fine-grained matching details
by analyzing different parts of queries and products at a low level before making a final decision
based on aggregated evidence [10, 11, 12]. While these models outperform representation-based
ones in many text matching scenarios, they face challenges in terms of online deployment due
to their inability to pre-compute embeddings offline and consider context effectively.

Recent advancements like LLMs (e.g. BERT [13], Llamma [14], Mistral [15] and Gemma
[16]) have revolutionized text matching tasks by combining the strengths of interaction-based
and representation based models. Their multilayer architecture based on Transformer [17]
allows for comprehensive interaction between queries and products at various semantic levels,
addressing the shortcomings of previous models. Despite its effectiveness, LLM’s computational
intensity poses hurdles for practical online applications such as e-Commerce search engines.

In this work, our goal is to improve effectiveness of representation-based models used in
production while still meeting strict latency requirements of e-Commerce search systems for tail
queries segment. Toward this goal, we propose a novel knowledge distillation (KD) framework
to distill an encoder-only LLM (i.e. BERT base [13]) into a representation-based student model
(i.e. DistilBERT [18]), offering improved effectiveness of the student model while maintaining
efficiency of the representation-based models. We firstly train a highly effective teacher model
1, followed by training the student network to mimic the LLM’s behavior. To train the teacher
model, we propose to use soft human labels converted from editorial feedback to make the
model aware of differences between a perfect match item, an item with a mismatched attribute

1We use LLM and teacher model interchangeably



(e.g. brand, color, style etc) and completely irrelevant products, instead of simply using binarized
labels [19] commonly adopted in literature. We show that using soft human labels improve
effectiveness of our teacher model. We further incorporate items’ attributes to our teacher model
to enhance its performance. For our student model, we aim to mimic the margin between a
relevant product 𝑑+ and an irrelevant document 𝑑− outputted by the teacher model. Intuitively,
soft targets outputted by the LLM reduce noises and offer more informative knowledge about
relevant differences between the two items 2. The teacher model/LLM will be served offline
while we can deploy the newly trained student model into production. The high level overview
of our framework in shown in Figure 1. Our contributions are as follows:

• We propose a novel framework, consisting of a representation-based student model distilled
from an LLM, to generate a semantic matching feature for a reranking system in a major
e-Commerce search engine.

• We proposed to improve effectiveness of the teacher model by using soft human labels to
distinguish a perfectly matched item from items with mismatched attributes and completely
irrelevant items.

• We conducted extensive offline experiments on an in-house dataset and tested our framework
with real-time production traffic. Online testing results showed significant gain of our model
over an existing commercial production system.

2. Related work

In this section, we summarize related work about relevance search on e-Commerce, neural
ranking models for text search and knowledge distillation methods.

2.1. Relevance e-Commerce Search and Ranking

The challenge of e-Commerce search surpasses that of traditional web search [20] owing to the
shortness of user queries and the large number of potentially relevant items [21]. Researchers
have suggested an iterative method involving multiple steps, starting with retrieving a set of
candidate items, then iteratively reranking and reducing this set by selecting the top items
[22]. In e-commerce, various signals are used to assess search result quality, with some studies
[1, 2, 3, 23, 24] optimizing results based on user engagement metrics like click-through rate and
conversion rate, best-selling products [25] and product result diversity [26]. However, sparseness
of user engagement data may limit model performance on queries without engagement (e.g.
tail queries). Recently, deep textual matching features based on deep neural-based models have
been employed for retrieval and ranking, with enhancements such as incorporating different
text representations and loss functions [27, 28, 29, 30, 31, 8, 32]. Additionally, some models
have integrated interaction features between user queries and a product graph to capture
relationships among similar products in the ranking process [33] and reinforcement learning
for product search [34]. Our work develops a semantic matching feature based on our novel
knowledge distillation framework, and is used among other engagement signals for reranking
at a major e-Commerce search engine.
2We use items, products, documents interchangeably



