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Abstract
E-commerce information retrieval (IR) systems struggle to simultaneously achieve high accuracy in interpreting
complex user queries and maintain efficient processing of vast product catalogs. The dual challenge lies in precisely
matching user intent with relevant products while managing the computational demands of real-time search across
massive inventories. In this paper, we propose a Nested Embedding Approach to product Retrieval and Ranking,
called NEAR2, which can achieve up to 12 times efficiency in embedding size at inference time while introducing
no extra cost in training and improving performance in accuracy for various encoder-based Transformer models. We
validate our approach using different loss functions for the retrieval and ranking task, including multiple negative
ranking loss and online contrastive loss, on four different test sets with various IR challenges such as short and
implicit queries. Our approach achieves an improved performance over a smaller embedding dimension, compared
to any existing models.
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1. Introduction

In e-commerce platforms like Amazon, eBay, and Walmart, effective information retrieval (IR) is crucial
for matching user queries with relevant products. However, IR systems face dual challenges of accuracy
and efficiency. Accurately interpreting the user intent and ranking search results are complicated by
ambiguous, repetitive, and alphanumeric queries [1, 2, 3]. For example, “iPhone 13” often fails to clarify
user intent, leading to irrelevant results like “iPhone 13 case” being ranked alongside the intended product.
Repetition of query terms in both relevant and irrelevant titles exacerbates this issue. For instance,
the term “iPhone 13” might appear in unrelated accessory titles, confusing embedding-based models.
Additionally, alphanumeric queries, such as “S2716DG”, pose problems because slight variations (e.g.,
changing “DG” to “DP”) signify different product features, which semantic similarity models struggle to
interpret without an exact match. These challenges reflect the difficulty of aligning query interpretation
with user intent.

At the same time, the computational demands of processing massive product catalogs in real time
make efficient retrieval a pressing concern [4]. Balancing accuracy with efficiency remains a significant
hurdle for modern IR engines. On the efficiency front, current IR systems often rely on computationally
intensive models, such as deep neural networks or large-scale embedding computations, to evaluate
semantic similarities between queries and product titles [5, 6]. For instance, calculating embeddings for
millions of product titles during a live query can create latency, especially when combined with re-ranking
stages that refine results. This latency impacts user experience, as delays of even a fraction of a second
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can lead to dissatisfaction or abandoned searches. Optimizing these systems to handle large-scale data
efficiently without compromising accuracy is a critical challenge in e-commerce search.

In this paper, we propose a Nested Embedding Approach to product Retrieval and Ranking, called
NEAR2, which can achieve efficient product retrieval and ranking using much smaller embedding sizes
of encoder-based Transformer models [7]. This approach maintains performance comparable to the full
model without incurring additional training costs. Our evaluation results on various test sets that contain
different types of challenging queries, such as implicit and alphanumeric queries, indicate that NEAR2

can improve model performance on these challenging datasets using significantly smaller embedding
dimension sizes. Our contributions can be summarized as follows:

• We propose NEAR2, a nested embedding approach, which can achieve up to 12× efficiency in
embedding size and 100× smaller in memory usage during inference while introducing no extra
cost in training.

• We evaluate NEAR2 on four different test sets that contains various types challenging queries.
Evaluation results show that our approach achieves an improved performance using a much smaller
embedding dimension compared to any existing models.

• We conduct ablative experiments on different encoder-based models fine-tuned using different
IR loss functions. We find that NEAR2 is robust to different IR losses or loss combinations for
continued fine-tuning.

• We perform a qualitative analysis on retrieved product titles using challenging queries. Our analysis
re-affirms the superior performance of our approach and reveals that the similarity scores from
NEAR2 models are more reliable than those of baseline models.

2. Related Work

Modern IR systems encounter several challenges that hinder their performance, particularly in dealing
with complex queries and data representation. Ambiguities in natural language, vocabulary mismatches,
and the need for scalable real-time processing pose significant challenges [5]. Traditional term-based
models often fail due to lexical gaps and polysemy, necessitating the transition to advanced semantic
models. Semantic retrieval with dense representations, powered by neural networks and pre-trained
language models (PTLMs) like BERT [8], has shown remarkable improvements in handling context and
semantics. However, these models demand substantial computational resources and struggle with implicit
or alphanumeric queries [5]. Similarly, interaction-based approaches focus on capturing query-document
dynamics through deep neural networks, such as the Deep Relevance Matching Model [9], but often
sacrifice efficiency and scalability due to their inability to cache document embeddings offline and their
reliance on real-time computation [10]. To gap the mismatch of user intent and retrieved product titles
in search queries, Saadany et al. [3] curated a dataset annotated with user-intent centrality scores, and
proposed a dual loss optimization strategy to fine-tune PTLMs on the dataset in a multi-task learning
setting, to solve such challenges.

To address the efficiency issue, researchers have proposed a range of solutions aimed at enhancing effi-
ciency while maintaining accuracy at the same time. Efficiency issues can be tackled through using DUET
models that employ local and distributed deep neural networks, which learns dense lower-dimensional
vector representations of the query and the document text for efficient retrieval [10]. Knowledge distil-
lation, where smaller models inherit knowledge from larger PTLMs, has proven effective in reducing
resource requirements without compromising performance for IR systems [11]. To mitigate computational
overhead, Wan et al. [12] proposed to use dimension reduction and distilled encoders to create lightweight
models for fast and efficient question-answer retrieval. Kusupati et al. [13] proposed Matryoshka repre-
sentation learning (MRL) which is able to encode information at different granularities, to adapt to the
computational constraints of various downstream tasks. In this paper, we tackle the challenges of accuracy
and efficiency using a nested embedding approach based on MRL to create lightweight embedding models
for IR tasks.



