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Abstract
In e-commerce, ranking algorithms based on relevance and engagement signals have often shown improvement
in sales and gross merchandise value (GMV). Designing such algorithms becomes particularly challenging
when serving customers across diverse regional markets, as shopping preferences and cultural traditions vary
significantly. We propose the SEQ+MD framework, which combines sequential learning for multi-task learning
(MTL) with a region-based feature mask for handling multi-distribution data. This approach utilizes the sequential
order within tasks and accounts for regional heterogeneity, enhancing performance on multi-source data. Unlike
traditional sequential models that rely on tracking user interaction histories, SEQ operates on user-item feature
pairs and generates task-specific predictions in sequence. Moreover, SEQ supports efficient parameter sharing
across tasks and allows new tasks to be added easily. Notably, SEQ trained on data from only two tasks outperforms
the baseline model trained on data from all three tasks when evaluated on the full three-task setting. Experiments
on in-house data showed significant gains in high-value engagements, including add-to-cart and purchase actions.
Furthermore, our multi-regional learning module can be flexibly applied to enhance other MTL applications.
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1. Introduction

In e-commerce, the design of item display algorithms is crucial for enhancing the customer shopping
experience [1]. When a customer enters a query in the search window, the query typically goes
through two stages to render final search results: retrieval and re-ranking. In the first stage, retrieval
systems extract thousands of the most relevant items from millions of listings; in the re-ranking step,
the thousands of listings are further re-ranked such that the most relevant results are shown at the
top. Unlike traditional pattern-searching methods [2], machine learning offers possibilities for more
personalized search experiences [3, 4]. The same search query from different users may yield completely
different listing displays.

Designing effective machine learning algorithms for global e-commerce involves two major challenges.
First, models often need to handle multiple tasks with unevenly distributed data. For example, click data
is much more abundant than purchase data [8]. Multi-task learning (MTL) improves performance by
enabling shared learning across tasks [9], as illustrated in Fig.1-(a), but it remains difficult to maintain
balanced training and promote effective communication between tasks [10, 11]. Second, regional
differences introduce significant variation in data distributions. In global marketplaces, users interact
with international listings, yet shopping behaviors differ across countries due to cultural preferences.
For instance, buyers in the UK are more likely to purchase cookie boxes as birthday gifts (Fig.2-(a)).
These differences influence both the distribution and relevance of features. As shown in Fig.2-(b), some
features are informative in certain regions but uninformative in others. Throughout this paper, we use
"country" and "region" interchangeably, though a region may refer to any geographic area.
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Figure 1: MTL Architecture Comparison. (a) Prior work [5, 6, 7] uses experts and gates for task knowledge
sharing, with variations in whether the expert or gate is shared among tasks. (b) Our SEQ learns multi-task as a
sequence, where task knowledge is shared through sequence tokens.

Existing methods usually address these two challenges separately. To the best of our knowledge,
no single model currently solves both challenges effectively. Regarding multi-task learning (MTL),
many approaches treat tasks independently [12, 13, 14], ignoring their natural sequential structure.
Methods that consider task ordering either rely on user interaction sequences to predict the next
item [15], or use separate task-specific towers followed by conditional probability modeling [16, 17, 18].
Beyond sharing a base model, interactions between tasks are typically limited to shared experts or
gating mechanisms [7, 6, 5]. For region-specific data, most models are trained without accounting for
regional variation, despite clear differences in input features across regions as shown in Fig. 2. While
incorporating regional information could improve performance, training separate models for each
region is inefficient and often ineffective due to imbalanced data availability, especially in regions with
limited samples.

