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ABSTRACT
This paper presents an overview of the SIGIR 2018 eCom Rakuten
Data Challenge. In this data challenge, Rakuten.com has released
a sampling of one million product titles and the corresponding
anonymized category paths from their entire product catalog. Of
these, 0.8million of product titles and their corresponding category
paths are released as training data and 0.2 million of product titles
are released as test data. The task is to predict the category, defined
as a full path in the taxonomy tree as provided in the training set, of
the product titles in the test set. The evaluation is divided into two
stages to measure system performance on a part of the test data
and the entire test data. The different systems are evaluated using
weighted precision, recall and F1. In total, 26 teams have submitted
28 systems with a top performance of 0.8513 weighted F1 score.

1 INTRODUCTION
The SIGIR 2018 eCom Rakuten Data Challenge 1 is organized by
Rakuten Institute of Technology, Boston2 (RIT-Boston), a
dedicated R&D organization for the Rakuten group3 of companies.
The data challenge focuses on the task of large-scale taxonomy
classification of product titles, where the goal is to predict each
product’s category, defined as a full path from root node to a leaf
node in the taxonomy tree provided in the training set. The cat-
aloging of product listings through taxonomy categorization is a
fundamental problem for any e-commerce platform, with applica-
tions ranging from basic data organization, personalized search
recommendations to query understanding and targeted campaign-
ing. For instance, in the Rakuten.com catalog, “Dr. Martens Air
Wair 1460 Mens Leather Ankle Boots” is categorized under the
“Clothing, Shoes & Accessories > Shoes > Men > Boots” leaf. How-
ever, manual and rule based approaches to categorization are not
scalable since commercial product taxonomies are organized in tree
structures with three to ten levels of depth and thousands of leaf
nodes. Advances in this area of research have been limited due to
the lack of real data from actual commercial catalogs.

The challenge presents several interesting research aspects due
to the intrinsic noisy nature of the product labels, the size of modern
e-commerce catalogs, and the typical imbalanced data distribution.
1https://sigir-ecom.github.io/data-task.html
2https://rit.rakuten.co.jp/
3https://www.rakuten.com/
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We hope that by making the data available to the participants, the
task will attract more research institutions and industry practition-
ers, who do not have the opportunity to contribute their ideas due
to the lack of an actual commercial e-commerce catalog data. In a
typical e-commerce setting, merchants are responsible for matching
their products with an existing category, which is a leaf node in the
taxonomy tree. The problem of large scale taxonomy classification
is thus immensely useful to help merchants upload their products
in the right places of an e-commerce platform catalog.

2 DATASET
Rakuten has released a sample of one million product listings, in-
cluding the training (0.8million) and test (0.2million) set, consisting
of product titles and their corresponding category paths that belong
to a taxonomy tree to describe the varying degrees of generality
of the items in the catalog. A product taxonomy is a tree-based
hierarchical representation of labels of the listings in a catalog.

Rakuten’s catalog of products is much larger than a million
listings. The larger catalog of product listings is first de-duplicated
using leaf node label and product title tuples as keys and then a
random sampling of one million listings is performed. These set
of listings have been allowed to be published for this year’s data
challenge. The set of one million product listings may not cover the
entire set of leaf nodes in Rakuten.com’s taxonomy, and so, any
taxonomy generated from the category labels provided with the
training set may yield a truncated taxonomy.

Further, to preserve anonymity of the taxonomy, the nodes in
the actual taxonomy have been masked with random integers. The
class or the category label of a product listing is thus a path from the
root of the taxonomy tree to a leaf node where the listing resides.
In the left to right ordering of the nodes in such a path, the path
becomes more specific in describing the listing as it approaches the
leaf level. The string representation of a path from root to leaf is
henceforth dubbed as a “category-id-path”.

The training data file is in a tab-separated values (TSV) format
where each line contains a product title and its corresponding
category-id-path. In the test set, only the product titles are provided
and the objective of this data challenge is to predict the full category-
id-path for each such title. Table 1 and table 2 show some examples
of product titles from the training set and test set, respectively. The
partitioning of the training and the test sets are obtained using
category-wise stratified sampling of the one million listing dataset.

2.1 Data Characteristics
In the training set, there are 800, 000 product titles from 3, 008 leaf-
level nodes. Product titles are unevenly distributed among these
3, 008 categories. The top ten categories compose around 30% of
the data set and the top forty categories compose around 50% of
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Figure 1: Left: Product title frequencies for 3,008 leaf nodes in the taxonomy tree. Both X and Y axis are in log scale. Rank
ranges from 1 to 3,008. Right: Product title frequencies for different lengths of category paths.
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Figure 2: Left: Word length distribution over all product titles in the training set. Right: Character length distribution over all
product titles in the training set.

