
Ad Ranking for Walmart Display Ads System
Fan Yang∗, Weijie Yuan, Nahid Anwar, Fangping Huang, Braden Huffman, Lichun Chen,
Konstantin Shmakov, Sunil Goda, James Jung, Niranjana Moleyar, Xiaobo Peng,
Kuang-chih Lee and Musen Wen

Walmart Inc., USA

Abstract
Walmart’s Artemis initiative, which establishes an in-house advertising (ad) platform, holds significant business
implications aligned with Walmart’s mission to enable customers to save money and live better. By introducing
auction-based pricing mechanisms for ad impressions, suppliers seek to connect customers with pertinent
display and video advertisements can specify their desired price per impression across Walmart’s owned-and-
operated properties as well as third-party sites. A critical challenge in developing this system is to ensure that
the ads displayed on our platform are relevant to users. In this paper, we present our first ever endeavor to
build an in-house demand-side platform (DSP) ad ranking system within Walmart. We outline our iterative
approach to enhancing ad relevance, thereby improving user engagement by catering to user intent and needs,
while simultaneously assisting advertisers in achieving their advertising objectives and maximizing return on
investment.

Keywords
DSP, XGBoost, Airflow, DAG, click-through-rate, conversion-rate, Deep Ranker

1. Introduction

Demand-side platform (DSP) advertising has become increasingly popular in recent years due to its
ability to streamline advertising process for both advertisers and publishers. DSPs enable advertisers to
purchase advertising inventory across various platforms, including display, video, mobile, and social
media, all through a single interface. Leveraging advanced targeting and optimization algorithms,
DSPs facilitate advertisers in reaching their intended audiences with enhanced precision and efficiency,
while also generating valuable data-driven insights to inform and refine future advertising campaign
strategies.
Prior to implementing an in-house demand-side platform system, Walmart relied on third-party

platforms, such as Google and TradeDesk, to connect advertisers with their target audiences on the
Walmart website. However, these off-the-shelf DSP solutions were neither optimized for Walmart’s
specific e-commerce requirement nor cost-effective. Consequently, Walmart initiated the development
of a customized DSP system designed to better address its distinct advertising needs through the
incorporation of tailored data logic. In this paper, we detail the experiments and advancements
conducted over the past two years in pursuit of creating this novel system. Although further progress
remains necessary, our aim is to offer valuable insights and perspectives derived from our experience in
developing this sophisticated, custom-built system.

Specifically, we (1) highlight the key features and data sources incorporated into the system in section
3.1; (2) discuss the details of our core ranking model components in section 3.2; (3) illustrate engineering
infrastructure and training pipeline we developed to build the model, as well as operational excellence
in section 3.3; (4) present a series of experiments we conducted and their results, in order to drive the
system performance, particularly focus on feature engineering in section 4 and 5. Through this paper,

SIGIR eCom’25: 2025 SIGIR Workshop on eCommerce, July 17, 2025, Padua, Italy
∗Corresponding author.
Envelope-Open fan.yang0@walmart.com (F. Yang); weijie.yuan@walmart.com (W. Yuan); nahid.anwar@walmart.com (N. Anwar);
fangping.huang@walmart.com (F. Huang); braden.huffman@walmart.com (B. Huffman); lichun.chen@walmart.com
(L. Chen); konstantin.shmakov@walmart.com (K. Shmakov); sunil.goda@walmart.com (S. Goda); james.jung@walmart.com
(J. Jung); niranjana.moleyar@walmart.com (N. Moleyar); xiaobo.peng@walmart.com (X. Peng); kuangchih.lee@walmart.com
(K. Lee); musen.wen@walmart.com (M. Wen)

Copyright © 2025 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

mailto:fan.yang0@walmart.com
mailto:weijie.yuan@walmart.com
mailto:nahid.anwar@walmart.com
mailto:fangping.huang@walmart.com
mailto:braden.huffman@walmart.com
mailto:lichun.chen@walmart.com
mailto:konstantin.shmakov@walmart.com
mailto:sunil.goda@walmart.com
mailto:james.jung@walmart.com
mailto:niranjana.moleyar@walmart.com
mailto:xiaobo.peng@walmart.com
mailto:kuangchih.lee@walmart.com
mailto:musen.wen@walmart.com
https://creativecommons.org/licenses/by/4.0/deed.en

we aim to provide insights into the challenges encountered while developing a custom DSP system
from scratch, as well as describe the innovative solutions implemented to address these challenges.
Furthermore, we outline a road-map for future work, identifying potential next steps aimed at further
enhancement and optimization of the proposed system.