3. Methodology

This section describes our nested embedding approach in S 3.1 and the backbone models in S 3.2.

3.1. Nested Embedding Training

We utilize MRL with a ranking loss to train nested embeddings of different sizes on various models.

Matryoshka Representation Learning MRL develops representations with diverse capacities
within the same higher-dimensional vector by explicitly optimizing sets of lower-dimensional vectors in a
nested manner, as illustrated in Figure 1.

Figure 1: NEAR2 combines UCO optimisation [3] with MRL [13] to learn multiple nested embedding
representations of different sizes (𝑧 ∈ R𝑑 as the full embedding representation) with multi-task learning,
which are adaptive to different downstream tasks such as retrieval or ranking during inference.

The initial 𝑚−dimensions of the Matryoshka representation, where 𝑚 ∈ 𝑀 , the set of nested repre-
sentation sizes, form a compact and information-dense vector that matches the accuracy of a separately
trained 𝑚−dimensional representation, but requires no extra training effort. As dimensionality increases,
the representation progressively incorporates more detailed information, providing a nested coarse-to-fine
representation. This approach maintains near-optimal accuracy relative to the full dimensional scale,
while avoiding substantial training or deployment costs [14].

The MRL loss is formally defined in Equation 1, where 𝐿𝑡𝑎𝑠𝑘 is the loss for downstream tasks such
as the cross-entropy loss for classification tasks. 𝑓𝑚(𝑥) is the output of the 𝑚-th nested embedding
representation, and 𝑐𝑚 is the importance weight for the 𝑚-th embedding representation.

𝐿𝑀𝑅𝐿 =
∑︁
𝑚∈𝑀

𝑐𝑚𝐿𝑡𝑎𝑠𝑘(𝑓𝑚(𝑥), 𝑦) (1)

MRL learns multiple nested embedding representations, each with a different size 𝑚 ∈ 𝑀 . The final
MRL loss is a weighted sum of the task losses for each of the nested representations. For our product
retrieval and ranking task, we set the multiple negative ranking loss (MNRL) [15] as our 𝐿𝑡𝑎𝑠𝑘.

Multiple Negative Ranking Loss MNRL measures the difference between relevant (positive) and
irrelevant (negative) examples associated with a given query. This technique ensures a clear separation by
reducing the distance between the query and positive samples while increasing the distance from negative
samples. Using multiple negative examples enhances the model’s ability to discern varying levels of
irrelevance, refining its optimization. The MNRL objective function is formulated as follows:



𝑀𝑁𝑅𝐿 =

𝑃∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑚𝑎𝑥(0, 𝑓(𝑞, 𝑝𝑖)− 𝑓(𝑞, 𝑛𝑗) +𝑚𝑎𝑟𝑔𝑖𝑛) (2)

In Equation 2, 𝑃 represents the number of positive samples; 𝑁 denotes the number of negative
samples; 𝑞 is the query; 𝑓 is the similarity metric (cosine similarity in our case), and the 𝑚𝑎𝑟𝑔𝑖𝑛 is a
hyperparameter defining the ideal distance between positive and negative samples based on the relevance
score. The goal of MNRL is to minimize the similarity between (𝑞, 𝑝𝑖) while simultaneously maximizing
the difference between (𝑞, 𝑛𝑗) for all positive and negative samples.

3.2. Backbone Models

We used encoder-based Transformer models as our backbone for training nested embeddings for efficient
product retrieval and ranking.

Pre-trained Language Models We initially leveraged BERT [8], a publicly available pre-trained
encoder Transformer model. For our specific use case in e-commerce, we also employed eBERT1, a
proprietary multilingual language model pre-trained internally at eBay. This custom model was pre-
trained on a corpus of approximately three billion product titles, supplemented by data from general
domain sources like Wikipedia and RefinedWeb.

Expanding our experimental approach, we also incorporated eBERT-siam, a fine-tuned variant of
eBERT using a Siamese network architecture. This model aims to generate semantically aligned em-
beddings for item titles, making it particularly effective for similarity-based search and retrieval tasks.
Consistent across all models, we maintained a uniform architectural design of 12 layers with a dimension
size of 768.

User-intent Centrality Optimized (UCO) Models Saadany et al. [3, 16] show how current
IR systems have problems in achieving user-centric product retrieval and ranking due to implicit or
alphanumeric queries. They curated a dataset with user-intent centrality scores (see Section 4.1) and
proposed a few models optimized for user-intent using an MNRL loss for retrieval and ranking, and an
online contrastive loss (OCL) for user-intent centrality. OCL builds on the traditional contrastive loss
(CL) [17] approach but introduces a more focused strategy. While conventional CL uses a twin network
to evaluate similarities between all data point pairs from the same and different classes, OCL targets only
the most challenging and informative pairs within a batch. By prioritizing such cases, OCL refines the
loss calculation to focus on the most critical and complex relationships between data points.