2.2. Neural Ranking Models for Text Search

Neural ranking models for text search can be categorized into two groups: representation-
based models and interaction-based methods. The former one seeks to learn representations
of a query and a document, and measure their similarity [4, 5, 6, 7, 35, 36, 27], while the later
one [37, 38, 39, 40, 41, 42, 43] aims to capture relevant matching signals between a query and
a document based on word/tokens interactions. There are methods aiming to unified two
categories within a single model such as Mitra et al. [44], Rao et al. [45]. Recent research
has been centered around leveraging pretrained large language models, with BERT being a
prominent example [13]. In the context of BERT-based relevance models, there are two common
approaches in literature. The first one is about independently learning representations of
queries and items/products using dual BERT encoders (e.g. siamese or two-tower structure)
[8, 27, 28, 46, 9]. The second approach is to concatenate textual contents of a query-item pair
and input the text into a BERT model [47, 48, 10, 11, 12, 49] which demonstrate state-of-the-art
performance on various benchmarks. The former approach is known as representation-based
learningmethodwhile the later one is an interaction-based approach. The e-commerce relevance
task, akin to text matching, poses challenges for commercial search engines due to high traffic
and low latency requirements. This makes deploying interaction-based LLMs online a significant
hurdle. To address this issue, our work proposes distilling the interaction-based LLM (i.e. BERT
base) into a representation-based architecture (i.e. DistilBERT), aiming to enhance ranking
effectiveness while maintaining efficiency of online search systems.

2.3. Knowledge Distillation Methods

Online recommendation/search systems require strict latency in real time which hinders the
deployment of LLMs (e.g BERT [50], LLamma [14], GPT [51]). Recently, researchers and
practitioners utilize compression techniques to compress these models into smaller ones. One
of the most widely used method is Knowledge Distillation [52]. It enables online systems to
leverage sophisticated models like BERT effectively. The core concept of KD involves training
a high-performance teacher model initially, followed by training a simpler student network
to replicate the teacher’s behavior. Knowledge distillation methods mainly fall into three
groups: (1) response-based learning [53, 52, 48, 54, 55, 56, 57, 30], (2) representation-based
methods [18, 58, 59, 60, 61] and (3) relation-based knowledge [62]. Our method can be viewed
as a response-based one since our student model is optimized to learn from the soft targets
generated by a large language model (LLM), which are more informative and less noisy. Our
work is closest to [48, 30]. However, our teacher model is trained with products’ attributes and
soft ratings converted from editorial feedback to increase effectiveness.

3. Our Framework

Problem Formulation: Given a query 𝑞 and an item 𝑑, where every item 𝑑 has title and
textual attributes such as product type, brand, color and gender, we aim to train a teacher model
𝑡(𝑞, 𝑑) ∈ ℝ and a student model 𝑠(𝑞, 𝑑) ∈ ℝ. These two functions will determine relevancy of 𝑞
and 𝑑. After training the LLM, we will train the student model by learning from soft-targets



outputted by the LLM (i.e. knowledge distillation process). Our framework (Figure 1) consists
of two main components: (1) the interaction-based LLM (i.e. BERT base) used as the teacher
model, (2) the representation-based model (i.e. DistilBERT) which is the student model. Details
of these components will be described in following subsections.

3.1. The teacher model

For each query-item pair (𝑞, 𝑖), we utilize an LLM (i.e. BERT base) as encoder, and concatenate
a query and title of an item as input to the BERT model. As the item title may not contain
sufficient information to determine relevancy of the query and the item, we also concatenate
the item’s attributes (e.g. product type (PT), brand and so on) if they are available. The title and
each of the attributes will have unique separator tokens as shown in Eq.1. The hidden state
E(𝑞,𝑑)([𝐶𝐿𝑆]) of [𝐶𝐿𝑆] token is taken as the query-item pair representation. To the best of our
knowledge, our work is the first using items’ attributes such as product types, brands, colors
and genders to enhance effectiveness of an interaction-based LLM.