2. Background

In advertising technology, DSP systems are used by advertisers to bid for ad space [1, 2]. In our context,
the platform is the Walmart website, and advertisers are companies involved in selling products ranging
from dog food to children’s toys. Specifically, if a user is on a page with a particular context, for example
searching for orange juice, it would be relevant to suggest associated items based on the user’s location
and past behavior. Figure 1 shows an example of current display ads location on the Walmart website
and how it is different from sponsor ads and organic search results.

Figure 1: Display Ads, Sponsor Ads and Organic Search Results Locations on Walmart Website

Determining how to rank candidate ads that ensure relevance to users is key to all stakeholders’
success in the ads-ecosystem, as it directly influences both user engagement experiences and advertiser
business objectives. Additionally, showing relevant ads to user also helps boost the Walmart platform’s
long term success. Displaying too many irrelevant ads can be a short term win but a long term loss since
users may become dissatisfied and either leave or get “ads blindness”. An ideal ranking methodology
should strive to maximize user engagement as well as advertiser’s return on investment (ROI). Here, we
adopted first price auction and charged advertiser based on impression served. Currently, the ranking
formula within Walmart’s in-house Artemis system is calculated by multiplying the engagement score
by the bid price, as highlighted by the dark green color in Figure 2. As a result, to accurately predict each
user’s engagement score plays a decisive role for the whole Artemis system. Our team’s responsibilities
span across the engagement prediction and bid price generation. However, due to the scope limitation
of this paper, we will focus exclusively on our efforts related to engagement prediction.

3. Implementation

In this section, we detail our implementation approach from multiple perspectives, including the data
and features used in modeling, the modeling framework and techniques employed, and operational

Figure 2: Overview of the Walmart in-house DSP Artemis Architecture

excellence considerations.

3.1. Data and Features

Given the highly imbalanced nature of engagement data, significant care was taken to ensure that our
model did not become biased towards the majority class [3]. As commonly observed in click-through
rate (CTR) prediction tasks, the number of click events is substantially smaller than non-click events.
To address this issue, we employed down-sampling to the negative class (non-click events) and assigned
greater weight to the minority class (click events) relative to the majority class during the model training
process. We are using simple random downsamping at current stage, but are also actively exploring
other options like aggregated and cluster sampling.

We will now discuss the features utilized by our model. Figure 3 illustrates the set of features currently
employed in our modeling framework. These features generally fall into the following categories.

Figure 3: Overview Of Features Used in the Model

The first category consists of supply-side features, like adLocation, deviceType, platform etc.
Another category encompasses request-side features like zipcode, time of the day, day of week
etc. For example, we have three adLocations: Skyline, Marquee and Brandbox on Walmart website. It
helps us mitigate the potential position bias issue by adopting the adLocation feature.

Reformatting the Ad Taxonomy path by breaking up its representation into words which enabled
the creation of one of our crucial features categories: the Taxonomy Score. This score is calculated
as the Jaccard similarity [4] between the Page Taxonomy Path (representing the current user’s path)
and the Ad Taxonomy Path (representing the candidate ad category to be displayed to the user). The
reason why we chose Jaccard similarity is mostly due to its fast computation, especially during run-time
serving. Upon investigating feature importance, we identified this Taxonomy Score as a particularly
significant feature, as it can provide essential relevancy measures connecting the user’s current page
context to candidate advertisements.

