
Semantic In-Domain Product Identification for Search
Queries
Sanat Sharma1, Jayant Kumar1, Twisha Naik1, Zhaoyu Lu1, Arvind Srikantan1 and
Tracy Holloway King1

1Adobe Inc., San Jose, California, USA

Abstract
Accurate explicit and implicit product identification in search queries is critical for enhancing user
experiences, especially at a company like Adobe which has over 50 products and covers queries across
hundreds of tools within those products. Whether users come to learn about and purchase new products,
to launch or download products they have already purchased, or to get help on products, accurate product
identification is key to surfacing relevant search results and product cards. In this work, we present a
novel approach to training a product classifier from user behavioral data. Our semantic model led to:
>25% relative improvement in CTR (click through rate) across the deployed surfaces; a >50% decrease in
null rate; a 2x increase in the app cards surfaced, which helps drive product visibility.

Keywords
semantic search, explicit NER, implicit NER, autocomplete, query understanding

1. Introduction

Adobe boasts over 50 products for a variety of creative use cases (e.g. editing photos, videos, and
audio, creating illustrations, animations, and vector graphics). When users come to Adobe.com
or to Creative Cloud (CC, a subset of Adobe products focused on creativity), it is critical to
route them to the right product for their use case. Users issues queries on these surfaces to
learn about and purchase new products, to launch or download products they have already
purchased, or to get help on products. In all of these cases, accurate product identification is
key to surfacing relevant results.

Adobe.com and CC have product-focused search experiences that are augmented by contex-
tual app card suggestions in autocomplete and at the top of search results. App cards provide
users an easy way to discover, learn more about, or simply launch the Adobe product that
matches their query intent. These app cards are the most clicked items on app-agnostic surfaces
like CC and Adobe.com and are critical in driving new-user acquisition and product discovery,
as well as providing existing users with help for their queries. Example app card triggering in
autocomplete for implicit product intent is shown in Figure 1.
Initially, this matching was done via regular expression rules and simple named entity

recognition. While this approach gave product experts the ability to curate the experience for
end users, there were multiple problems with this approach.

eCom’24: ACM SIGIR Workshop on eCommerce, July 18, 2024, Washington, DC, USA
Envelope-Open sanatsha@adobe.com (S. Sharma); jaykumar@adobe.com (J. Kumar); tnaik@adobe.com (T. Naik);
lolu@adobe.com (Z. Lu); asrikantan@adobe.com (A. Srikantan); tking@adobe.com (T. H. King)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:sanatsha@adobe.com
mailto:jaykumar@adobe.com
mailto:tnaik@adobe.com
mailto:lolu@adobe.com
mailto:asrikantan@adobe.com
mailto:tking@adobe.com
https://creativecommons.org/licenses/by/4.0


• Scalability: Due to the rule-based nature of the matching, this approach was hard to
scale to torso and tail queries. Minor variations in phrasing would result in app cards not
triggering and queries with implicit product intent (e.g. edit video should trigger app cards
for Premiere Pro and Rush) rarely triggered app cards. This led to a high null rate (>50%).
Furthermore, it was particularly hard to scale across the different languages supported by
Adobe products.

• Non-uniformity: There was a lack of cohesion between the behavior of app cards shown
in autocomplete and search results, which are maintained by different teams. This led to
a poor user experience.

Our system was able to solve both issues found in the previous approaches. We present a
low-latency query-to-product semantic matching system that provides contextual app card
suggestions for the search and autocomplete services.

Figure 1: Product App Card Experiences: Top: App cards at the top of search results for ai generative
fill. Bottom: Autocomplete for ai genera; textual query suggestions are shown below the app cards. In
both of these query prefixes, the product intent is implicit, i.e. no Adobe product name is mentioned.