E(𝑞,𝑑) = 𝐵𝐸𝑅𝑇 ([𝐶𝐿𝑆] 𝑞 [𝑆𝐸𝑃] [𝑆𝐸𝑃𝑡]𝑡𝑖𝑡 𝑙𝑒[𝑆𝐸𝑃𝑝]𝑃𝑇 [𝑆𝐸𝑃𝑏]𝑏𝑟𝑎𝑛𝑑) (1)

To compute relevance score 𝑡(𝑞, 𝑑) of the teacher model, we input E(𝑞,𝑑)([𝐶𝐿𝑆]) into MLP layers
as follows:

𝑡(𝑞, 𝑑) = W2 ⋅ 𝑙𝑎𝑦𝑒𝑟𝑛𝑜𝑟𝑚(W1 ⋅ E(𝑞,𝑑)([𝐶𝐿𝑆])) (2)

where W1 ∈ ℝ768×𝑑 and W2 ∈ ℝ𝑑×1. We remove biases to avoid clutter. For each query-item
pair (𝑞, 𝑑), its rating can be Excellent (i.e. perfect match), Good (i.e. item with a mismatched
attribute (e.g. brand, color, style etc)), Okay, Bad (i.e. irrelevant items) and so on. We can simply
label excellent/good items as 1s and the rest as 0s similar to [19]. However, it is suboptimal since
excellent items and good items are viewed as equal. To help our LLM distinguish these items,
we propose to convert the editorial feedback into soft human labels by labelling an excellent
item as 1, a good item as 0.5 and a completely irrelevant item as 0. The converted human labels
are used in cross entropy loss to train our LLM as follows:

ℒ(𝑡(𝑞, 𝑑), 𝑦) = −𝑦 ⋅ 𝑙𝑜𝑔(𝑡(𝑞, 𝑑)) − (1 − 𝑦) ⋅ 𝑙𝑜𝑔(1 − 𝑡(𝑞, 𝑑)) (3)

where 𝑦 ∈ {0, 1, 0.5} converted from original editorial feedback.

3.2. The student model

As shown in Figure 1, our student model uses DistilBERT as encoder and has identical towers
(Siamese network). For each query-item pair (𝑞, 𝑖), we input the query to the DistillBERT
as follows: E𝑞 = 𝐷𝑖𝑠𝑡𝑖𝑙𝐵𝐸𝑅𝑇 ([𝐶𝐿𝑆] 𝑞 [𝑆𝐸𝑃]) and use hidden state E𝑞([𝐶𝐿𝑆]) of the [𝐶𝐿𝑆]
token as the query’s representation. For the item, we concatenate its title and its available
attributes, and input the concatenated text into DistilBERT as shown in 4. The hidden state
E𝑑([𝐶𝐿𝑆]) of the [𝐶𝐿𝑆] token is used as the item’s representation. The scoring function 𝑡(𝑞, 𝑑) =
𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(E𝑞([𝐶𝐿𝑆]),E𝑑([𝐶𝐿𝑆])).

E𝑑 = 𝐵𝐸𝑅𝑇 ([𝐶𝐿𝑆] 𝑡𝑖𝑡 𝑙𝑒 [𝑆𝐸𝑃𝑝] 𝑃𝑇 [𝑆𝐸𝑃𝑏] 𝑏𝑟𝑎𝑛𝑑) (4)
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To train our student model, we use loss function similar as the margin MSE loss [48] to help
the student model mimic the LLM’s predicted margin. In [48] where simply binary labeling
is used, triplets (𝑞, 𝑑+, 𝑑−) are sampled where 𝑑+ is relevant document and 𝑑− is irrelevant
document for the query 𝑞. The teacher’s scores 𝑡(𝑞, 𝑑+) and 𝑡(𝑞, 𝑑−) viewed as soft targets, and
the student scores 𝑠(𝑞, 𝑑+) and 𝑠(𝑞, 𝑑−) are computed. In [48], the margin MSE loss for a query
𝑞 between a relevant document 𝑑+ and a irrelevant document 𝑑− is shown in Eq.5.

ℒ(𝑞, 𝑑+, 𝑑−) = 𝑀𝑆𝐸(𝑡(𝑞, 𝑑+) − 𝑡(𝑞, 𝑑−), 𝑠(𝑞, 𝑑+) − 𝑠(𝑞, 𝑑−)). (5)

Extending Hofstätter et al. [48]’s work from binary classes to accommodate three distinct
document classes, we use 𝑑1, 𝑑2, and 𝑑3 to denote excellent document (label 1), good document
(label 0.5) and irrelevant document (label 0) respectively for the query 𝑞. We sample triplets
(𝑞, 𝑑 𝑖, 𝑑 𝑗) where 𝑑 𝑖 is more relevant than document 𝑑 𝑗 for the query 𝑞, so there are three possible
combinations (𝑞, 𝑑1, 𝑑2), (𝑞, 𝑑1, 𝑑3), and (𝑞, 𝑑2, 𝑑3). We apply Eq.5 on the generated triplets to
compute loss for the query 𝑞.