Historical ad performance provides valuable guidance for predicting future performance. Therefore,
we introduced ad engagement features into our model, such as the 30-day average click-through
rate (ctr_30d) and the 7-day average click-through rate (ctr_7d), calculated at multiple granularities
including advertiser, campaign, creative, and line-item levels. As these features are unavailable at
runtime, we need to pre-process them which is illustrated in the right part of the Figure 3. The pre-
computed feature data is then stored in two copies: one copy is saved to a Google Cloud Storage (GCS)
[5] bucket for offline training data integration, and the other copy is ingested into an online Cassandra
database [6] to facilitate rapid feature retrieval during runtime.
Additionally, we incorporate user-level features such as gender and age. We are currently em-

phasizing on adding more of this category of features, as our analyses indicated that incorporating
user-specific attributes significantly enhances the targeting capability of our advertisements, allowing
us to reach more relevant users. Further details regarding our exploration and utilization of user features
are presented in the case study section.
Finally, we introduced additional pairwise features, such as the duration of time spent by each user

in various top-level departments, and the frequency with which each user visited pages within level 1
product-type categories on Walmart’s website over the past 30 days. Leveraging these cross features
between users and advertised items enables us to uncover user preferences more effectively and generate
more personalized ad recommendations based on historical user behavior. Our subsequent analysis
of feature importance confirmed that incorporating these pairwise interaction features significantly
enhances prediction accuracy and ad targeting effectiveness.

3.2. Model Framework

The primary model architecture employed for our custom DSP is based on XGBoost [7]. This solution
was selected due to its speed, reliability, and track record of success. Additionally, XGBoost is already
utilized by the Sponsored Products (SP) section of Walmart’s AdTech division, making it a natural
choice for our application. By leveraging XGBoost, we constructed a powerful and adaptable model
capable of delivering valuable insights for optimizing campaign performance.

To simply demonstrate the algorithm of XGBoost. The objective function at iteration t that we need
to minimize is the following:

ℒ (𝑡) =
𝑛
∑
𝑖=1

𝑙 (𝑦𝑖, ̂𝑦 (𝑡−1)𝑖 + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) (1)

Where 𝑙 is a function of CART learners, a sum of the current and previous additive trees. Ω(𝑓𝑡) is
the regularization at iteration 𝑡. Basically, at iteration 𝑡, we need to build a learner that achieves the
maximum possible reduction of loss. In practice, the steps to build the next learner are:

• Start with a single root node (containing all the training examples).
• Iterate over all features and their respective values, evaluating the loss reduction for each possible
split.

• The gain for the best split must be positive and greater than the min_split_gain parameter;
otherwise, we stop growing the branch.

Furthermore, due to our strategy of down-sampling negative data points, calibration techniques
[8] were applied after XGBoost modeling to produce output scores that more accurately represent the

true likelihood of events (clicks or conversions, in our case) and are easier to interpret by subsequent
optimization systems. Among several widely adopted calibration approaches, we selected isotonic
regression, a non-parametric method [9]. Unlike common techniques such as Platt scaling, which
assumes a logistic relationship, isotonic regression does not impose any predefined functional form.
Additionally, isotonic regression preserves the monotonic relationship between predicted scores and
actual probabilities which is a very essential characteristic for ad-ranking models. In simple words,
calibration through isotonic regression does not alter the original ranking of impressions provided by
the XGBoost model.

To demonstrate the algorithm of isotonic regression, let us assume (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) be a simplified
representation of a given set of observations, where 𝑥𝑖 is the raw probability from XGBoost and 𝑦𝑖 is the
ground truth label. Isotonic regression seeks a least-squares fit ̂𝑦𝑖 for all 𝑖, subject to the constraint that
̂𝑦𝑖 ≤ ̂𝑦𝑗 whenever 𝑥𝑖 ≤ 𝑥𝑗. Formally, the isotonic regression objective can be represented as follows:

min
𝑛
∑
𝑖=1

(̂𝑦𝑖 − 𝑦𝑖)2

s.t. ̂𝑦𝑖 ≤ ̂𝑦𝑗 for all (𝑖, 𝑗) ∈ 𝐸,where 𝐸 = {(𝑖, 𝑗) ∶ 𝑥𝑖 ≤ 𝑥𝑗}
(2)

Models developed by data scientists have traditionally been integrated into engineering systems
through manual processes. Specifically, data scientists construct models using Jupyter notebooks hosted
on Google Cloud Platform’s (GCP) Dataproc environment. These models are rigorously evaluated and
validated using offline performance metrics, typically ROC-AUC and PR-AUC scores [10, 11, 12].