2. Prior Art

Product disambiguation has often been modeled as a (named) entity recognition (NER) approach
in industry. Most approaches to query product disambiguation have been to model tokens
within queries and extract relevant entities based on the set of supported products [1, 2]. Recent
works have also leveraged autoregressive re-writing of the query for easier disambiguation and
then using a retrieval or classification head on top [3]. There has also been recent research for
NER tagging in low-resource cases where named entities are specialized [4], which is the case
for Adobe product intent.
In addition to NER techniques, other works have focused on a semantic search approach of

mapping product embeddings and query embeddings in the same semantic space [5].
Our work utilizes a mixture of components from previous approaches. We pretrain a language

model (LM) on our internal document set to learn the intricacies of Adobe products [6] and
then utilize a classification approach on top of the LM for product matching. We found this
approach to work better than semantic search for products which are less frequently referenced
in queries and which are less popular with users due to their highly specific applications (e.g.
Adobe Bridge). In addition, this approach is much better than NER in cases where no products
are explicitly mentioned in the user query (e.g. redact document for Acrobat and edit video for
Premiere Pro and Rush).

3. Datasets

We support 46 Adobe products in our training dataset. The datasets are in English but come
from multiple locales since English queries are used in combination with non-English in most
locales. Also, Adobe products have the same official name in all locales and languages. In order
to learn a good representation of the products and to tackle a diverse set of queries, we utilize
four datasets, from user clicks to expert-maintained spreadsheets. These are described below.
Adobe HelpX Behavioral Dataset Adobe HelpX1 gets millions of unique visitors every

year looking for tutorials and learn content (Adobe HelpX articles, Adobe help videos) related to
Adobe products. We utilize the click logs from user queries → HelpX article clicked to generate
our query → product dataset. From each help article, we extract the related product from the
metadata. We use logs from January 2021 – August 2022 for our training set. This dataset is
noisy but provides a large and diverse dataset that is critical for learning a good representation.
A sample row from the dataset is shown in Table 1.

Table 1
Example training data with the query, clicked document, associated product, and log click ratio score

Field Example Value
Query change color of text
Document https://HelpX.adobe.com/indesign/using/editing-text.html
Product Acrobat
Relevance log click ratio 0.24

1helpx.adobe.com

https://HelpX.adobe.com/indesign/using/editing-text.html
helpx.adobe.com


We utilize a relevance field that is derived by using the log of the click ratio of the query-
document pair. This is important because for a given query, there may be multiple clicked
documents and we wish to pay more attention to query-document pairs with more clicks. Since
we can show multiple app cards to the user (Figure 1), the applications use the relevance scores
to determine which app cards to show and their order. We take the log of the max click ratio to
allow less frequently clicked documents to be part of the learning process.

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 = 𝑙𝑜𝑔(
𝑐𝑙𝑖𝑐𝑘𝑠(𝑞𝑖 ⟶ 𝑑𝑗)

𝑚𝑎𝑥(𝑐𝑙𝑖𝑐𝑘𝑠(𝑞𝑖 ⟶ 𝐷𝑖))
) (1)

where 𝑞𝑖 represents the specific query; 𝑑𝑗 represents the particular document clicked; 𝑐𝑙𝑖𝑐𝑘𝑠
represents the number of clicks for the pair; 𝐷𝑖 represents the set of documents clicked for 𝑞𝑖, ie
𝐷𝑖 = {𝑑𝑖…𝑑𝑛}.

HelpX Document Dataset Adobe HelpX documents are curated by Adobe content creators
to provide information about Adobe products, from tutorials to product announcements. We
utilize this high-quality resource by considering the document title and description as unique
query-product training pairs. Since this dataset is curated and high quality, it is given a higher
weight during training (relevance = 1).

Product NER Explicit Dataset From user queries in Creative Cloud, we utilize a rule-based
product NER to extract query-product pairs containing explicit product names. This dataset
allows us to train on a wide set of explicit, high precision intent queries.

Adobe Express Dataset Adobe Express is one of the newer Adobe products and hence has
very few user clicks in our behavioral datasets.2 To bolster additional training data for this
product and to learn a good representation for its queries, we utilize top Express in-product
queries as part of our dataset.
Finally, we merged the four datasets. Each unique query may have 1 or more products

assigned to it. The overall dataset counts are shown in Table 2.

Table 2
Dataset Size: Size is in number of rows of query-document-product-click ratio (see Table 1)

Dataset Unique Rows
Adobe HelpX Behavioral Dataset 177500
Adobe HelpX Document Dataset 11757
Adobe Express Dataset 6637
Product NER Explicit Dataset 5208

4. Model

We divide the task of learning a good representation of user queries into two parts. The first
part is pretraining a language backbone to utilize for downstream finetuning. The second is
training the classifier head on top of the language backbone.