3.3. Online serving

After training our student model, we deploy it into production. The overview of our online
serving system is in Figure 2. We index all products’ embeddings with an offline pipeline.
For every query 𝑞, we generate 𝑞’s embedding online. From top-k retrieved candidates of a
retrieval system, we compute a semantic matching feature based on the query’s embedding and
the retrieved items’ embeddings. The feature will be used among other ranking features by a
tree-based model to rank documents and return search results. The features used in a rerank
system can be organized into three groups: (1) query features (e.g. query’s attributes, length
etc), (2) item features (e.g. item attributes, user reviews, ratings etc) and (3) query-item features
(e.g. query-item engagement). Our semantic matching feature is a query-item feature.



4. Experiments

In this section, we discuss our strategies to collect data, performance of the teacher model and
the student model, and our online tests.

4.1. Data Collection

To train text matching models, we can either use engagement information (e.g. click search
logs) [43, 41] or human editorial feedback [8, 19]. While using engagement information to
collect data may help us to generate large-scale data, we find that for tail queries, engagement
information is usually limited and noisy, leading to poor effectiveness of our models. Therefore,
we leverage human editorial labels, which may have smaller size but more reliable to capture
textual relevancy between a query and an item, to train our models.

Over the years, our human editorial evaluation data is generated by manually assessing the
top-ranked items for a set of sampled queries by a control ranking model and a variant model.
The queries are sampled based on search traffic. Totally, we collected an in-house dataset where
each query has a list of ∼10-20 items with human editorial ratings similar to [43, 41, 8, 19].
Again, we did not use click-search logs to train our models in this paper. We convert the original
ratings into soft human labels as discussed in Section 3.1. For each query-item pair (𝑞, 𝑖), its
rating can be Excellent (i.e. perfect match), Good (i.e. item with a mismatched attribute (e.g.
brand, color, style etc)), Okay, Bad (i.e. irrelevant items) and so on. It should be noted that not all
attributes hold equal importance. In this paper we will omit the specific details of our annotation
guidelines. To further increase the number of query-item pairs, we have also included some
hard negative items for each of the queries. While the addition of these hard negatives did not
lead to significant relevance gains, we observed that including hard negatives resulted in the
model yielding more consistent results than using random negative items.

4.2. Performance of the teacher model

We explored multiple methods to train our teacher models, with an emphasis on the labeling
strategy and the loss function. Our current production model employs aggressive labeling
where excellent items are labeled as positive 1, while all others are labeled as negative 0.
Our analysis shows that subject mismatch accounts 20% of irrelevant search results, thus it
is important to distinguish between good and irrelevant items for improving the relevance
of top items. In Table 1, we compare the performance of our model trained with aggressive
labeling to that trained with soft-labeling, where label is 1 for excellent match, 0.5 for good
match, 0 for irrelevant match. We observe a relative gain of +0.47% in NDCG5 with the
soft-labeling approach. Additionally, we explored other methods for distinguishing between
good items and irrelevant items, including multi-class classification (MCCE) and Multivariate
Ordinal Regression (Ordinal) [63], these approaches did not result in NDCG improvement.
For knowledge distilling, using soft-labeling is also easier for knowledge distillation compared
against MCCE and Ordinal. Soft-labeling approach generates a single logit output, simplifying
the knowledge distillation process compared to the two-output approach ofMCCE andOrdinal.
Based on above, we adopt the soft-labeling method as our teacher model.



Teacher Model NDCG@5 NDCG@10
BERT w/ aggressive labeling 0% 0%
BERT w/ soft-labeling w/o item attributes +0.32% +0.23%
BERT w/ soft-labeling +0.47% +0.39%

Table 1
Offline results of interaction-based teacher models

Model NDCG@5 Lift NDCG@10 Lift
DistilBERT w/o KD 0% 0%
Softmax CE loss [52] +0.70% +0.66%
Multi-Margin MSE [54] +1.29% +0.73%
KD-DistilBERT (our student model) +1.81% +1.46%

BERT with soft-labeling (our teacher model) +3.98% +2.85%

Table 2
Offline results of our KD-DistilBERT (the student model), our teacher model and baselines

We also conducted experiments both including and excluding item attributes in the model
input. The results indicate that including item attributes improves the NDCG metrics (see
Table 1).