Once a model achieves satisfactory performance, a corresponding MLEAP bundle is generated to
facilitate integration into production systems [13]. MLEAP is a widely adopted tool in the industry,
offering a range of benefits. Using MLEAP, data scientists can construct a comprehensive ‘pipeline’
consisting of multiple steps, allowing for complex transformations of the raw features, for example,
preprocessing the input features, executing custom transformations, running machine learning models
such as XGBoost, and converting the raw probability scores to produce well-calibrated predictions.
By providing a standardized, repeatable process for building and deploying models, MLEAP helps
streamline the integration of data science models into engineering systems.

A crucial feature of MLEAP is its capability to serialize model pipelines into deployable bundles. Once
generated, these bundles can be utilized by engineering teams to instantiate Java or Python objects
capable of delivering real-time predictions during runtime. PySpark/MLEAP bundles are optimized for
computational efficiency, establishing them as a reliable and widely adopted industry standard. This
approach facilitates faster prediction serving and enhances the seamless integration of data science
models within engineering frameworks. An overview of our XGBoost-based PySpark/MLEAP model-
building process is presented in Figure 4.
Our current MLEAP-XGBoost model is effective at using categorical contextual features, numeric

historical engagement features as well as other low dimensional data; however, we are currently
exploring high dimensional representations of both users and advertisements. XGBoost has limitations
when working with this high dimensional data. To combat this, we’ve begun exploring different deep
learning models. We tested simple multi-layer perceptron, as well as Wide and Deep architecture and
DeepFMx architecture [14]. The initial results are on par with the current production model even
without embedding features. With intensive feature engineering and embedding features to kick in at
near future, we are confident that the deep learning model will beat XGBoost in performance.

Currently, we are supporting four types of engagement: impressions, views, clicks and conversions.
Views, clicks and conversions each requires individual models, each packaged as MLEAP bundles, while
impressions always have an engagement score of 1. We are only passing adrequest to one of the three
aforementioned models for engagement scoring due to infrastructure cost-effectiveness considerations
as well as serving latency constraints.
In order to utilize embedded features as well as provide three simultaneous engagement scores, we

are developing a multi-task deep learning ranker with an MMoE architecture [15, 16]. Unlike our
XGBoost models, we store our deep learning models in model.onnx files. We then serve the loaded deep

Figure 4: Overview of Model Building Framework

learning model in a Triton environment [17].

3.3. Model Automation and Operational Excellence

Although manually building model bundles in notebooks is feasible, this approach may lack scalability.
To enhance our processes and improve efficiency, we developed an Airflow Directed Acyclic Graph
(DAG) for model training, evaluation, and promotion [18]. This automation ensures consistent and
reliable execution of these tasks. Airflow extends traditional scheduling tools like crontab by offering
capabilities such as resource allocation, a user-friendly interface for monitoring logs and job execution
histories, and task scheduling.

Models are trained on daily basis using the most recent data and subsequently saved to a GCS bucket.
The engineering team retrieves these updated models and creates the corresponding Java objects used
for real-time predictions. The engineering system handles feature extraction from relevant ads and
passes these features to the model, generating probability outputs used for ad-ranking decisions.

To enhance our Airflow job monitoring, we integrated our workflows with Hubot and implemented
customized logging. These enhancements enable direct transmission of specific model metrics to a
dedicated Slack channel which made monitoring and debugging much easier.

Recently, collaboration with our machine learning infrastructure team led to the Airflow DAG devel-
opment process becoming more efficient. The machine learning infrastructure team integrates most
of the features mentioned above into one single unified platform which is called model automation
framework (MAF). MAF facilitates streamlined on-boarding of new models, training old models with
updated configurations, triggering new run to refresh model artifacts, inspecting model metrics, and as-
sessing feature coverage, significantly improving the efficiency of our model deployment and promotion
processes.

4. Case Study

Our efforts to boost system performance have focused on two primary areas: model innovation and
feature innovation. For the purpose of this paper, we focus on our advancements related to feature

innovation in this section.