They applied the two losses in a transfer learning setup for eBERT and eBERT-siam models, and
performed fine-tuning for centrality classification. Their results indicate that the UCO models achieve an
improved performance for retrieval and ranking. Details can be found in Saadany et al. [3].

To improve model efficiency and meanwhile leverage optimized performance of the UCO models, we
continued training them using NEAR2 for both eBERT-UCO and eBERT-siam-UCO models.

4. Experimental Setup

This section explains the datasets we used for training, validating and testing our approach in S 4.1.
Implementation details and evaluation metrics are presented in S 4.2 and S 4.3 respectively.

4.1. Data

We utilized eBay’s internal graded relevance (IGR) datasets to train our nested embedding representation.
These datasets comprise user search queries alongside the product titles retrieved on the platform. They

1eBERT Language Model
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are annotated by humans following specific guidelines to generate two types of buyer-focused relevance
labels.

The first is a relevance ranking scheme, where query-title pairs are assigned a rank from (1) Bad, (2)
Fair, (3) Good, (4) Excellent, to (5) Perfect. A “Perfect” rating signifies an exact match between the query
and title, indicating high confidence that the user’s needs are fully met, whereas a “Bad” rating indicates
no alignment between the query and the product title. This ranking methodology aligns with previous
studies [18, 19]. The second annotation type is a binary centrality score, derived through majority voting
among multiple annotators, indicating whether a product aligns with the user’s expressed query intent.
Centrality scoring differs from relevance ranking in that it assesses whether an item is an outlier or
unexpected in the retrieval set versus being a core match to user expectations.

To compare the results of our approach with those reported in Saadany et al. [3], we utilized the
Common Queries (CQ), CQ Balanced (CQ-balanced), CQ Common String (CQ-common-str), and
CQ Alphanumeric (CQ-alphanum) test sets proposed in their paper. The CQ test set was constructed
using queries with both positive (relevancy > 3) and negative (relevancy < 3) titles, resulting in a dataset
skewed toward positive pairs due to the nature of e-commerce data collection. To address this imbalance,
a new version, CQ-balanced, was created with approximately equal numbers of positive and negative
query-title pairs. The CQ-common-str set was derived by selecting queries where the exact query string
appeared in both positive and negative titles, ensuring a strong correlation between relevance scores (both
graded relevance and binary centrality). Finally, CQ-alphanum was created to include only query-title
pairs containing alphanumeric characters, allowing for a more focused evaluation. Details about their
formulation can be found in Saadany et al. [3]. An example of the datasets and the size for each test set
can be seen in Figure 2 and Table 1.

(a) The query “turtle” is a part of both positive and negative titles with very different product search outputs. It
could also be a part of the ambiguous query “turtles bepop”.

(b) The query “turtles bepop” is ambiguous as it could be referred to the major antagonist, “Bepop” or together
with other Ninjia Turtles.

Figure 2: Examples of query-title pairs from the CQ-common-str test set. The search queries can be very
short and ambiguous, but the retrieved products can be very different as shown in (a), or their titles can
be quite close in semantic relation as shown in (b).



Test Name # Corpus # Queries

CQ 187469 17325
CQ-balanced 46561 17325

CQ-common-str 12508 6351
CQ-alphanum 162115 12333

Table 1
The size of the four test sets.

4.2. Implementation Details

We continued training the PTLMs and the UCO models in S 3.2 for 2 epochs, using our nested embedding
approach at dimension sizes of 768, 512, 256, 128 and 64, on the query-title pairs using only the relevance
ranking scores (excluding pairs with a score of 3) of the IGR datasets.

During training, we ran a sequential evaluator on the ranking score data to validate for all dimension
sizes. First, the evaluator computes the embeddings for both query and title and uses them to calculate
the cosine similarity. Then, it finds the most relevant product title to the query (top 3, 5 and 10 titles) in
the corpus of all titles with a max corpus size of 200, 000. For all experiments, we set a batch size of 32,
a margin of 0.75 for the MNRL loss with the AdamW optimizer [20] and the learning rate as 5𝑒− 05.
Training one model using the above hyperparameters takes ≈ 1.5 hours on a single NVIDIA V100 GPU.

4.3. Evaluation Metrics

We evaluated the model effectiveness through multiple established evaluation metrics including precision,
recall, normalized discounted cumulative gain (NDCG) [21] and mean reciprocal rank (MRR).

Precision@𝑘 quantifies the ratio of pertinent items within the top-𝑘 recommended products, focusing
on their individual relevance. Conversely, recall@𝑘 assesses the proportion of successfully retrieved
relevant items compared to the total number of applicable products, regardless of their positioning.
NDCG provides a comprehensive assessment of recommendation quality by analyzing both the relevance
and positioning of suggested items. This metric compares the actual recommendation order against an
idealized ranking, offering a nuanced evaluation of recommendation performance. MRR focuses on
measuring the average ranking position of the first relevant item across different queries. A superior MRR
indicates the model’s capability to prominently feature highly relevant products, thereby enhancing user
experience and recommendation effectiveness.

5. Results and Discussion

Results achieved using NEAR2 with a dimension size of 64 are shown in Table 2. Since BERT and
eBERT were not fine-tuned on e-commerce data2, improvement achieved using our approach is huge,
as listed in Table A.1 in Appendix A. The values are shown as the percentage of increase (delta) of the
evaluation metrics in comparison of those without using NEAR2 presented in Saadany et al. [3].