4.3. Performance of the student model

We compare our student model (KD-DistilBERT) trained with margin MSE loss with state-of-
the-art KD response-based method. We also include performance of our best teacher model. As
shown in Table 2, all KD-based methods outperform distilBERT training without knowledge
distillation significantly with p-value < 0.001 by using t-test, indicating the effectiveness of
using soft-targets outputted by our teacher model. Our model (KD-DistilBERT) performs best
among KD-based methods. We can see the teacher model outperforms all student models with
large gaps. Note that, all student models have the same model architecture (DistilBERT) for fair
comparisons. As the gap between our student model and our teacher model is considerable, we
may consider using a bigger model as a student model to further improve effectiveness while
latency increases modestly. We leave it for future work.

In terms of latency, we observe that the teacher model is much slower than our student model.
In runtime, given a query (𝑞, 𝑑), the teacher model needs to make inference for a concatenation
of the query and the item, while for the student model, we can compute the item’s embedding
offline and as the content of the query is short, online inference for the query’s representation
is fast. Therefore, the student model is much more preferable for online applications. As our
student model has same architecture with the existing production model, our student model
does not incur any additional latency.

4.4. Online experiments

Our KD-DistilBERT performance was assessed by human evaluators who compared the top-
10 results from our model with Walmart’s production system which already has a semantic



Method NDCG@5 Lift (P-value) NDCG@10 Lift (P-value)
KD-DistilBERT +1.30% (0.001) +0.98% (0.00)

Table 3
Human evaluation on the top-10 ranking items on a sample of queries. KD-DistilBERT outperforms
production system with statistical significance level p-value<0.01 by t-test.

Method
First-time buyer
Lift (p-value)

Session Abandonment
Rate Lift (p-value)

Sessions with
Item Click Lift (p-value)

KD-DistilBERT +2.55% (0.07) -0.25% (0.00) +0.214% (0.00)

Table 4
AB test results

matching feature by using siamese DistilBERT model [8]. As we use DistilBERT as encoder,
our framework does not incur any additional latency. Queries were randomly sampled from
search traffic at Walmart. As we can see in Table 3, our model outperforms the production
system significantly on relevancy metrics (NDCG@5 and NDCG@10). Reported results were
stastistically significance t-test. We also conducted A/B test to compare engagement metrics
of our proposed framework and the production system. As reported in Table 4, our model
increases first-time buyer by 2.55%, reduces abandonment search sessions by 0.25% and increase
the number of sessions with click by 0.214%.

5. Discussion and Future Work

In this paper, we employ an encoder-only LLM (i.e. BERT) as the teacher model. We found that
powerful decoder-only LLMs with more number of parameters (e.g. Llama [14], Mistral [15])
are more effective and can further improve effectiveness of the student model. We leave it for
further work.

Currently, our student model is only trained on soft-targets outputted from the teacher model
for query-item pairs in human editorial feedback dataset. It is suboptimal since we can apply
the teacher model on unlabeled dataset to have a much larger dataset. Our preliminary results
show that it is beneficial to generate soft-labels for unlabeled query-item pairs. We will further
explore this direction in the future work. In addition to that, as a next step, we will explore the
possibility of incorporating a multi-objective loss function that combines both relevance and
engagement information.

As our model is served for tail queries only, we will expand it for head/torso segment and
further include users’ information to make search results more personalized. We leave it for
further work as well.

6. Conclusion

In this paper, we proposed a novel knowledge distillation framework consisting of an LLM
as the teacher model and a DistilBERT as the student model. We proposed to improve the
effectiveness of LLM by using soft human labels and items’ attributes. Our KD-DistilBERT



outperformed baselines in offline and online experiments while maintaining efficiency of the
existing production system. Our work opens the door for new industrial applications of other
LLMs [15, 14, 16] in e-Commerce search.
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