To this end, we propose the learning multi-task as a SEQuence + Multi-Distribution (SEQ+MD)
framework, which can tackle the two challenges simultaneously. For the multi-task component, we
observe that many user actions follow a natural sequence, such as clicking before purchasing, which can
be modeled effectively as a sequential learning problem. Rather than treating each task independently,
our SEQ architecture generates task predictions as a sequence, as shown in Fig.1-(b). The input pair of
user and item features is first encoded into a sequence, and the model then outputs a probability token
for each task in order. The most closely related work, HTLNet[18], also uses the output of earlier tasks as
input for later ones. However, their approach relies on separate task towers, while our SEQ model uses
a recurrent neural network (RNN) [19] that shares the same weights across tasks. This design supports
efficient expansion to new tasks and maintains strong performance without the need for additional
training. For handling mixed input distributions, we separate input features into region-invariant and
region-dependent groups. The region-dependent features are processed with a country embedding in
our multi-distribution (MD) learning module, meaning these features are transformed according to
their region, and then concatenated with the region-invariant features. An advantage of this approach
is that the MD module is easy to plug in and can enhance the performance of any multi-task learning
model on multi-source data.

We evaluated our framework on our in-house data offline and observed a 1.8% performance increase
in the critical purchase task while keeping the click task performance positive compared to baseline
models. In summary, our contributions are:

• We introduced a new framework SEQ for multi-task learning with an improvised RNN architecture,
specifically designed to handle tasks with sequential order. SEQ not only extracts and utilizes the
sequence relation between tasks, reduces redundant computations among related tasks but also
demonstrates excellent transferability when adding new tasks. By decomposing a complex task
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Figure 2: Regional Difference Examples. (a) The same search query on different regional sites should display
different listings to reflect local preferences. For example, GB (United Kingdom) shoppers often choose cookie
boxes as birthday gifts, while Canadian shoppers favor birthday cards. (b) Feature distribution shifts across
countries. In Canada (CA) and the UK (GB), some features display an entirely different distribution pattern,
posing a challenge for the model to learn.

into simpler, sequential tasks, SEQ effectively enhances the multi-task learning process.
• We developed a module MD for learning regional data with different distributions. The MD

module enables the model to capture region-specific features while sharing region-invariant
features, allowing for effective training with a more extensive and diverse dataset.

• Our in-house data experiments demonstrate improvements with this new framework.

2. Related Work

Multi-task learning (MTL) trains models on multiple tasks simultaneously. By sharing information
across tasks, the model can learn more robust features, leading to improved performance on each
individual task. MTL can be categorized into two types: hard parameter sharing and soft parameter
sharing. Hard parameter sharing involves an architecture where certain layers are shared among all
tasks in the base model, while other layers remain specific to individual tasks in separate task "towers."
The "Shared-bottom" approach [12] is one of the most popular methods within this category. Soft
parameter sharing uses trainable parameters to combine each layer’s output with linear combinations.
This approach often incorporates the concepts of experts and gates, which are multi-layer perceptrons
(MLPs) in the architecture design. Experts are responsible for learning with specific attention from
the features, while gates determine how to combine these attentions. Various methods differ based
on whether the experts and gates are shared among tasks or specific to individual tasks, as shown in
Fig. 1-(a). E.g. MMoE [5] shares all experts and gates parameters among the tasks; PLE [6] includes
both task-specific and shared experts and gates; Adatt-sp [7] has task-specific experts, but all gates
are shared among tasks. Soft parameter sharing heavily relies on experts and gates for knowledge
sharing between multiple tasks. However, many related works often overlook the potential to utilize
relationships between tasks in MTL. For tasks with a sequential order, Recurrent Neural Networks
(RNNs) offer another method to promote knowledge sharing, which has been less explored.
Sequence learning in e-commerce has been explored to model user behavior patterns [15, 20, 17, 18].
For instance, DPN [21] retrieves target-related user behavior patterns using a target-aware attention
mechanism, where user behaviors are represented by their shopping history—a sequence of purchased
listings. Similarly, Hidasi et al. [22] demonstrates the impressive performance of RNNs over classical
methods in session-based recommendations. GRU4Rec [23] takes the listing from the current event in
the session and outputs a set of scores indicating the likelihood of each listing being the next in the
session. However, these related works primarily focus on learning from listing interactions. To the
best of our knowledge, our work is the first to treat tasks themselves as a sequence in the context of
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Figure 3: SEQ+MD overall architecture. (a) Feature processing. The input is split into three parts: country
features, dependent features, and invariant features. Country features and dependent features are processed through
our multi-distribution (MD) learning module. More details about the multi-distribution adaptor module can be
found in Fig. 4. Concatenated features are pro- cessed into a sequence input with MLP blocks. (b) Multi-task
Learning. The concatenated features pass through the following RNN layers, providing the model’s final output
scores for each task. Note that the RNN blocks illustrate the model’s architecture, and the number of layers can
vary.