4.1. Click Model User Feature

Previously, our models incorporated ad-side engagement features, which measured how different users
interacted with a particular ad, for instance, metrics such as the total number of impressions or the
ad’s average click-through rate (CTR). These ad-centric features contributed significantly to model
performance and ranked prominently in feature importance analyses. Extending this approach, we
subsequently examined another critical dimension influencing ad engagement: user past behavior.
Figure 5 illustrates the calculation methodology for these user features. Specifically, we aggregated

each user’s interactions with Walmart’s display ads over the previous 7-day and 30-day periods, gener-
ating summary metrics such as total impressions, views, clicks, and conversions, along with derived
ratios including view rate, click-through rate (CTR), and conversion rate (CVR). These newly created
user-level features were subsequently combined with existing production features for offline evaluation.
In our offline simulation, we observed a relative lift of 3% in ROC-AUC performance, as shown in Table 2.
Motivated by these promising results, we proceeded to deploy these features in production.

Figure 5: User Engagement Generation and Offline Evaluation Process

Table 1
User Engagement Feature Offline Evaluation Results

Metric
Baseline (Current Baseline + Baseline + Relative

Production Features) Past 7d Features Past 7d/30d Features Lift

ROC-AUC 0.9000 0.9140 0.9272 3.02%
PR-AUC 0.10000 0.11004 0.16116 61.16%

Note: Metric values have been shifted by additive deltas for anonymization. Relative improvements (Lift) remain
unchanged.

The primary challenge in deploying this feature to production lies in efficiently managing the high
volume of user-level features at scale for both offline and online environments. Since, Walmart E-
commerce observes more than 30 million unique users daily; therefore, efficiently generating hundreds
of millions of offline training data records, along with handling online serving queries within tens of
milliseconds, necessitates sophisticated system architecture and best engineering practices. Through

multiple iterations and explorations, we developed a scalable user-feature architecture by leveraging
existing infrastructure components capable of addressing these demanding requirements.

At first, data scientists provide prototype user-feature aggregation queries to the Feature Management
Service (FMS) team. FMS refines these queries into production-quality code and subsequently stores the
aggregated features in both offline and online feature stores. Offline features are integrated with current
production features to form updated offline training datasets. For online feature serving, we utilize
the User Profile Service (UPS), a newly developed dedicated system at Walmart designed explicitly for
handling high-throughput, low-latency queries. Further details regarding feature development and
serving are depicted in Figure 6.

Figure 6: Offline/Online Serving orchestration for User Feature in Artemis System

Our subsequent A/B tests confirmed significant improvements in terms of AUC after incorporating
these user engagement features. These results will be discussed further in the next section.

4.2. Conversion Model Prediction Spread Improvement with User Feature

In the initial iterations of the conversion model, user-specific features were not incorporated, resulting in
challenges related to the concentration of predicted probability scores. Specifically, the model produced
nearly identical conversion probabilities for certain line items, despite variations across dimensions
such as zip code, time of day, and ad location.

Upon deeper analysis of feature distributions and XGBoost feature importance, we identified the root
cause of this issue: the primary predictive engagement features, calculated at various granularities,
remained constant throughout each day due to their daily update schedule. Additionally, another
significant category of features—relevancy scores—often exhibited values at or near zero for these
problematic line items. This feature distribution consequently caused predicted scores to cluster around
a single point or within a small range.

To resolve this issue, incorporating user-level features emerged as a natural solution, aligning closely
with the ranking system’s core objective: selecting ads tailored to user preferences while maximizing
platform profitability at the same time. By integrating user-specific features such as the amount of time
spent in various departments and user visit frequency within different product categories, the model
became more adept at identifying ads most likely to attract user interest and drive clicks or conversions.
Following the successful integration and offline evaluation of these user-level time-spent and visit-

frequency features, as detailed previously in section 4.1, we observed a significant mitigation in pre-

diction score concentration, resulting in a more varied and discriminative prediction distribution.
Additionally, recent enhancements, including the integration of further user engagement and brand-
category features, have further improved model performance, aligning with the strategies discussed
earlier in section 4.1.

Table 2
User Engagement Feature and Brand Category Affinity Feature Offline Evaluation Result

Metric
Baseline (Current Baseline + User Engagement Features Relative

Production Features) + Brand Category Affinity Features Lift

ROC-AUC 0.90000 0.90216 0.24%
PR-AUC 0.15000 0.16133 7.55%

Note: Metric values have been shifted by additive deltas for anonymization. Relative improvements (Lift) remain
unchanged.

