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Abstract
Bayesian Optimization (BO) has become a key technique for hyperparameter tuning in ad selection within
search monetization. Despite its efficiency, BO faces significant challenges in real-world deployments, including
scalability issues in high-dimensional spaces, slow convergence, high computational costs, and difficulties in
adapting to dynamic environments. This paper explores these challenges through the lens of industrial application
of the AFA (Auto-tuning Filters for Ads) framework and proposes practical solutions, including reinforcement
learning techniques, hybrid optimization models, and constraint-aware Bayesian approaches.
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1. Introduction

Optimizing ad selection in search monetization is essential for balancing platform revenue with user
experience. Hyperparameter tuning plays a critical role in this process, and Bayesian Optimization
(BO) has emerged as a powerful technique due to its sample efficiency and ability to navigate complex,
high-dimensional search spaces. In our previous work, we introduced AFA (Auto-tuning Filters for
Ads)[1] a BO-based framework that automates the tuning of ad eligibility filters, reducing manual
overhead and accelerating experimentation.

While BO offers clear advantages over traditional methods such as grid or random search, its applica-
tion in large-scale, real-world ad systems reveals a number of practical challenges. During the industrial
deployment of AFA, we encountered several limitations, including scalability in high-dimensional
parameter spaces, slow convergence, cold-start behavior, high computational costs, sensitivity to noisy
evaluations, difficulty in managing multi-objective trade-offs, and the integration of domain-specific
business constraints.

These limitations do not undermine the value of BO, but rather highlight areas where enhancements
are needed to make it robust, adaptable, and efficient in production environments. In this paper, we share
the lessons learned from deploying AFA at scale and explore strategies including reinforcement learning,
hybrid optimization models, constraint-aware Bayesian methods, and noise-resilient techniques to
overcome these challenges and extend the practical applicability of BO in ad selection systems.
In the AFA framework[1], we applied BO to automate the tuning of ad filter thresholds and key

parameters that govern ad eligibility and directly impact auction volume, user experience, and revenue.
AFA iteratively proposed candidate threshold values, evaluated their impact through live A/B testing,
and updated a surrogate model to guide further exploration. This approach significantly reduced the
manual burden of parameter tuning and improved experimentation velocity. However, as we scaled AFA
across diverse traffic segments and filter types, several limitations in standard BO surfaced, motivating
the deeper analysis and improvements discussed in this paper.
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2. Limitations of Bayesian Optimization

While Bayesian Optimization (BO) offers strong theoretical foundations and performs well in con-
trolled settings, its application to large-scale ad selection systems presents several real-world challenges.
Through the deployment of AFA, we encountered practical limitations that impacted both the perfor-
mance and applicability of BO in production. These challenges arose from system constraints, data
noise, market dynamics, and the complexity of balancing business objectives.
In this section, we describe the key limitations we observed and the lessons we learned, organized

across three categories: algorithmic, operational, and statistical challenges.

2.1. Challenges in Adapting to Non-Stationary Environments

Bayesian Optimization assumes a stationary objective function, but in real-world ad selection, this
assumption breaks down as user behavior, auction dynamics, and advertiser strategies shift frequently.
During the deployment of AFA, we found that configurations optimized under one set of conditions
often became suboptimal within days due to external factors such as seasonality, policy changes, or
new campaign launches.

While retraining the model more frequently helped, BO’s reliance on historical data made it prone to
stale recommendations and lacked mechanisms to weigh recency or detect drift. To address this, we
introduced an always-on A/B testing strategy that continuously collected fresh feedback from a rotating
set of configurations. This design discussed in Section 3.1 acted as a lightweight, pseudo-reinforcement
learning loop, enabling more responsive adaptation to market dynamics.

2.2. Slow Convergence and Cold Start Problem

Another practical limitation of Bayesian Optimization is its reliance on initial function evaluations to
build an accurate surrogate model. This leads to a cold start phase, during which BO’s predictions may
be highly uncertain or misinformed. In real-time ad systems, where rapid decision-making and short
feedback cycles are crucial, this slow start can hinder the optimizer’s effectiveness.