e-commerce.
Multi-distribution learning trains models using data from various sources, each with distinct feature
distributions. Multi-regional data is an example of multi-distribution input, with prior work largely
focusing on language-agnostic approaches to create a unified, unbiased embedding space [24] or on
learning consistent similarities across different markets [25, 26]. In contrast, our approach utilizes
regionally distinct signals to enhance model diversification. Bonab et al. [27] propose learning in an
MTL setting where each market is treated as a task. However, this approach faces challenges when
market data is imbalanced, especially for smaller markets with limited data. Model-agnostic meta
learning (MAML) [28] tackles this through a dual-loop training process: an inner loop optimizes each
market individually, while an outer loop optimizes across markets, but the need for separate parameter
fine-tuning for market adaptation makes MAML inefficient in this context. More recently, Market-Aware
(MA) models [29] have used market-specific embeddings to create market-adapted item embeddings.
Our MD module is similar to MA, yet we observed that not all features are region-specific [30], making
it more effective to distinguish between shared and region-specific features.

3. Method

In this section, we introduce our SEQ+MD framework, which includes two model components: a
multi-task learning architecture SEQ and a multi-distribution learning module MD. We provide formal
definitions for the problem followed by detailed explanations for our framework in the subsections.

3.1. Problem Definition

Consider an online shopping dataset that records users’ queries and interactions (e.g., click, purchase)
with the returned listings. Let 𝐷 = {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 be the dataset with 𝑛 samples, where 𝑋 = (𝑥𝑚𝑢 , 𝑥𝑝𝑙 ),
𝑥𝑚𝑢 refers to the 𝑚-dimensional features about the user and query, 𝑥𝑝𝑙 refers to the 𝑝-dimensional
features about the target listing, and 𝑌 = {𝑦𝑖}𝑘𝑖=1 is the score set for 𝑘 tasks. The score for each task is
calculated based on the user interaction sequences. A complete sequence would be ["click", "add to cart",
"purchase"]. The last action in this sequence represents the final step. For example, if the sequence
is ["click", "add to cart"], it means the user clicked on the listing and added it to the cart but did not
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Figure 4: Multi-Distribution Adaptor Module (MD). The input is broken down into three parts: Coun-
try features (the cause of the distribution difference), dependent features (the features with multi-
distributions), and invariant features (the features with consistent distributions). The country features
generate a weight mask through an MLP block, which is then element-wise multiplied with the dependent
features. This product feature is processed through an MLP, producing transformed dependent features
that are assumed to be invariant. These are then concatenated with the original invariant features from
the input to create the transformed input. This transformed input can then be passed to any MTL
models for further processing.

purchase it. If none of these actions occurred, the sequence is ["no interaction"]. We assign specific
scores to each action ("no interaction", "click", "add to cart", "purchase"), and the final task score is a
combination of these action scores.

The multi-task learning architecture SEQ focuses on making predictions for the 𝑘 tasks simultaneously
given a single input 𝑋 . Meanwhile, the multi-distribution learning module MD is designed for unified
learning across the entire input set {(𝑋𝑖)}𝑛𝑖=1, where the distribution of 𝑋 for certain regions shows
significant differences compared to other regions. (See Fig. 2-(b) for examples.) The multi-task learning
architecture and multi-distribution learning module can be applied separately. We combine these two
parts in our final framework and Fig. 3 shows the overall structure.

3.2. Learning Multi-Task as A SEQuence

Some tasks naturally form a sequence, e.g., click, add to cart, purchase, where each action occurs in a
sequential order, conditional on the previous ones. However, most multi-task learning architectures
do not account for the sequential nature of the problem, making the output tasks order-agnostic and
interchangeable.