Comparing results upon using NEAR2 vs existing models, we find that our approach remarkably
improves performance on all test sets for all models in S 3.2, even using embeddings with a dimension
size of 64, which is 12× smaller in size and more than 100× smaller in memory usage than the full model
(see Table 3).

When comparing results of different dimension sizes from the largest (768) to the smallest (64), as
shown in Table 43 for the CQ test set, we discover that the drop in performance is not significant.
Embeddings of some smaller dimensions are even slightly better than larger ones. For example, the
performance of the eBERT-siam model using NEAR2 at dimension 512 is slightly better than 768 for
2eBERT was only pre-trained on e-commerce data.
3BERT and eBERT results are in Table A.2 in Appendix A.



Model Precision@𝑘 Recall@𝑘 NDCG@𝑘 MRR@𝑘
3 5 10 3 5 10 3 5 10 10

CQ test
eBERT-siam +11.80% +11.79% +11.49% +9.99% +9.72% +9.07% +11.50% +11.23% +10.65% +9.06%
eBERT-UCO +2.98% +3.28% +3.90% +3.12% +2.99% +3.16% +3.27% +3.34% +3.47% +3.03%

eBERT-siam UCO +2.82% +2.75% +3.16% +2.72% +2.45% +2.50% +2.91% +2.77% +2.80% +2.58%
CQ-balanced test

eBERT-siam +8.85% +8.45% +7.31% +8.85% +8.43% +7.28% +10.28% +10.03% +9.56% +10.48%
eBERT-UCO +3.19% +2.87% +2.42% +3.15% +2.81% +2.41% +3.36% +3.19% +3.03% +3.25%

eBERT-siam UCO +2.77% +2.45% +2.09% +2.75% +2.48% +2.05% +3.06% +2.93% +2.77% +3.01%
CQ-common-str test

eBERT-siam +6.62% +4.90% +3.00% +6.59% +4.84% +3.01% +8.57% +7.70% +6.99% +8.51%
eBERT-UCO +1.69% +1.53% +0.81% +1.68% +1.51% +0.86% +1.56% +1.48% +1.27% +1.38%

eBERT-siam UCO +1.49% +1.22% +0.81% +1.48% +1.18% +0.83% +1.86% +1.72% +1.59% +1.85%
CQ-alphanum test

eBERT-siam +5.82% +5.84% +6.15% +4.70% +4.59% +5.01% +5.52% +5.40% +5.35% +4.41%
eBERT-UCO +3.64% +3.75% +3.92% +3.61% +3.55% +3.60% +3.30% +3.33% +3.40% +2.57%

eBERT-siam UCO +2.32% +2.13% +2.68% +2.15% +1.87% +2.36% +2.33% +2.13% +2.38% +2.28%

Table 2
Delta in precision, recall, NDCG, and MRR at 𝑘 on all the test sets for different encoder-based models
fine-tuned using NEAR2 at 64 dimensions of the entire embedding size (768).

Embedding Size Memory Usage (MB)
768 398.03
512 2.77
256 4.09
128 0.55
64 1.56

Table 3
Memory usage at different embedding sizes for eBERT-siam.

precision, NDCG and MRR. This is also true for other models such as BERT, eBERT and eBERT-UCO,
which further indicates the effectiveness of our approach for product retrieval and ranking.

To further validate our approach, we qualitatively compared some product titles retrieved with and
without NEAR2. The comparison consistently confirmed the superior performance of our method. Full
details are presented in Appendix B.

Model Dimension Precision@5 Recall@5 NDCG@5 MRR@10

eBERT-siam

768 +13.33% +11.77% +13.10% +10.20%
512 +13.35% +11.87% +13.16% +10.30%
256 +13.26% +11.68% +13.05% +10.19%
128 +13.10% +11.37% +12.80% +10.16%
64 +11.79% +9.72% +11.23% +9.06%

eBERT-UCO

768 +4.25% +4.04% +4.34% +3.50%
512 +4.27% +3.97% +4.37% +3.57%
256 +4.18% +3.83% +4.23% +3.49%
128 +3.86% +3.52% +3.97% +3.42%
64 +3.28% +2.99% +3.34% +3.03%

eBERT-siam-UCO

768 +3.85% +3.75% +3.82% +3.05%
512 +3.85% +3.72% +3.81% +3.00%
256 +3.62% +3.47% +3.61% +2.96%
128 +3.46% +3.27% +3.46% +2.96%
64 +2.75% +2.45% +2.77% +2.58%

Table 4
Delta in precision, recall, NDCG, and MRR at 𝑘 on CQ test set for different encoder-based models
fine-tuned using NEAR2 for all dimension sizes.



6. Ablation Study

To verify whether continual training using NEAR2 can help improve performance and efficiency when
models are initially trained with other losses, we conducted several experiments using eBERT and
eBERT-siam for ablation studies. First, we continued training the models using NEAR2, which have been
fine-tuned using the MNRL and OCL losses respectively to test if our approach works on each of the two
individual losses. Second, we tested training these models using the MRL loss first, and then continued
fine-tuning on the MNRL and OCL losses in a multi-task learning setting. The results are contrasted with
training without using NEAR2, which are presented as the percentage of increase (delta) in the evaluation
metrics in Table 5.