It is important to note that enhancing the performance of the conversion model, particularly with
respect to evaluation metrics, is inherently more challenging. One contributing factor is that the existing
production conversion model incorporates a broader set of features compared to the click model, such
as ad conversion engagement metrics and user visit frequency. Given that the current conversion model
has already achieved a high AUC, achieving further incremental improvements becomes increasingly
difficult.
Furthermore, producing prediction scores with greater variance provides significant benefits to

downstream optimization systems by facilitating clearer distinctions among candidate ads, thus enabling
more effective decision-making when selecting advertisements with the highest potential value.

5. EXPERIMENTATION

This section presents the outcomes of our online A/B experiments designed to evaluate the effectiveness
of newly introduced user-level features in both click and conversion models. We report performance
improvements across key metrics, including click-through rate (CTR), conversion rate (CVR), and return
on ad spend (ROAS), based on production-scale testing on Walmart’s internal platform.

5.1. Result of Click Model User Feature

The A/B test was conducted usingWalmart internal testing platform, known as “EXPO”. The experiment
was conducted on the ad request session level. During ad serving, each user was randomly assigned
to either a control or a variant group based on user ID hashing. Additionally, the Ads Serving team
recorded a session-specific SPA ID to facilitate traffic identification during experiment analysis.
Our core success metric for this experiment was the empirical click-through rate (eCTR). We also

monitored various guardrail metrics such as cost-per-click (CPC), cost-per-thousand impressions (CPM),
total ad spend, and fill rate to ensure overall system health.

The experiment initially began with traffic allocations of 1% each for the control and variant buckets,
subsequently increasing to 10%, 33.3%, and ultimately 50%. At each stage, statistically significant lifts in
eCTR were observed. 10% relative eCTR lift was observed at full test traffic (50% control group vs. 50%
experiment group) at 99% confident interval. Encouraged by these positive outcomes, the feature was
launched into production. Post-launch monitoring has consistently demonstrated an upward trend in
system-wide eCTR, achieving over 5% relative lift.

5.2. Result of Conversion Model

Conversion model A/B testing follows the same logic and procedure as described in section 5.1, with
the control variant representing a nearly random assignment of auction winners. Upon deployment,

the conversion optimization model demonstrated substantial performance improvements across key
metrics, including up to a 7-times increase in the number of conversions, a 6-times increase in sales
revenue, a 2-4 times improvement in empirical conversion rate (eCVR), and a 2-times enhancement in
return on ad spend (ROAS) for 13 of the 17 tested campaign lines.
For the remaining 4 out of 17 under performing low-conversion campaign, the model either suffers

from score concentration issue or inherently low conversion propensity. The former issue was addressed
using the strategies outlined previously in section 4.2. For campaigns inherently resistant to conversion
optimization, we implemented a conversion threshold criterion, requiring lines to accumulate a sufficient
number of conversions before qualifying for conversion-based optimization. This threshold ensures that
conversion optimization is applied effectively. We acknowledge that campaigns with limited historical
conversions may not benefit from optimization regardless of model sophistication.

6. Future Direction

The development of Walmart’s new in-house DSP model has provided a robust foundation upon which
several promising areas for future exploration have emerged, particularly centered around advanced
model architectures and further automation of pipelines.
A key area of interest moving forward is the integration and rigorous evaluation of deep learning-

based ranking models (also known as Deep Rankers). Given the complex, sparse, and nonlinear nature
of user-ad interactions, deep learning architectures, such as DeepFM, Wide & Deep, and xDeepFM
[14, 19, 20], could offer substantial promise. These models generally excel at capturing intricate patterns,
latent interactions, and higher-order feature relationships, potentially delivering significant predictive
accuracy improvements. Future work will involve deploying and thoroughly evaluating these deep
architectures via extensive online A/B testing to quantify their incremental benefits and assess their
computational feasibility in production environments.
Additionally, we aim to expand our DSP framework to include video advertisements alongside

existing display ads. Video ads present unique challenges, such as modeling sequential viewer behavior,
attention span dynamics, and engagement patterns, which deep learning methods are particularly
well-suited to address, given their capability to handle complex, sequential, and contextual data signals.