Introducing "order" into multi-task learning offers several benefits. First, sequential ordering allows
the model to prioritize more complex tasks later in the sequence. In e-commerce, those later tasks
(e.g. purchase) are often more critical than earlier (e.g. click) tasks because of their higher monetization
values. At the same time, the data sparsity of the purchase task makes it more difficult to optimize. By
establishing a sequence, knowledge from earlier (and typically easier) tasks can be used to address later
(and often harder) tasks. Second, sequential ordering facilitates the transfer or addition of new
tasks. Since the model learns tasks in a "continuous" manner, adding new tasks in the sequence requires
minimal training cost. Journey Ranker [31] recognized the importance of task order having each task
model predict the conditional probability based on the previous task. However, the MLP components in
their model are isolated, not fully utilizing the knowledge exchange of the sequential tasks.

To address this, we connect RNNs [19] with multi-sequential-task learning. In RNN [19], the prediction
of later tokens is based on previous tokens; similarly, our predictions for later user actions are conditioned
on previous actions. In RNN [19], each token position shares the same set of weights (e.g. 𝑊ℎℎ, 𝑊𝑥ℎ

and 𝑊ℎ𝑦 in Eq. 2, 3) with the only difference being the input token and the hidden input from previous
tokens. In our approach, as shown in Eq. 1, we process the single input feature through an MLP for each
token, transforming the input feature specifically for each task (see Fig. 3-(a)). The hidden input can be
seen as the knowledge passed down from previous actions. As shown in Eq. 2, the knowledge for the
current task 𝑗 (ℎ𝑗 ) is from both the input for task 𝑗 (𝑀𝐿𝑃 𝑗(𝑋)) and knowledge from the previous task
𝑗 − 1 (ℎ𝑗−1). The score for task 𝑗 (𝑦𝑗 ) depends on the knowledge (ℎ𝑗 ). Gated Recurrent Unit (GRU) [32]
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Fig. 3 shows our sequential task learning together with MD module. Given a single input feature,
the first step is passing it through 𝑘 − 1 MLPs to create a length-𝑘 sequence, where 𝑘 is the number of
tasks. After passing through multiple layers of RNN, the output scores are in sequence form, with each
score token corresponding to a task.

To further strengthen the learning with sequence, we add the Descending Probability Regular-
izer [31]. Based on the prior knowledge that the probability of a sequence of actions decreases from
the beginning to the end (i.e., the probability of a user "clicking" the listing is greater than or equal
to the probability of "purchasing"), we add a sigmoid multiplication at the end of the output. Each
output score is activated with a sigmoid function and then multiplied by the previous sigmoid scores.
As shown in Eq. 4, the score for task 𝑚, 𝑦�̃� is the product of the sigmoid activations of the logits 𝑙 from
all previous tasks. This ensures that the output probabilities of later actions are always smaller than
those of previous actions, aligning with the prior knowledge.

𝑦�̃� =
𝑖=𝑚∏︁
𝑖=1

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑙𝑖) (4)

3.3. Learning with Multi-Distribution Input

Looking at the distribution of each raw input feature, we noticed that there are multi-distributions for
certain features (e.g. average number of purchases, see examples in Fig.2-(b)). If the goal of training a
machine learning model is to learn the transition from a input distribution to the output distribution,
then this multi-distribution will pose significant challenges to the model, ultimately leading to a failure
in learning [33].

Fig. 4 shows the overall structure of the multi-distribution adaptor module. We first break the
input features into three parts: country features (which is the deciding factor of the distribution shift),
dependent features (with distribution shifts across countries), and invariant features (which are country-
agnostic features). The feature split is done in a heuristic way: country features are manually selected,
and the dependent features and invariant features are separated with a distribution distance threshold.
i.e., when the average of the distribution distance among all countries is greater than a certain threshold,
the feature is categorized as a dependent feature.