2We did not add other product-specific datasets since there was already sufficient HelpX data for them and because
in-product help-related queries are routed to HelpX.



4.1. Language Model Pretraining

Figure 2: DeBERTa Pretraining: We break HelpX documents into blocks of 128 tokens and pretrain.
This allows the LM to understand Adobe product vocabulary and features better.

We found open-source language models (LMs) like BERT [7] to be inadequate for Adobe user
queries (see also [6] on training an Adobe-specific language model for semantic search). This is
primarily due to two reasons:

1. Lack of knowledge of Adobe products: Open-source models are trained on general
web data and do not understand the intricacies of Adobe products. Product features such
as cropping or generative fill were not understood by the general models. In addition,
some product names (e.g. Illustrator, Rush) are also common English words.

2. Poor product disambiguation: We found open-source models to have trouble disam-
biguating products with similar names. Products like Premiere Pro and Premiere Rush or
Photoshop and Photoshop Express were lumped together despite being unique products.

To counter this, we pretrained a LM based on Microsoft DeBERTa v3 [8] starting from
publicly available pretrained weights on the HelpX document dataset using masked language
modeling techniques. We arbitrarily split our Adobe-specific datasets (section 3) into training
and validation sets. We trained on block sizes of 128 and found the model to showcase good
perplexity. Perplexity in language modeling gauges how well a probability model predicts a
sample. See Table 3 for a summary.

Table 3
Training Details

Break HelpX documents into blocks (128 tokens)
Concatenate
Train size: 107240 examples
Validation size: 5645
Trained model perplexity: 7.47

Pretraining the LM on HelpX data results in a 14% improvement in downstream classification
accuracy compared to using a pretrained LM. This reinforced our hypothesis that domain-



specific workflows such as Adobe help content have a different data distribution than open
datasets.

4.2. Classifier Training

Once we had our domain-specific LM backbone, we trained a classifier to predict Adobe products
given a user query. We utilized the training datasets described in section 3 for this classifier
head. We experimented with freezing the LM backbone (no weights are updated in the LM) and
found the best combination to be to freeze the backbone for the initial few epochs and then
train the full system for a few additional epochs.
We utilized a classic 2-hidden-layer Multilayer Perceptron network, with a 0.5 dropout rate

and a learning rate of 1e−5 and trained the classifier in a multi-label approach, i.e. each product
was given a probability score between 0–1 given a query. The multi-label approach is necessary
because a large number of implicit product queries are associated with multiple products
and even explicit product queries can be associated with multiple products (e.g. photoshop is
primarily associated with three Photoshop products (web, mobile, and desktop) as well as with
Photoshop Express).
We use the Weighted Binary Cross Entropy loss function for our training and leverage the

relevancy weights (see equation 1) to pay more attention to more important examples during
training.

5. Offline Evaluation and AB Testing

5.1. Quantitative Evaluation on Behavioral Queries

We reserve 10% of our initial dataset (section 3) for evaluation. We compute per-product and
per-source metrics. Since the dataset comprises past user queries, it reflects the final product use
cases (see section 1 and figure 1). However, it is focused on explicit product mentions since the
production app cards are primarily triggered for explicit mentions. Even with explicit product
intent, a given query may have multiple products associated with it based in the past user
click behavior. Each of these is considered in the quantitative evaluation. As shown in Table 4,
precision and recall are well balanced and result in an F1 score of .949. Detailed per-dataset
analysis is shown in Table 5. Results on clean and easier datasets like the HelpX document
dataset and the explicit NER dataset outperform those on behavioral data. This is because the
former two datasets often have the product in the query itself, thus making it easier to predict.

Table 4
Quantitative Evaluation

Quantitative Metrics on the Testset
Rows Precision Recall Accuracy F1
22849 .961 .941 .970 .949

We also see that the model is robust and can identify products in queries with spelling errors.
This includes both small errors (1 edit distance) and large errors (2-3 edit distance). A few
examples are shown in Table 6.