Moreover, we plan to enhance our automated modeling framework by implementing continuous
hyperparameter optimization through Airflow DAGs, improving logging and monitoring capabilities
to rapidly diagnose performance issues, and achieving faster model deployment cycles by leveraging
advanced serving frameworks like the PyTorch-based Deep Java Library (DJL) [21].
Finally, our long-term vision includes investigating sophisticated optimization strategies, such as

real-time model personalization, online learning methods, and hybrid approaches combining traditional
machine learning with deep learning paradigms. These advancements will ensure Walmart’s DSP
continues evolving in alignment with the cutting-edge developments in advertising technology.

7. Conclusion

In this paper, we presented Walmart’s pioneering effort to build its first in-house Demand-Side Platform
for ad ranking. We detailed the challenges encountered, the rationale behind critical implementation
choices, and key innovations throughout the system development, emphasizing our effective utilization
of XGBoost models integrated through robust engineering pipelines using MLEAP serialization and
Airflow automation.

Our initial experimental results have demonstrated both the feasibility and effectiveness of this
customized DSP solution, achieving measurable improvements in click-through rate and validating our
approach. Additionally, initial assessments suggest promising opportunities to explore deep learning
models, highlighting significant potential for future adoption of advanced deep ranking architectures to
further enhance model performance.

Developing a DSP system from scratch is both challenging and rewarding. Through continuous
innovation and rigorous experimentation, we anticipate that our DSP will substantially elevate ad
relevance, improve customer engagement, and enhance advertising efficiency, ultimately aligning with
Walmart’s core mission of enabling customers to save money and live better. We believe the insights
and methodologies presented in this paper will benefit both practitioners and researchers, marking a
significant step forward in the advancement of advertising technology.

References

[1] P. Grigas, A. Lobos, Z. Wen, K. chih Lee, Profit maximization for online advertising demand-side
platforms, 2017. URL: https://arxiv.org/abs/1706.01614. arXiv:1706.01614.

[2] D. Moriwaki, Y. Hayakawa, A. Matsui, Y. Saito, I. Munemasa, M. Shibata, A real-world implemen-
tation of unbiased lift-based bidding system, in: 2021 IEEE International Conference on Big Data
(Big Data), IEEE, 2021, p. 1877–1888. URL: http://dx.doi.org/10.1109/BigData52589.2021.9671800.
doi:10.1109/bigdata52589.2021.9671800.

[3] H. He, E. A. Garcia, Learning from imbalanced data, IEEE Trans. on Knowl. and Data Eng. 21
(2009) 1263–1284. URL: https://doi.org/10.1109/TKDE.2008.239. doi:10.1109/TKDE.2008.239.

[4] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge Uni-
versity Press, 2008.

[5] Google Cloud, Cloud storage documentation, https://cloud.google.com/storage/docs, 2025. Ac-
cessed: 2025-04-16.

[6] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system, SIGOPS Oper.
Syst. Rev. 44 (2010) 35–40. URL: https://doi.org/10.1145/1773912.1773922. doi:10.1145/1773912.
1773922.

[7] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, ACM, 2016,
p. 785–794. URL: http://dx.doi.org/10.1145/2939672.2939785. doi:10.1145/2939672.2939785.

[8] F. M. Ojeda, M. L. Jansen, A. Thiéry, S. Blankenberg, C. Weimar, M. Schmid,
A. Ziegler, Calibrating machine learning approaches for probability estimation: A
comprehensive comparison, Statistics in Medicine 42 (2023) 5451–5478. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/sim.9921. doi:https://doi.org/10.1002/sim.9921.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.9921.

[9] A. Niculescu-Mizil, R. Caruana, Predicting good probabilities with supervised learning, in:
Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, Association
for Computing Machinery, New York, NY, USA, 2005, p. 625–632. URL: https://doi.org/10.1145/
1102351.1102430. doi:10.1145/1102351.1102430.

[10] M. B. A. McDermott, H. Zhang, L. H. Hansen, G. Angelotti, J. Gallifant, A closer look at auroc and
auprc under class imbalance, 2025. URL: https://arxiv.org/abs/2401.06091. arXiv:2401.06091.

[11] J. Davis, M. Goadrich, The relationship between precision-recall and roc curves, in: Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06, Association for Computing
Machinery, New York, NY, USA, 2006, p. 233–240. URL: https://doi.org/10.1145/1143844.1143874.
doi:10.1145/1143844.1143874.