After splitting the input features, different operations are applied to these three groups of features.
Country features are used to generate country mask weights for the dependent features. Country mask
weights have the same dimension as the dependent features, and elementwise-multiplication is performed
between the mask and dependent features. The multiplied input is fed into an MLP, which transforms
the output into invariant features. These are then concatenated with the invariant features from the
original input, resulting in a transformed input with consistent distributions.

This multi-distribution adaptor module MD can be easily plugged in for all MTL frameworks. Adding
this module directly after the input and then sending the transformed input to the model is clean
and simple. We also explore other options for combining this adaptor module with our sequential
task learning framework, as shown in Fig. 3. Instead of concatenating the transformed dependent
features with the input feature directly, we can concatenate them with the invariant feature model
output from the previous layers. Block (b) in Fig. 3 shows how the multi-distribution module works in
our sequential learning architecture. Each task has its own country mask. For a single input (country



Algorithm 1 SEQ+MD
Input: Feature (𝑥𝑢, 𝑥𝑙), heuristic feature selector 𝐹 , network for generating country mask
MLPcountry mask, 𝑘 networks for each task input transformation {MLPtask 𝑘}, sequential learning
network RNNseq task.
Output: Scores {𝑦𝑖}𝑘𝑖=1 for 𝑘 tasks.

1: // Separate country features, dependent features, and invariant features for the input
2: (𝑥country, 𝑥dependent, 𝑥invariant)← 𝐹 (𝑥𝑢, 𝑥𝑙)
3: // Generate country mask
4: 𝑚𝑐 ← MLPcountry mask(𝑥country)
5: // Transformed dependent features
6: 𝑥trans d ← 𝑚𝑐 ⊙ 𝑥dependent ◁ element-wise multiplication
7: // Concatenate dependent and invariant features
8: 𝑥← concat(𝑥trans d, 𝑥invariant)
9: // Transform into a feature sequence

10: 𝑥input seq ← []
11: for 𝑖 = 1 to 𝑘 do
12: 𝑥𝑖 ← MLPtask 𝑖(𝑥)
13: 𝑥input seq.append(𝑥𝑖)
14: end for
15: // Learning multi-task as a sequence
16: score_logits← RNN(𝑥input seq)
17: // Calculate scores with descending probability regularizer
18: 𝑠𝑐𝑜𝑟𝑒𝑖 ← 1
19: 𝑠𝑐𝑜𝑟𝑒𝑠← []
20: for 𝑖 = 1 to 𝑘 do
21: 𝑠𝑐𝑜𝑟𝑒𝑖 ← 𝑠𝑐𝑜𝑟𝑒𝑖 × 𝜎(score_logits[𝑖]) ◁ 𝜎 denotes the sigmoid function
22: 𝑠𝑐𝑜𝑟𝑒𝑠.append(𝑠𝑐𝑜𝑟𝑒𝑖)
23: end for

features, dependent features) transformed with 𝑘-task country masks, the output is also a length-𝑘 input
sequence. Concatenated with the invariant feature output, the new input features can be processed
with the following sequential learning layers to finally get the task scores.

4. Experiments

To evaluate our methods, we conducted experiments on our offline in-house datasets. Four baseline
methods were selected for comparison. The Shared-Bottom model [12] is used as the baseline for all
other models, as it represents the most fundamental architecture in multi-task learning (MTL). Results
are reported as changes relative to the Shared-Bottom model, with its performance marked as
the 0% reference point. The other methods implemented for reference are MLMMOE [5], PLE [6],
and Adatt [7]. Details of the baselines are described in Sec. 4.1.

We used 14 days of offline in-house data for training and three days of data for evaluation, and we
report the relative increase in the average Normalized Discounted Cumulative Gains (𝑁𝐷𝐶𝐺) [34] in
the result tables (see Sec. 4.2 for more details). Due to the varying nature of different traffic sources, the
results are divided into two sections: Webpage search traffic (Web), and Mobile App search traffic (App).
We track multi-tasks across all traffic.

The results focus on two main areas: the effectiveness of the sequential learning architecture for
MTL and the "plug-in" multi-distribution learning module for SOTA MTL methods. Ablation studies
and alternative designs are discussed in Sec. 5.