In our deployment of AFA, this challenge was especially visible during the launch of new models or
ad filters, where BO lacked prior information about system response. To mitigate this, we seeded the
optimizer with a batch of initial observations collected using expert-informed configurations. These
initial points were selected to cover a diverse range of the search space and reflect practical edge cases
from past deployments.
This approach improved early surrogate accuracy and reduced the number of non-informative

suggestions. While it did not eliminate the cold start entirely, it helped BO make meaningful progress
within the limited number of iterations allowed in production experimentation cycles.

2.3. High Computational Costs in Real-Time Applications

Ad selection systems operate in dynamic, latency-sensitive environments where decisions must be made
within milliseconds. However, traditional Bayesian Optimization is not designed for such real-time
constraints. Each iteration involves updating a surrogate model and solving an acquisition function, both
of which introduce non-trivial computational overhead—particularly when using Gaussian Processes or
optimizing over high-dimensional spaces.
However, the most significant cost is often not computational in the traditional sense: it is the

operational and business cost of running live A/B tests to evaluate new configurations. Each evaluation
requires deploying a candidate parameter into production traffic, allocating user impressions, and
collecting statistically meaningful metrics. These tests are costly in terms of time, risk, and infrastructure,
and became the dominant bottleneck in our AFA deployment.
This dual burden—computational and operational—limits the frequency and responsiveness of BO

in production. It motivated our exploration of more parallel, simulation-informed, and fidelity-aware
optimization methods discussed in Section 3.4.



2.4. Challenges with Multi-Objective Optimization Constraints

Ad selection involves optimizing multiple, often competing goals such as maximizing revenue, main-
taining user engagement, and satisfying advertiser fairness requirements. Standard BO, designed for
single-objective optimization, becomes limiting when there are inherent trade-offs.
In AFA, we used a scalarization strategy to combine multiple objectives into a single metric. While

this reduced complexity and testing cost, it imposed a fixed weighting scheme that did not generalize
well across traffic segments. It also obscured the trade-off surface, limiting insight into how decisions
affected different objectives.
The scalarization strategy we applied was defined by:

𝑓 (𝑡) = ̄𝑡 = arg max
𝑡∈Thresholds

(𝛿𝑠(𝑡) − 𝛿∗𝑝(𝑡))

where 𝛿𝑠(𝑡) denotes the scaled lift in the engagement or user experience objective.𝛿∗𝑝(𝑡) denotes the
penalized lift in platform performance (e.g., revenue). ̄𝑡 is the threshold that maximizes the trade-off
between these competing goals.
This limitation revealed the need for more flexible techniques like Multi-Objective Bayesian Opti-

mization (MOBO), which can surface the Pareto frontier, but often at higher computational and testing
costs. We will discuss the details in section 3.4

2.5. Impact of Noise on Optimization Reliability

Ad system evaluations are noisy by nature. Even with identical configurations, A/B test results can
vary due to traffic fluctuations, auction randomness, or overlapping experiments. BO’s assumption of
consistent function evaluations is violated, leading to instability.

In AFA, we observed slower convergence and occasional model misdirection caused by high-variance
points. To mitigate this, in AFA, we applied manual techniques such as result averaging and outlier
filtering, but these added latency and operational complexity.

This motivated our exploration of noise-aware modeling and adaptive evaluation strategies—covered
in Section 3.5.

2.6. Incorporating Business Constraints

Unlike in traditional machine learning tasks, every configuration evaluated in ad selection has real
business consequences. Poor filter thresholds can lead to revenue loss, advertiser dissatisfaction, or
user churn, impacts that are not always directly captured in the optimization objective, but must be
monitored and respected to ensure business viability.