Method eBERT eBERT-siam
NDCG@5 MRR@10 NDCG@5 MRR@10

MNRL +4.26% +3.48% +2.98% +2.51%
OCL +32.09% +22.50% +25.86% +15.66%

MNRL + OCL +3.34% +3.03% +2.77% +2.58%
MRL: MNRL + OCL -3.29% -1.51% -3.26% -1.58%

Table 5
Delta in NDCG@5 and MRR@10 on the CQ test set for eBERT and eBERT-siam trained using NEAR2

on different loss functions. We continued training these models using NEAR2 at 64 dimensions of
the entire embedding size (768) after they were fine-tuned on the MNRL and OCL losses separately or
together (MNRL + OCL). We also trained them on the MRL loss first and then on the MNRL and OCL
losses (MRL: MNRL + OCL).

Our ablative results suggest that applying the nested embedding approach to training embeddings with
lower dimensions can improve performance for all models fine-tuned using the MNRL or OCL losses
for retrieval and ranking, with much obvious improvement on the models trained using the OCL loss.
However, models trained with the MRL loss first, then fine-tuned using the MNRL and OCL losses, show
slight performance degradation in terms of NDCG and MRR. This suggests that our approach is most
effective when used after training the model with an IR task loss first.

7. Conclusion and Future Work

E-commerce IR systems face the challenge of balancing accurate interpretation of complex user queries
with efficient processing of large product catalogs. To address this, we introduced NEAR2, a nested
embedding approach for efficient product retrieval and ranking. NEAR2 improves accuracy and achieves
up to 12× efficiency in embedding size and 100× smaller in memory usage during inference, without
any increase in pre-training costs. Tested across diverse datasets, including short and implicit queries
and alphanumeric queries, our method outperforms existing models with smaller embedding dimensions,
demonstrating its robustness across challenging evaluation sets, and with efficiency. Our qualitative
analysis reinforces the superior performance of our approach, demonstrating that embeddings generated
by NEAR2 models are significantly more reliable than those of baseline models when evaluated based on
similarity scores. For future work, we plan to: 1) evaluate our model performance through 𝐴/𝐵 testing
in deployment, 2) leverage internal data to refine larger decoder-based generalist embedding models like
NV-embed-v2 [22], and 3) optimize these models using our NEAR2 approach.
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alphanumeric queries, in: Proceedings of the 33rd ACM International Conference on Information
and Knowledge Management, CIKM ’24, Association for Computing Machinery, New York, NY,
USA, 2024, p. 5564–5565. URL: https://doi.org/10.1145/3627673.3679080. doi:10.1145/3627673.
3679080.

[17] F. Carlsson, A. C. Gyllensten, E. Gogoulou, E. Y. Hellqvist, M. Sahlgren, Semantic re-tuning
with contrastive tension, in: International Conference on Learning Representations, 2021. URL:
https://openreview.net/forum?id=Ov_sMNau-PF.

[18] Y. Jiang, Y. Shang, R. Li, W.-Y. Yang, G. Tang, C. Ma, Y. Xiao, E. Zhao, A unified neural network
approach to e-commerce relevance learning, in: Proceedings of the 1st International Workshop
on Deep Learning Practice for High-Dimensional Sparse Data, DLP-KDD ’19, Association for
Computing Machinery, New York, NY, USA, 2019. URL: https://doi.org/10.1145/3326937.3341259.
doi:10.1145/3326937.3341259.

[19] D. Kang, W. Jang, Y. Park, Evaluation of e-commerce websites using fuzzy hierarchical topsis
based on e-s-qual, Applied Soft Computing 42 (2016) 53–65. URL: https://www.sciencedirect.com/
science/article/pii/S1568494616300047. doi:https://doi.org/10.1016/j.asoc.2016.01.017.

[20] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: International Conference on
Learning Representations, 2019. URL: https://openreview.net/forum?id=Bkg6RiCqY7.

[21] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of ir techniques, ACM Trans. Inf. Syst.
20 (2002) 422–446. URL: https://doi.org/10.1145/582415.582418. doi:10.1145/582415.582418.

[22] C. Lee, R. Roy, M. Xu, J. Raiman, M. Shoeybi, B. Catanzaro, W. Ping, Nv-embed: Improved
techniques for training llms as generalist embedding models, 2024. URL: https://arxiv.org/abs/2405.
17428. arXiv:2405.17428.

https://doi.org/10.1145/3627673.3679080
http://dx.doi.org/10.1145/3627673.3679080
http://dx.doi.org/10.1145/3627673.3679080
https://openreview.net/forum?id=Ov_sMNau-PF
https://doi.org/10.1145/3326937.3341259
http://dx.doi.org/10.1145/3326937.3341259
https://www.sciencedirect.com/science/article/pii/S1568494616300047
https://www.sciencedirect.com/science/article/pii/S1568494616300047
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2016.01.017
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/582415.582418
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2405.17428
http://arxiv.org/abs/2405.17428


A. Additional Figures and Tables

Model Precision@𝑘 Recall@𝑘 NDCG@𝑘 MRR@𝑘
3 5 10 3 5 10 3 5 10 10

CQ test
BERT +244.88% +274.90% +296.75% +261.89% +278.42% +277.64% +230.75% +251.93% +263.34% +164.96%
eBERT +185.18% +198.72% +196.57% +204.36% +202.87% +185.80% +180.69% +191.63% +190.49% +124.19%