Table 1
Multi-task learning performance. Results are reported with respect to the shared-bottom model baseline,
with the best results marked in bold. State-of-the-art methods are listed in (a) and our models in (b). Our
SEQ model outperforms all baselines in (a) across all tasks and platforms. Adding the multi-distribution
learning module MD further enhances the performance. See Section 4.3 for further discussion.

Click Task Purchase Task
Platform Web App Web App

(a) MLMMoE [5] -0.043% -0.315% +1.027% +0.553%
PLE [6] -0.450% -0.298% +0.790% +0.512%
AdaTT [7] -0.001% -0.541% +0.572% +0.556%

(b) SEQ +0.618% +0.476% +1.305% +1.426%
SEQ+MD +0.170% +0.091% +1.705% +1.952%

4.1. Baseline Models

We select a few state-of-the-art multi-task learning methods without any multi-distribution adjustments
as the baselines. For multi-distribution learning challenges, most related work [35, 36] focuses on
learning invariant features, whereas our goal is to better capture regional preferences. Thus, we
use training with single or multi-distribution data as the baselines for multi-distribution learning
comparisons.
Shared-bottom [12] is a hard parameter sharing method in MTL. It consists of a shared bottom layer for
all tasks, followed by separate "tower" layers for each task, which extend from the shared-bottom output.
Both the "bottom" and the "towers" are MLPs, with no knowledge sharing beyond the shared-bottom.
MLMMOE [5] is a soft parameter sharing method in MTL. It features experts and gates, which are MLPs
within the architecture. "ML" refers to multiple layers; except for the top task-specific gates, all other
experts and gates are shared among tasks.
PLE [6] is another soft parameter sharing method in MTL. It includes two types of experts and gates:
task-specific and task-shared. Task-specific experts learn only for their individual tasks, and task-specific
gates accept input exclusively from the same task expert or the shared expert.
Adatt-sp [7] is also a soft parameter sharing method in MTL. All experts are task-specific, while all
gates take outputs from all experts as their input.

4.2. Datasets and Metrics

We exclusively use our in-house data for experiments because public search datasets [37] often omit
feature details for data security reasons. This omission makes it difficult to isolate country features and
generate accurate country mask weights. Our offline in-house dataset contains over 20 million <user,
query, listing> interaction sequences from 10 regions and 2 platforms. Unless otherwise specified, we
train the models with data from all regions and platforms. Results are evaluated separately for each
platform. Normalized Discounted Cumulative Gain (𝑁𝐷𝐶𝐺) [34] is our evaluation metric, commonly
used for measuring the effectiveness of search engines by summing the gain of the results, discounted
by their ranked positions. The rankings of the search listings are ordered by the output scores from
the model, and 𝑁𝐷𝐶𝐺 is calculated based on the user interaction sequences. As discussed in Sec. 3.2,
e-commerce prioritizes the purchase task over click, making purchase-ndcg our prioritized metric for
model evaluation.

4.3. Results

SEQ. Table 1 presents the multi-task learning performance on click and purchase tasks across different
platforms. State-of-the-art MTL baseline methods demonstrate various improvements in the purchase
task but show a slight decline in the click task. In contrast, our SEQ model shows improvement across
all tasks, adding MD module (SEQ+MD) achieves the best 𝑁𝐷𝐶𝐺 on the critical purchase task. We
observed a performance drop in the click task after adding the MD module to SEQ, making the final



Table 2
Multi-distribution learning module MD performance. Results are reported based on the improvements
over the shared-bottom model [12] baseline, with the best results marked in bold. Applying the
MD module to state-of-the-art MTL methods demonstrates varying degrees of overall improvement
(Percentage changes with regard to no-MD baselines are marked in green for improvements and red for
declines in performance). See Section 4.3 for further discussion.