In AFA, we had to operate within guardrails such as minimum quality guarantees, advertiser fairness,
compliance policies, and system latency. However, Bayesian Optimization offers no native mechanism
to encode hard or soft constraints into its decision process, forcing us to rely on external workarounds.
To enforce these constraints, we embedded business logic into the candidate generation step and

deprioritized configurations with unacceptable outcomes. While this approach worked in practice, the
rules were often static and brittle, requiring manual updates and limiting BO’s flexibility.
These challenges highlight the gap between theoretical BO frameworks and production realities.

Constraint-aware Bayesian Optimization methods explored in Section 3.6 offer a more robust and
scalable alternative.

2.7. Scalability in High-Dimensional Search Spaces

Bayesian Optimization is known to struggle in high-dimensional spaces due to the computational cost of
fitting surrogate models and optimizing acquisition functions. In AFA, we found that single-parameter
tuning converged in around three iterations. With two parameters, convergence stretched to ten or
more iterations. The scalability ceiling was clear, as shown in Table 1.



Table 1
Observed convergence behavior in AFA as dimensionality increased. Asmore parameters were tuned, convergence
slowed significantly.

# Parameters Avg. Iterations Notes
1 ~3 Fast convergence
2 ~10 Partial convergence observed
3+ >15 Not attempted in production deployment

Although we did not attempt to solve this limitation in the AFA deployment, the issue highlights the
need for scalable surrogate models or dimensionality reduction techniques when applying BO to larger
configuration spaces. We discuss potential solutions in Section 3.7.

3. Enhancement for Bayesian Optimization

Bayesian Optimization (BO) offers significant potential for improving ad selection systems, but its
successful deployment in production environments requires several adaptations. Each of the limitations
discussed in Section 2 reveals a critical friction point that we encountered during the development
and rollout of AFA. In this section, we propose corresponding solutions that map directly to those
challenges.
Although some solutions may span multiple limitations, such as parallelization improving both

latency and scalability, or always-on testing enhancing both adaptability and noise robustness, we
maintain a one-to-one correspondence in structure for clarity.

3.1. Enhancing Adaptation to Non-Stationary Environments with Reinforcement
Learning

Since BO assumes a static objective function, it struggles to adapt to rapidly changing market conditions
in ad selection. A more flexible approach is to integrate reinforcement learning (RL), which continuously
learns from real-time interactions and updates optimization strategies accordingly [2, 3].

Policy-based RL techniques, such as Proximal Policy Optimization (PPO), are particularly well suited
for ad selection. These methods allow stable policy updates while preventing abrupt changes that could
negatively impact performance [4]. RL frameworks have also shown success in real-time bidding and
online personalization settings, where optimization must evolve continuously based on new signals
[5].Recent work has also proposed combining Bayesian Optimization with local policy search to actively
guide exploration and reduce sample variance in RL [6].
In AFA, rather than fully replacing BO with RL, we implemented a hybrid strategy that mimicked

RL’s feedback loop while retaining the sample-efficiency of BO. This involved deploying an always-on
A/B testing framework where a rotating pool of candidate configurations was continuously evaluated.
The surrogate model was incrementally updated with fresh data, allowing the optimizer to adjust to
environmental changes.

This pseudo-RL setup bridged the gap between traditional Bayesian Optimization and full reinforce-
ment learning by preserving BO’s sample efficiency while introducing the adaptability required for
dynamic ad marketplaces. Although not a complete RL policy learner, the hybrid approach provided a
practical compromise—allowing continuous adaptation through incremental updates without incurring
the complexity of full RL deployment. This structure laid the groundwork for future exploration of
BO-RL hybrids in constrained experimentation settings.

Recent advances reinforce this direction. For example, Müller et al. [6] combine BO with local policy
search to actively select informative samples and improve sample efficiency in dynamic environments.
Other work has explored time-aware BO using Gaussian processes with temporal kernels [7], as well as
bandit-based methods designed for non-stationary objectives [8], further highlighting the potential of
adaptive and hybrid approaches for real-world optimization.