CQ-balanced test
BERT +261.57% +239.27% +207.46% +262.23% +239.63% +207.94% +273.74% +261.24% +245.48% +262.73%
eBERT +178.60% +151.73% +121.33% +178.84% +151.59% +121.06% +197.78% +181.60% +164.85% +186.77%

CQ-common-str test
BERT +230.82% +206.66% +171.23% +230.87% +206.58% +171.61% +238.59% +226.38% +210.68% +226.68%
eBERT +148.89% +125.23% +98.80% +148.64% +125.10% +98.64% +167.57% +154.43% +141.09% +160.48%

CQ-alphanum test
BERT +176.19% +202.04% +215.87% +177.55% +199.48% +201.58% +164.68% +181.94% +188.90% +117.16%
eBERT +160.04% +176.97% +181.05% +161.56% +170.52% +165.06% +152.21% +163.12% +164.35% +104.15%

Table A.1
Delta in precision, recall, NDCG, and MRR at 𝑘 on all the test sets for BERT and eBERT fine-tuned using
NEAR2 at 64 dimensions of the entire embedding size (768).

Model Dimension Precision@5 Recall@5 NDCG@5 MRR@10

BERT

768 +286.80% +296.32% +265.40% +170.99%
512 +287.11% +296.11% +265.57% +171.13%
256 +286.80% +295.49% +264.91% +170.52%
128 +284.27% +291.95% +262.16% +169.54%
64 +274.90% +278.42% +251.93% +164.96%

eBERT

768 +192.17% +197.60% +185.11% +119.88%
512 +192.41% +197.45% +185.24% +120.00%
256 +192.17% +196.98% +184.72% +119.50%
128 +190.26% +194.32% +182.58% +118.71%
64 +183.19% +184.16% +174.59% +114.99%

Table A.2
Delta in precision, recall, NDCG, and MRR at 𝑘 on CQ test set for BERT and eBERT models fine-tuned
using NEAR2 for all dimension sizes.

B. Detailed Qualitative Analysis

To understand the performance improvements of our approach compared to existing models, we conducted
a qualitative analysis using examples from the CQ test set. Specifically, we generated inferences for
all instances in the CQ test set with eBERT and eBERT-siam4 using or not using the NEAR2 approach
at a dimension size of 64 (NEAR2@64). For each query, we retrieved the top 10 product titles and
ranked them based on their cosine similarity scores. To evaluate real-world performance, we selected two
representative queries: one short and implicit query and one long and detailed query. These examples
provided insights into how our approach performs relative to eBERT or eBERT-siam in practical scenarios.

Short and Implicit Query Table B.1 illustrates the retrieved titles, their rankings (from 1 to 10), and
their normalized5 similarity scores for the short and implicit query “plants” with eBERT. Based on the
gold label, the expected product title should include “potted plants”. For the model using NEAR2@64, all
retrieved product titles contained relevant keywords such as “plant” or “pot”, along with detailed product
descriptions. In contrast, the titles retrieved by the model without using NEAR2@64 were significantly
shorter, with many lacking the keyword “plant” and some, such as “coins”, being entirely irrelevant to the

4We mainly analyze results from eBERT. Results from eBERT-siam can be seen in Tables B.3 and B.4.
5Against the minimum value.



Method Retrieved Title Ranking Sim_Score𝑁𝑜𝑟𝑚

NEAR2@64

Philodendron Micans Rooted Cutting Trailing House Plant Cuttings Rare Plants 1 0.3935
Tillandsia Mix 5 Plants Indoor Air Plant for House Vivarium Terrarium 2 0.3880

Big leaf philodendron pink princess plant cutting 1 leaf cutting 3 0.3760
2 NEON PINK SALVIA PLANT PERENNIAL SAGE HIGHLY FRAGRANT 4 0.3725

Spathiphyllum Peace Lily Indoor Plants 1 x Potted Lily House Plant 9cm Pot 5 0.3693
Cissus Discolor aka Rex Begonia Vine 6 inch pot 6 0.3687

3 Plant 4 Pots Great Houseplant Assorted Rex Begonia Easy to grow housepl 7 0.3684
PHILODENDRON MELANOCHRYSUM VERY LARGE 25 3 FEET TALL STUNNING PLANT 8 0.3679

Spathiphyllum Peace Lily House Plant Live Indoor House Potted Tree In 9cm 9 0.3620
PHILODENDRON PINK PRINCESS LARGE PLANT IN 15CM POT HOUSE PLANT 10 0.3593

W/o NEAR2@64

Avocado plant 1 0.0604
coins 2 0.0520

Begonia Butterfly 3 0.0494
drinks cabinet 4 0.0487

Eucalyptus tree 5 0.0483
portfolio landscape lights 6 0.0479

Nico the marble index 7 0.0469
car assessories 8 0.0468
Begonia Curly Q 9 0.0465

Houseplant and Pot Package 10 0.0454
Gold label Aloe Vera Plant - Large Plant in Pot / /

Table B.1
Retrieved titles for the short and implicit query “plants” using or not using NEAR2@64 on eBERT.

query. Notably, the normalized similarity scores from without using NEAR2@64 are much lower than
those of using NEAR2@64, which is responsible for those irrelevant titles retrieved. This highlights the
unreliability of the similarity scores from models without using NEAR2.