Click Task Purchase Task
Platform Web App Web App

MLMMoE [5] -0.043% -0.315% +1.027% +0.553%
MLMMoE [5] + MD +0.629% 0.673% +0.291% 0.607% +0.129% 0.889% -0.025% 0.575%

PLE [6] -0.450% -0.298% +0.790% +0.512%
PLE [6] + MD -0.023% 0.429% -0.113% 0.186% +1.958 %1.159% +1.891%1.372%

AdaTT [7] -0.001% -0.541% +0.572% +0.556%
AdaTT [7] + MD +0.477%0.478% -0.115%0.428% +1.060%0.486% +0.863%0.306%

click performance only slightly positive compared to the share-bottom baseline. This may be due
to the click data being noisier and having higher variance. Another possible explanation is that the
region-dependent features isolated by the MD module are more closely related to user/listing purchase
history, which may have a greater impact on the purchase task.
MD: Multi-Distribution Learning Module. Table 2 illustrates the effectiveness of our multi-
distribution learning module as a "plug-in" component for state-of-the-art MTL methods. The adapted
models demonstrate overall improvements, with PLE [6]+MD achieving the best performance for the
purchase task across all platforms. These results validate that our MD module can significantly enhance
MTL performance.

5. Discussions

5.1. Will the sequential learning model benefit from more tasks?

A significant advantage of learning multi-task sequences lies in the inherent properties of RNNs, where
weights are shared across all tokens in the sequence. This has two main benefits. First, it reduces
redundant calculations among related tasks. For instance, tasks like click and purchase share many
commonalities in the buyer’s decision process, i.e. a listing that a user clicks on is also likely to be
purchased. Second, by reinforcing the connections between tasks, later tasks in the sequence can
be learned more effectively by decomposing them and beginning with easier tasks. As the sequence
progresses, task difficulty can be seen as increasing, with earlier tasks acting as processors for the
later ones. This recurrent learning process, from easier to harder tasks, is advantageous. For example,
predicting which listing is likely to be purchased is challenging, but if the model starts by learning click
behavior, it can learn better. We hypothesize that the sequential learning model will benefit from more
tasks. In our experiment, we add an add to cart task between the click and purchase sequence to better
reflect the buyer’s shopping journey. The results in Table 3 support this hypothesis.

Table 3
Three-task learning performance. Results are reported based on the shared-bottom [12] model baseline,
with the best results marked in bold. Upon adding an additional task, add to cart, our SEQ+MD model
continues to outperform others, demonstrating even larger performance gains compared to the two-task
learning scenario. See Sec.5.1 for the discussion.

Click Task Add to Cart Task Purchase Task
Platform Web App Web App Web App
MLMMoE [5] -0.025% -0.627% +0.885% +0.883% +0.596% +0.769%
PLE [6] -0.728% -0.458% +0.672 % +0.475% +1.247 % +1.396%
AdaTT [7] +0.163% -0.054% +0.459% +0.698% +0.901% +1.265%
SEQ+MD -0.955% +0.104% +0.990% +1.029% +1.731% +2.342%



5.2. Transferability from two-task to three-task

An important consideration for multi-task models is how easily they can adapt to additional tasks, the
SEQ+MD model demonstrates a significant advantage. Adding new tasks requires almost no increase in
parameters compared to the state-of-the-art models which increase parameter size by 30% on average.
Moreover, reusing weights trained on previous tasks can also lead to improved performance in new
task evaluations. Figure 5 illustrates the performance comparison of evaluating a three-task setup
using weights from a two-task model. The RNN in SEQ+MD uses consistent weights across sequence
positions, allowing a new task to be added by simply appending a token to the input sequence. This
setup enables predictions for the new task without fine-tuning or additional data. In our three-task
evaluation, we averaged the MLP weights from the click and purchase tasks to initialize the MLP weights
for the add to cart task. After transforming the inputs separately with three MLPs as a sequence, we
applied the RNN using weights trained on only two tasks. Notably, without exposure to add to cart
data during training, the model still outperforms the baseline trained on three tasks in both click and
purchase tasks. These results support our hypothesis that utilizing the sequential order of tasks can
improve multi-task learning effectiveness.