Figure 1: The always on AB testing pipeline to tackle mutliple limitations such as non-stationary environment

3.2. Accelerating Convergence and Addressing Cold Start with Informed
Initialization

To address the slow convergence and cold start limitations outlined in Section 2.2, we adopted several
techniques to better initialize the optimization process and improve sample efficiency in early iterations.
First, we incorporated expert-informed initialization by seeding the optimizer with configurations

that were known to be safe or representative, based on domain knowledge. This significantly improved
early surrogate quality and reduced the number of non-informative or poor-performing suggestions.

Second, we emphasized diversity in initial sampling. Instead of relying solely on random exploration,
we sampled a wide range of thresholds from the feasible space—ensuring the surrogate had a good prior
across the input space.
These steps helped mitigate the cold start problem and accelerated convergence. While BO still

required several iterations to refine the search, our initialization strategy reduced the time needed
to reach competitive configurations. This approach resulted in a 25% reduction in the number of
experiments and data points required, significantly lowering the overall cost of A/B testing.

Similar strategies have been explored in prior work using meta-learning or transfer learning to warm
start BO in new domains [9, 10]. Other work emphasizes the importance of diverse initial sampling to
build well-calibrated surrogate models early in the process [11].

3.3. Reducing Real-Time Computational and Evaluation Costs via Parallel and
Multi-Fidelity BO

The iterative nature of BO contributes to significant computational overhead, making it challenging
for real-time ad selection where decisions must be made within a short period of time. One effective
solution is parallel Bayesian Optimization, which enables multiple configurations to be evaluated
simultaneously.

This can be achieved through batch BO methods, such as Thompson Sampling-based Batch BO, which
allows multiple candidate solutions to be explored in parallel, reducing the sequential dependency of
traditional BO [12].

Another promising approach is multi-fidelity Bayesian Optimization, where approximate, lower-cost
evaluations are used alongside high-fidelity ones to accelerate convergence. In ad selection, simulated
auction environments or historical campaign data can serve as low-fidelity proxies [13].
In our deployment of AFA, we experimented with the multi-fidelity approach by incorporating

lower-cost approximations (e.g., simulated environments) alongside live traffic evaluations. However,
we found that this introduced noise and bias into the surrogate model, occasionally leading to misleading
optimization guidance. As a result, this technique proved less effective in our setting, where fidelity



mismatches between offline and online evaluations were difficult to calibrate.

3.4. Addressing Multi-Objective Optimization with MOBO and Pareto Strategies

Ad selection involves optimizing multiple, often competing objectives, such as maximizing revenue
while maintaining user engagement and ensuring fair ad distribution. Traditional BO is inherently
designed for single-objective optimization, which limits its ability to handle complex trade-offs.

In AFA, we addressed this limitation using a scalarization strategy, where objectives were combined
using predefined weights into a single optimization target. While this simplified the optimization and
reduced the number of required A/B tests, it locked in trade-off preferences and failed to reveal the
broader Pareto landscape. It reduced the number of AB test needed by 50%.
To improve flexibility, we can explore Multi-Objective Bayesian Optimization (MOBO) approaches,

particularly those that rely on random scalarizations or directly construct Pareto frontiers [14]. These
methods allow systems to uncover a set of non-dominated solutions and enable downstream decision-
makers to select from among desirable trade-offs.However we should expect longer convergance time
and higher computation cost relatively.

Figure 2: Scalarization vs. Pareto Front in Multi-Objective Optimization. The plot shows a convex Pareto front
representing non-dominated solutions across two competing objectives. A scalarized solution (black star) selects
a single point based on predefined weights, while Pareto-based methods allow for flexible trade-offs.