Method Retrieved Title Ranking Sim_Score𝑁𝑜𝑟𝑚

NEAR2@64

Vintage 925 Sterling Silver Fiery Boulder Opal Ring Uk Size P 1 0.3561
Sterling Silver 925 Signed Opal Heart Pendant Necklace 19 Chain 2 0.3406

Vintage Possibly Opal Pendant On Gold Tone Necklace Chain 3 0.3376
Ethiopian OPAL 083 carat sterling silver solitaire pendant 4 0.3373

Vintage Ring White Opal Fire Lustre Genuine Natural Gems Sterling Silver Size L 5 0.3347
Australian Triplet Opal Gemstone 925 Sterling Silver Handmade Ring All Size 6 0.3342

Moonstone Opal Pendant 925 Sterling Silver Necklace Earring Women Jewellery Gift 7 0.3314
Green Triplet Fire Opal Peridot 925 Sterling Silver Jewelry Pendants 27 v957 8 0.3283

Gemporia Mosaic Opal White Topaz Sterling Silver Pendant Aggl98 9 0.3144
Coober Pedy Semi Black Opal pendant 094 carats 179 grams of 925 Sterling Sil 10 0.3125

W/o NEAR2@64

GENUINE 9ct gold gf garnet hoop earringsPacked full of dazzling stones 7b Y64 7d 1 0.0973
GENUINE 9ct gold gf garnet hoop earringsPacked full of gemstones 7b Y64 7d 2 0.0965

Large Vintage Sterling silver cabochon amethyst garnet pendant chain 155g 3 0.0929
Gold diamante encrusted large round pendant 80 cm long chain rope necklace 4 0.0925
Vintage 70s sterling silver and oval amethyst pendant and 925 chain necklace 5 0.0919
9ct yellow gold reversible small crystal puffy love heart pull through earrings 6 0.0918

CLASSIC 9ct Gold gf Aquamarine hoop earringsTRULY STUNNING EARRINGS 7b J067 7d 7 0.0917
STUNNING 9ct Gold Opal toe ring gf WHILE STOCKS LAST DONT MISS 7b TO88 7d 8 0.0915

Vintage Art Nouveau style sterling silver 925 and onyx stone scroll leaf brooch 9 0.0914
Brand new set of two pair of earrings one butterfly one little girlin a gift box 10 0.0911

Gold label 925 Sterling Silver Red Coral Gemstone Handmade Jewelry Vintage Pendant S120 / /

Table B.2
Retrieved titles for the long and detailed query “925 sterling silver triplet opal gemstone
jewelry vintage pendant s-1.20” using or not using NEAR2@64 on eBERT.

Long and Detailed Query Table B.2 presents the retrieved titles, their rankings, and their normalized
similarity scores for the long and detailed query “925 sterling silver triplet opal gemstone jewelry vintage
pendant s-1.20” with eBERT. Given the specificity of the query, even using the exact gold label title did
not yield the exact product on eBay. However, the model using NEAR2@64 retrieved similar products,
as shown in Figure B.1(b). In contrast, the products retrieved using top-ranked title from eBERT without
NEAR2@64, shown in Figure B.1(c), were significantly less relevant compared to those retrieved using
the gold label title in Figure B.1(a). These results further demonstrate the effectiveness of NEAR2@64.
As with the short query example in Table B.1, normalized similarity scores from eBERT without using
NEAR2@64 are much lower than those using NEAR2@64, further underscoring its limitations.



(a) Products retrieved using the gold label title.

(b) Products retrieved using the first title from NEAR2@64.

(c) Products retrieved using the first title from eBERT without NEAR2@64.

Figure B.1: Products retrieved on eBay using the gold label title (a), the top one title from eBERT using
NEAR2@64 (b) and eBERT not using NEAR2@64 (c) for the query-title pairs in Table B.2.

Performance Disparity To investigate the root cause of performance disparity, we plotted the
distribution of original similarity scores based on eBERT for all retrieved query-title pairs in the CQ test
set, as shown in Figure B.2. The scores from the model using NEAR2@64 are well-distributed between
0.5 and 1.0, reflecting nuanced relevance evaluations. In contrast, scores from eBERT without using
NEAR2@64 are clustered between 0.9 and 1.0, with most query-title pairs assigned a score near 0.95.
This uniform distribution suggests that eBERT fails to effectively differentiate between relevant and
irrelevant titles, leading to poor ranking performance. These findings further validate the superiority of
NEAR2@64 in the evaluation metrics for product retrieval and ranking tasks.

For product titles retrieved by eBERT-siam, whether for the short, implicit query or the long, detailed
query, the differences in appearance between using and not using NEAR2@64 are less pronounced
compared to those observed with eBERT. However, the similarity scores still show a notable distinction.
As illustrated in Figure B.3, the model using NEAR2@64 produces scores that are well-distributed
between 0.45 and 1.0. In contrast, the scores from the model without this approach are more tightly
clustered between 0.65 and 1.0, with the majority of query-title pairs receiving scores between 0.75 and



Figure B.2: Similarity score distribution for embeddings from models using vs not using NEAR2@64
with eBERT on the CQ test set.