[12] A. P. Bradley, The use of the area under the roc curve in the evaluation of machine learning
algorithms, Pattern Recognit. 30 (1997) 1145–1159. URL: https://api.semanticscholar.org/CorpusID:
13806304.

[13] Combust.ml Team, Mleap documentation, https://combust.github.io/mleap-docs/, 2025. Accessed:
2025-04-16.

[14] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: A factorization-machine based neural network for ctr
prediction, 2017. URL: https://arxiv.org/abs/1703.04247. arXiv:1703.04247.

[15] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, E. H. Chi, Modeling task relationships in multi-task learning
with multi-gate mixture-of-experts, in: Proceedings of the 24th ACM SIGKDD International

https://arxiv.org/abs/1706.01614
http://arxiv.org/abs/1706.01614
http://dx.doi.org/10.1109/BigData52589.2021.9671800
http://dx.doi.org/10.1109/bigdata52589.2021.9671800
https://doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TKDE.2008.239
https://cloud.google.com/storage/docs
https://doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9921
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9921
http://dx.doi.org/https://doi.org/10.1002/sim.9921
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.9921
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.1145/1102351.1102430
http://dx.doi.org/10.1145/1102351.1102430
https://arxiv.org/abs/2401.06091
http://arxiv.org/abs/2401.06091
https://doi.org/10.1145/1143844.1143874
http://dx.doi.org/10.1145/1143844.1143874
https://api.semanticscholar.org/CorpusID:13806304
https://api.semanticscholar.org/CorpusID:13806304
https://combust.github.io/mleap-docs/
https://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1703.04247

Conference on Knowledge Discovery & Data Mining, KDD ’18, Association for Computing Ma-
chinery, New York, NY, USA, 2018, p. 1930–1939. URL: https://doi.org/10.1145/3219819.3220007.
doi:10.1145/3219819.3220007.

[16] F. Wang, H. Gu, D. Li, T. Lu, P. Zhang, N. Gu, Towards deeper, lighter and interpretable cross
network for ctr prediction, in: Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management, CIKM ’23, Association for Computing Machinery, New
York, NY, USA, 2023, p. 2523–2533. URL: https://doi.org/10.1145/3583780.3615089. doi:10.1145/
3583780.3615089.

[17] C. Savard, N. Manganelli, B. Holzman, L. Gray, A. Perloff, K. Pedro, K. Stenson, K. Ulmer, Optimizing
high throughput inference on graph neural networks at shared computing facilities with the nvidia
triton inference server, 2023. URL: https://arxiv.org/abs/2312.06838. arXiv:2312.06838.

[18] Apache Software Foundation, Apache airflow documentation, https://airflow.apache.org/docs/,
2025. Accessed: 2025-04-16.

[19] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah, Wide deep learning for
recommender systems, 2016. URL: https://arxiv.org/abs/1606.07792. arXiv:1606.07792.

[20] R. Wang, B. Fu, G. Fu, M. Wang, Deep cross network for ad click predictions, 2017. URL: https:
//arxiv.org/abs/1708.05123. arXiv:1708.05123.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep
learning library, 2019. URL: https://arxiv.org/abs/1912.01703. arXiv:1912.01703.

https://doi.org/10.1145/3219819.3220007
http://dx.doi.org/10.1145/3219819.3220007
https://doi.org/10.1145/3583780.3615089
http://dx.doi.org/10.1145/3583780.3615089
http://dx.doi.org/10.1145/3583780.3615089
https://arxiv.org/abs/2312.06838
http://arxiv.org/abs/2312.06838
https://airflow.apache.org/docs/
https://arxiv.org/abs/1606.07792
http://arxiv.org/abs/1606.07792
https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/1708.05123
http://arxiv.org/abs/1708.05123
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703

	1 Introduction
	2 Background
	3 Implementation
	3.1 Data and Features
	3.2 Model Framework
	3.3 Model Automation and Operational Excellence

	4 Case Study
	4.1 Click Model User Feature
	4.2 Conversion Model Prediction Spread Improvement with User Feature

	5 EXPERIMENTATION
	5.1 Result of Click Model User Feature
	5.2 Result of Conversion Model

	6 Future Direction
	7 Conclusion