3.5. Improving Robustness to Noisy Evaluations in Bayesian Optimization

A critical challenge in production optimization arises when repeated A/B tests for the same configuration
yield different outcomes due to stochastic variability. This inconsistency can mislead BO’s surrogate
model, slowing down convergence and promoting suboptimal decisions.
We addressed this issue in AFA by experimenting with several strategies:
Input Noise Modeling, where the surrogate explicitly accounts for observed variance. This can be

achieved using models that estimate both the mean and variance of outcomes [15].
Bootstrapped Ensembles, where multiple surrogates are trained on resampled data to capture

uncertainty in predictions. This ensemble-based method improves robustness by averaging across noisy
estimates [16].

Adaptive Re-evaluation, where high-variance configurations are automatically re-tested to stabilize
the model’s belief. This technique helps avoid overreacting to outliers in early evaluations [17].

These strategies improved BO’s resilience to noisy data and reduced the likelihood of overfitting to
outlier outcomes observed in short-term experiments. We also found that integrating these techniques
with always-on A/B testing (Figure 1) further improved the stability and adaptivity of the optimization
process in dynamic environments. This combination led to an 11% improvement in performance metrics
and a 50% reduction in the number of required experiment and evaluation, significantly lowering
experimentation costs.



3.6. Embedding Business Constraints into the Optimization Process

Hyperparameter tuning in ad selection often requires real-world A/B testing, live traffic allocation, and
continuous evaluation based on revenue impact. Unlike many machine learning tasks that allow for
offline training, ad selection systems must operate within latency, fairness, and policy constraints.
Bayesian Optimization does not natively support such hard or soft constraint, which may involve

dynamic thresholds or non-differentiable boundaries. To address this, we embedded empirical safety
rules and platform-specific heuristics into the candidate generation and filtering process during our
AFA deployment. To embed business constraints into the optimization process, AFA applied a heuristic
penalization strategy within the objective function:

𝑓 (𝑡) = 𝛿𝑠(𝑡) − 𝜆 ⋅ 𝛿𝑝(𝑡)

where 𝛿𝑠(𝑡) is the scale lift, 𝛿𝑝(𝑡) is the performance penalty, and 𝜆 balances the trade-off. The penalty
term ensured configurations met quality thresholds while maximizing reach, with 𝜆 calibrated to reflect
acceptable business risk.
Recent advances in constraint-aware Bayesian Optimization provide more principled approaches.

For example, acquisition functions can be extended to penalize infeasible regions [18], or surrogate
models can be trained to learn feasibility constraints directly [19]. These techniques are promising for
high-stakes optimization under real-world business restrictions [20].

3.7. Scaling BO for High-Dimensional Parameter Spaces with Efficient Surrogates

Bayesian Optimization faces well-known challenges in high-dimensional parameter spaces, where
Gaussian Process surrogates become computationally expensive and less accurate. In our deployment,
we found that performance dropped significantly as the number of tuned parameters increased beyond
two.

To address this, we exploredmore scalable surrogatemodels such as Tree-structured Parzen Estimators
(TPE) [21] and Bayesian Neural Networks (BNNs) [20], both of which handle higher dimensionality
more efficiently than GPs.

We also investigated dimensionality reduction techniques, including low-rank kernel approximations
and random embedding methods, which project the problem into a lower-dimensional latent space
while preserving relevant structure [22].

Recent work has also proposed batch MOBO strategies that emphasize diversity across the Pareto
front, improving exploration and sample efficiency in complex, multi-objective settings [23].
These approaches significantly reduced computational cost and improved convergence behavior in

settings with five or more parameters.

3.8. Integrated Deployment of AFA: Real-World Gains in Efficiency and Performance

Taken together, the strategies outlined in this section were implemented as part of the AFA (Auto-tuning
Filters for Ads) framework, which integrated multiple enhancements to overcome the limitations of
standard Bayesian Optimization in real-world ad systems. By combining techniques such as expert-
informed initialization, always-on A/B testing, noise-aware modeling, constraint filtering, and hybrid
BO-RL mechanisms, AFA significantly improved both tuning speed and operational efficiency. In our
production deployment, AFA reduced the average number of A/B test iterations required to reach a
satisfactory configuration from over 10 to fewer than 5, while maintaining comparable or improved
performance metrics by 11% points . Additionally, the average time from initial experiment launch to
production deployment decreased by approximately 65%, with measurable gains in CTR stability and
impression lift across multiple campaigns. These results demonstrate that the systematic application of
enhanced BO strategies can yield robust, scalable, and interpretable optimization pipelines suitable for
dynamic, high-stakes environments like ad selection.