0.9. These results are consistent with the findings from the eBERT model.

Figure B.3: Similarity score distribution for embeddings from models using vs not using NEAR2@64
with eBERT-siam on the CQ test set.



Method Retrieved Title Ranking Sim_Score𝑁𝑜𝑟𝑚

NEAR2@64

CRAZY DAISY Shasta daisies Qty 2 PLANTS Hardy Perennial Healthy plants 1 0.3967
CRAZY DAISY Shasta daisies Qty 2 x Hardy Perennialhealthy plants 2 0.3824

Streptocarpus MKsArktur09 young plant 3 0.3822
Spathiphyllum Peace Lily Indoor Plants 1 x Potted Lily House Plant 9cm Pot 4 0.3731

Houseplant and Pot Package 5 0.3723
Spathiphyllum Peace Lily House Plant Live Indoor House Potted Tree In 9cm 6 0.3710

Boston FernLive 10 Plants Lots Of Roots Air Purifier Reptile Terrarium ORGANIC 7 0.3696
1 x CRAZY DAISY Shasta daisies Hardy Perennial Healthy plant 8 0.3671

Leucanthemum Crazy Daisy Middleton Nurseries Flowering hardy Plants 9 0.3642
Syngonium White Butterfly Arrowhead Goose Foot Plant House Plant Easy Care 10 0.3640

W/o NEAR2@64

Houseplant and Pot Package 1 0.2665
Spathiphyllum Peace Lily Indoor Plants 1 x Potted Lily House Plant 9cm Pot 2 0.2425
Spathiphyllum Peace Lily House Plant Live Indoor House Potted Tree In 9cm 3 0.2417

Cordyline Kiwi Ti Plant 7c Best Indoor Plants 7c Colourful 3040cm Potted Plant 4 0.2349
68 Live Snake Plant Sansevieria Trifasciata Two Plants 5 0.2341

Leucanthemum Crazy Daisy in plant in 13cm pot approx 6 0.2338
Multi Listing Pond Plants Marginal Plants Water Bog Garden Oxygenator SALE 7 0.2317

12 Succulent Flowers not Included Pots 12 Pcs 12 Fashion Practical 8 0.2267
Avocado plant 9 0.2255

3CM Succulent Cactus Live Plant Copiapoa Tenuissima Chile Home Garden Rare Plant 10 0.2239
Gold label Aloe Vera Plant - Large Plant in Pot / /

Table B.3
Retrieved titles for the detailed query “plants” using or not using NEAR2@64 on eBERT-siam.

Method Retrieved Title Ranking Sim_Score𝑁𝑜𝑟𝑚

NEAR2@64

Moonstone Opal Pendant 925 Sterling Silver Necklace Chain Womens Jewellery Gifts 1 0.3934
Green Triplet Fire Opal Peridot 925 Sterling Silver Jewelry Pendants 27 v957 2 0.3814

Moonstone Opal Pendant 925 Sterling Silver Necklace Earring Women Jewellery Gift 3 0.3664
Sterling Silver 925 Signed Opal Heart Pendant Necklace 19 Chain 4 0.3500

Vintage Possibly Opal Pendant On Gold Tone Necklace Chain 5 0.3337
Triplet Fire Opal Peridot Gemstone 925 Silver Jewelry Necklace 18 AQ269 6 0.3309

BULK LOT Vintage 925 Silver Costume Jewellery Gemstones Opal Cloisonne Etc 7 0.3227
Ethiopian Opal 925 Sterling Silver Choker Necklace Women Gemstone Jewelry Gift 8 0.2829

Yellow Triplet Fire Opal Citrine 925 Sterling Silver Jewelry Earrings 21 s558 9 0.2691
Blue Opal Pendant 925 Sterling Silver Minimalist Necklace Gift for Girlfriend 10 0.2688

W/o NEAR2@64

Vintage Possibly Opal Pendant On Gold Tone Necklace Chain 1 0.2615
Green Triplet Fire Opal Peridot 925 Sterling Silver Jewelry Pendants 27 v957 2 0.2561

Moonstone Opal Pendant 925 Sterling Silver Necklace Chain Womens Jewellery Gifts 3 0.2558
Triplet Fire Opal Peridot Gemstone 925 Silver Jewelry Necklace 18 AQ269 4 0.2505

Moonstone Opal Pendant 925 Sterling Silver Necklace Earring Women Jewellery Gift 5 0.2475
Sterling Silver 925 Signed Opal Heart Pendant Necklace 19 Chain 6 0.2472

GemporiaGems TV Sterling Silver 157ct Ethiopian Blue Opal Pendant Necklace 7 0.2448
NWT GEMPORIA GEMS TV AUSTRALIAN OPAL STERLING SILVER PENDANT 8 0.2381

Vintage 925 Silver Opal Ring size J 9 0.2360
Australian Triplet Opal Gemstone 925 Sterling Silver Handmade Ring All Size 10 0.2270

Gold label 925 Sterling Silver Red Coral Gemstone Handmade Jewelry Vintage Pendant S120 / /

Table B.4
Retrieved titles for the detailed query “925 sterling silver triplet opal gemstone jewelry vintage
pendant s-1.20” using or not using NEAR2@64 on eBERT-siam.
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