Figure 5: Transferability of SEQ+MD from two-task to three-task models is evaluated by comparing the
performance of shared-bottom [12] and SEQ+MD models trained on three-task data with the SEQ+MD model
trained on two-task data. Remarkably, despite the SEQ+MD model not being trained on add to cart data, it still
shows improved performance on the add to cart and purchase tasks when compared to the shared-bottom [12]
model. See Sec. 5.2 for the discussion.

5.3. Ablation studies

Learning multi-task as a sequence not only enhances knowledge sharing among tasks but also simplifies
the integration of output regularization. In our SEQ design, we incorporate a descending probability
regularizer that enforces the model to output task scores in a non-increasing order. This regularization is
based on the observation that the probability of a user purchasing a listing cannot exceed the probability
of them clicking on it, as a click typically precedes a purchase. The results in Fig. 6 demonstrate the
effectiveness of this regularizer.

5.4. How effective is the MD module when compared to models trained with single
regional data?

Our SEQ+MD model demonstrates a superior ability to align with regional preferences compared
to other baselines. Figure 7 illustrates the changes in the percentage of domestic listings relative to
the shared-bottom [12] model baseline (All models are trained with all-regional data.). Our in-house
analysis shows distinct regional preferences in CA and GB, where CA buyers tend to favor international
listings, while GB buyers lean towards domestic options. However, Fig. 7 shows that PLE [6] consistently
returns more domestic listings, while AdaTT [7] consistently returns less, regardless of these regional
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Figure 6: The impact of adding the descending probability regularizer in the SEQ model. Results are reported
based on the improvements over shared-bottom model [12] baseline. Light blue represents the SEQ model
without the regularizer, while dark blue indicates the model with the regularizer. The regularizer enhances
performance, with noticeable improvements in the purchase task. See Sec. 5.3 for the discussion.
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Figure 7: Domestic listing percentage changes compared to the shared-bottom model [12] baseline are illustrated
for two representative regions: CA and GB. CA buyers tend to favor international listings, while GB buyers prefer
domestic options. PLE [6] and AdaTT [7] show minimal regional differentiation, with AdaTT [7] consistently
returning less domestic listings and PLE [6] returning more. In contrast, our SEQ+MD model consistently aligns
better with regional preferences, demonstrating superior performance in fitting local market trends. See Sec. 5.4
for the discussion.

preferences. In contrast, our SEQ+MD model effectively captures these regional trends, providing more
accurate rankings that better align with the buyers’ preferences.

6. Conclusion

In this paper, we introduce the SEQ+MD framework, which integrates sequential learning for multi-
task problems with multi-distribution data. While SEQ and MD can be applied independently, their
combination yields stronger results, particularly on complex tasks. The motivation behind learning
multi-task as a sequence stems from the natural sequential order of tasks. Our experiments and analyses
highlight two primary benefits: First, SEQ reduces redundant computation across tasks and enhances
transferability between different task sets, requiring minimal additional parameters while effectively
utilizing weights from previous models. Second, by breaking down a complex task into simpler subtasks
that serve as processors in the sequence, the model demonstrates improved performance on more
challenging tasks. Additionally, our MD module effectively handles multi-distribution data, it can also
enhance the performance of state-of-the-art multi-task learning models.



Future work. 1. Improve robustness against noisy data. Even though the primary goal of
our approach is to improve performance on complex tasks such as add to cart and purchase, we see
opportunities in making SEQ+MD have a neutral impact on click compared to SEQ only. One hypothesis
is that click data tends to be noisier than other tasks, with a significant amount of "false clicks" present,
particularly on mobile platforms. For example, users may accidentally click on a listing due to the touch
screen’s sensitivity. Learning with task-specific noise within a multi-task learning framework could be
a valuable direction for future research. 2. Generalize multi-distribution data from region-wise to
other scenarios. While this paper focuses on regional differences as an example of multi-distribution,
other multi-distribution exists in e-commerce search data. For instance, different platforms (web, app)
may show distinct shopping patterns. Extending our MD module to address these scenarios could be a
promising research direction.
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