Table 5
Evaluation Metrics per Dataset Source

Dataset Precision Recall Accuracy F1
Product NER Explicit Dataset .99 .962 .995 .975

Adobe HelpX Document Dataset .99 .973 .991 .983
Adobe HelpX Behavioral Dataset .952 .933 .986 .943

Table 6
Queries with Spelling Errors

Query Product Suggested Score
creativ cloudd Creative Cloud .766

illustator Illustrator .991
ilistartor Illustrator .933
sparkk Adobe Express3 .952
potosop Photoshop .971

5.2. Qualitative Manual Annotation of Implicit Intent

Through quantitative evaluation on the test set (previous subsection), we determined that the
model did well when the product was mentioned in the query. We then focused on queries with
implicit information about the product, e.g. keyframe caddy, fashion poster, etc. We utilized a
set of 2700 production CC queries for evaluation. These queries were previously unseen by the
model. We leveraged Adobe-internal product experts (e.g. product managers for CC) to judge
relevancy of the predicted product to the user query. For each query, the model predicts the
most likely output(s). Then the product experts mark the suggested output as correct/relevant
or incorrect/irrelevant. In the cases where multiple products were predicted, the evaluators
were asked to mark the predications as correct/relevant only when all the products predicted
were useful. That is, the entire product intent prediction from the model had to be correct, not
just a subset of the predictions. Table 7 shows the accuracy results for the 2700 queries in the
qualitative evaluation.

Table 7
Qualitative Metrics for Implicit Product Queries: The entire set of intents for a given query must be
correct to count as correct.

Qualitative Metrics for Implicit Product Queries
Rows Correct Incorrect Accuracy
2700 2452 181 .931

3Spark is the original name for Adobe Express.



5.3. AB Testing

We AB-tested the new product intent model for showing app cards in autocomplete and at the
top of search results.4 The new model was tested for all locales against the production model on
the CC app and CC web site. Although the LM is trained for English queries, the large number
of English queries in non-English locales and the fact that Adobe product names are identical
in all languages means that the model triggers app cards in all locales.

As hypothesized, app cards surfaced significantly more with the new model due to triggering
on implicit product intent queries and on misspelled queries. Previously, a few fixed queries and
key terms triggered app cards, but there was no semantic model to provide broader coverage.
The AB test showed a 2-fold increase in surfacing and a >50% decrease in queries with no app
cards. We did not expect app cards for all queries since some queries do not have app intent; so,
there should always be some queries without app cards surfacing.
Both autocomplete and search result app cards saw an increase in click-through rate for all

surfaces and an increase in the unique users who engaged with app cards. Overall, there was a
>25% relative improvement in CTR (click-through rate) across the deployed surfaces.5 These
increases reflect the fact that the increased surfacing, e.g. for queries with implicit product
intent, was high precision and provided information users needed.

6. Conclusion and Future Work

Accurate product identification is critical for enhancing user experiences, especially at a company
like Adobe which has over 50 products. Users on Adobe gateway surfaces such as Adobe.com
and Creative Cloud are looking to learn about, license, download, launch, and get help with
Adobe products. Given the broad selection of products, new customers often do not know which
product they want and so ask implicit product queries around capabilities (e.g. photo editing),
while returning users tend to issue explicit product queries. In this work, we present a novel
approach to training a product classifier from user behavioral data. Our semantic model led to:

• >25% relative improvement in CTR (click-through rate)
• a >50% decrease in null rate
• a 2x increase in the app cards surfaced, which helps drive product visibility.

As future work, first, we are training amulti-lingual version of themodel to better support non-
English queries with implicit product intent (e.g. images gratuites (French: ‘free pictures’) which
is associated with the Adobe Stock image marketplace). Second, we are experimenting with
better long prompt understanding for product disambiguation. This is particularly important
for RAG based systems [10, 11] when dealing with retrieval for long prompts. Third, we are
using the product intent signal within the ranker for the search results, not just for the product
cards and autocomplete.
4The app card triggering leverages a hierarchical approach. The product intent model outputs the high-level product
(e.g. Photoshop). For products with multiple sub-products and surfaces (e.g. desktop, mobile), the user context is
leveraged to determine the most likely sub-product, which is then ranked highest. In the future, we plan to leverage
our hierarchical creative intent knowledge graph [9] to directly predict the correct product and sub-product.