4. Background and Related Work

Bayesian Optimization (BO) has become a standard approach for optimizing expensive black-box
functions, with applications ranging from hyperparameter tuning in machine learning [24, 20], to
scientific experimentation [25, 26], and engineering design [13]. In the context of advertising, BO has
shown promise in automating critical system decisions such as ad filtering and ranking.

Dynamic and Non-Stationary Optimization Real-world systems, including ad selection, operate
in dynamic environments where the objective function evolves over time. Standard BO assumes a
stationary objective, making it ill-suited for such cases. Recent efforts have introduced time-aware
BO and hybrid Reinforcement Learning (RL) strategies that update policies based on recent feedback.
Proximal Policy Optimization (PPO) [4], model-agnostic meta-learning (MAML) [9], and more recently,
BO-guided local policy search frameworks [6] have demonstrated promise in adapting to non-stationarity
while maintaining sample efficiency.

Handling Noisy and Uncertain Evaluations A/B testing in ad systems introduces considerable
noise due to traffic variability, auction randomness, and overlapping experiments. To handle such
uncertainty, methods like input noise modeling [15], ensemble-based surrogates [16], and adaptive
re-evaluation strategies [17] have been explored. These methods improve the robustness of BO under
stochastic feedback.

Constraint-Aware and Multi-Objective Optimization Advertising platforms often face multiple
competing objectives such as maximizing revenue while ensuring user satisfaction. Scalarization
techniques remain the most widely used solution to convert multi-objective problems into single-
objective form, though they may obscure trade-off dynamics. Multi-objective Bayesian Optimization
(MOBO) techniques like Pareto front modeling [14] enable more flexible exploration of trade-offs.
Furthermore, constraint-aware BO methods [19, 18] extend acquisition functions or model feasibility to
respect domain-specific business constraints during optimization.
Scalability and Surrogate Modeling in High-Dimensional Spaces Traditional BO methods

struggle with scalability as dimensionality increases. Gaussian Processes (GPs), while popular, become
computationally expensive and less reliable in high-dimensional settings. To address this, scalable
surrogate models such as Tree-structured Parzen Estimators (TPE) [21] and Bayesian Neural Networks
(BNNs) [20] have been proposed. Dimensionality reduction methods and random embedding techniques
[22] also provide a way to operate efficiently in large parameter spaces. Additionally, batch and
parallelized BO methods such as Thompson Sampling-based strategies [12] and recent Pareto-diverse
batch MOBO methods [23] improve computational efficiency and diversity of exploration.

Bayesian Optimization in Advertising Systems In the context of ad selection, AFA (Auto-tuning
Filters for Ads) [1] demonstrated the feasibility of using BO to automate filter threshold tuning in search
monetization. While this approach reduced manual experimentation overhead and improved filter
deployment efficiency, it also highlighted key limitations of BO in production environments—particularly
with respect to system dynamics, scalability, and real-time evaluation constraints. These insights form
the foundation of the lessons and adaptations discussed in this paper.

5. Conclusion

Bayesian Optimization (BO) offers a sample-efficient, principled approach to hyperparameter tuning
in ad selection. From our deployment of AFA, we identified key challenges—such as cold starts, com-
putational cost, noise, non-stationarity, and business constraints—and proposed practical adaptations
including hybrid BO-RL methods, parallelism, scalarization, and constraint-aware modeling. While
BO has limitations, many represent opportunities for innovation. Future work should advance hybrid,
context-aware, and scalable optimization to make BO more robust and production-ready in complex ad
systems.
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