5We cannot share exact CTRs and so only include relative improvement.



References

[1] T. Luiggi, V. Guigue, L. Soulier, S. Jendoubi, A. Baelde, Dynamic named entity recognition,
in: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, ACM,
2023, pp. 890–897. URL: https://doi.org/10.1145%2F3555776.3577603. doi:10.1145/3555776.
3577603.

[2] I. Yamada, K.Washio, H. Shindo, Y. Matsumoto, Global entity disambiguationwith BERT, in:
M. Carpuat, M.-C. de Marneffe, I. V. Meza Ruiz (Eds.), Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Association for Computational Linguistics, 2022, pp. 3264–3271.
URL: https://aclanthology.org/2022.naacl-main.238. doi:10.18653/v1/2022.naacl-main.
238.

[3] N. D. Cao, G. Izacard, S. Riedel, F. Petroni, Autoregressive entity retrieval, in: 9th
International Conference on Learning Representations ICLR 2021, OpenReview.net, 2021,
pp. 3–7. Virtual Event.

[4] Z. Liu, F. Jiang, Y. Hu, C. Shi, P. Fung, NER-BERT: A pre-trained model for low-
resource entity tagging, CoRR abs/2112.00405 (2021). URL: https://arxiv.org/abs/2112.00405.
arXiv:2112.00405.

[5] P. Nigam, Y. Song, V. Mohan, V. Lakshman, W. Ding, A. Shingavi, C. H. Teo, H. Gu, B. Yin,
Semantic product search, in: KDD ’19: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2019, pp. 2876–2885.

[6] J. Kumar, A. Gupta, Z. Lu, A. Stefan, T. H. King, Multi-lingual semantic search for
domain-specific applications: Adobe Photoshop and Illustrator help search, in: SI-
GIR ’23: Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM, 2023, pp. 3225–3229. URL: https:
//doi.org/10.1145/3539618.3591826.

[7] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional
transformers for language understanding, in: Proceedings of NAACL-HLT 2019, ACL,
2019, pp. 4171–4186.

[8] P. He, J. Gao, W. Chen, DeBERTaV3: Improving DeBERTa using ELECTRA-style pre-
training with gradient-disentangled embedding sharing, CoRR abs/2111.09543 (2021). URL:
https://arxiv.org/abs/2111.09543. arXiv:2111.09543.

[9] S. Sharma, M. Poddar, J. Kumar, K. Blank, T. H. King, Augmenting knowledge graph
hierarchies using neural transformers, in: Proceedings of ECIR, 2024, pp. 298–303.

[10] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih,
T. Rocktäschel, S. Riedel, D. Kiela, Retrieval-augmented generation for knowledge-intensive
NLP tasks, 2021. arXiv:2005.11401.

[11] S. Sharma, D. S. Yoon, F. Dernoncourt, D. Sultania, K. Bagga, M. Zhang, T. Bui,
V. Kotte, Retrieval augmented generation for domain-specific question answering, 2024.
arXiv:2404.14760, AAAI 2024.

https://doi.org/10.1145%2F3555776.3577603
http://dx.doi.org/10.1145/3555776.3577603
http://dx.doi.org/10.1145/3555776.3577603
https://aclanthology.org/2022.naacl-main.238
http://dx.doi.org/10.18653/v1/2022.naacl-main.238
http://dx.doi.org/10.18653/v1/2022.naacl-main.238
https://arxiv.org/abs/2112.00405
http://arxiv.org/abs/2112.00405
https://doi.org/10.1145/3539618.3591826
https://doi.org/10.1145/3539618.3591826
https://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2404.14760

	1 Introduction
	2 Prior Art
	3 Datasets
	4 Model
	4.1 Language Model Pretraining
	4.2 Classifier Training

	5 Offline Evaluation and AB Testing
	5.1 Quantitative Evaluation on Behavioral Queries
	5.2 Qualitative Manual Annotation of Implicit Intent
	5.3 AB Testing

	6 Conclusion and Future Work