Product Titles category-id-paths
Replacement Viewsonic VG710 LCD Monitor 48Watt AC Adapter 12V 4A 3292>114>1231

Ka-Bar Desert MULE Serrated Folding Knife 4238>321>753>3121
5.11 TACTICAL 74280 Taclite TDU Pants, R/M, Dark Navy 4015>3285>1443>20

Skechers 4lb S Grip Jogging Weight set of 2- Black 2075>945>2183>3863
Generations Small Side Table White 4015>3636>1319>1409>3606

Table 1: Examples of product titles from the training set.

Product Titles
Disc Brake Rotor-Advanced Technology Rear Raybestos 980368

Coquette Neon Pink Ruffle Babydoll 7035 Neon Pink One Size Fits All
12V 7Ah (SPS Brand) APC NS3000RMT3U Replacement Battery ( 4 Pack)

Honda Ridgeline 2006-08 Black Radio AM FM 6 Disc CD PN 39100-SJC-A100 Face 3TS1
Frankford Arsenal Platinum Series Case Prep Essentials Kit

Table 2: Examples or product titles from the test set.

the data set. The left hand side of Figure 1 shows the distribution
of product title frequency across all the leaf-level categories (sorted
by frequency) where the X and Y axes are both in log scale. Across
the 800, 000 product titles, the maximum depth of category level is
8 and the average depth is 4.

The right hand side of Figure 1 shows the distribution of product
title frequency across different depths of category-id-paths. The
average word-level title length over all categories, after the surface
form of the title is tokenized by white space, is 10.93, with a maxi-
mum length of 58 words. Similarly, the average character-level title

length is 68.44, with a maximum length of 255. Figure 2 shows the
title length distributions at world-level and character-level, respec-
tively.

3 EVALUATION
In this section, we briefly mention the evaluation criteria used to
judge the different systems. Although we do not resort to a stricter
statistical significance testing of different systems using confidence
interval estimation from bootstrapped samples of the test set, it
will be useful to do so once this pilot task has been completed.
One motivation to not introduce such testing in this pilot task is
that in an e-commerce setting, even a 0.01% improvement means
thousands of listings being assigned to their right places in the
catalog without human intervention.

3.1 Metrics
The metrics that we have used to evaluate the different classifica-
tion systems are based on weighted-precision, weighted-recall and
weighted-F1 for the test set of exact “category-id-path” match. In
other words, partial path match does not count as a correct predic-
tion.We assume that there are a total ofK classes, {ci |i = 1, 2, ...,K}

in the training set. The number of true instances for each class
(support) is ni , and the total number of training instances is N =
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Figure 3: Left: Stage 1 leaderboard (evaluated on the first 20,000 test titles). Right: Stage 2 leaderboard (evaluated on all 200,000
test titles).

∑K
i=1 ni . After calculating the precision (Pi ), recall (Ri ) and F1 (F1i )

scores for each class ci , the weighted-precision, weighted-recall
and weighted-F1 are defined as follows:

weiдhted-P =
K∑
i=1

ni
N
Pi (1)

weiдhted-R =
K∑
i=1

ni
N
Ri (2)

weiдhted-F1 =
K∑
i=1

ni
N
F1i (3)

It can be shown that weighted-recall is actually equal to absolute
accuracy. Since the product distribution over the taxonomy tree
is highly imbalanced, weighted version of precision, recall, and F1
make much more sense than macro or micro version of precision,
recall, and F1 do. The evaluation script is also provided during the
data challenge4.

4https://github.com/sigir-ecom/dataChallenge

3.2 Leaderboard
The leaderboard shows the weighted precision, recall and F1 scores,
upto four decimal digits of precision, for the latest submissions
from each participating team. The corresponding file submission
time is shown as well so participants can refer the scores to which
submission it belongs to. The leaderboard is sorted by the weighted
F1 score. We choose not to use an off-the-shelf classifier, such as
a logistic regression model or some other standard classifier, as a
minimal baseline (lowerbound) in the leaderboard.

3.3 Timeline
• Stage 1 (April 9 - June 23): Participants build and test models
on the training data. Each team can make at most three
submissions per day in this stage. The leaderboard (Fig. 3
left) only shows the model performance on a subset of the
test set, i.e., the first 20, 000 test product titles. Note that this
subset is randomized since the entire test set is randomized
using stratified sampling on the one million titles.

• Stage 2 (June 24): The leaderboard switches to Stage 2 on
June 24 (Fig. 3 right) and shows the model performance
on the entire test set, i.e., all 200, 000 test product titles.
No submission is allowed once the leaderboard has been
switched to this stage.

https://github.com/sigir-ecom/dataChallenge
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4 RIT-BOSTON BASELINE METHOD
The RITB-Baseline method uses the method of Joulin et al. [4],
which has been very popular recently for large-scale multi-label
text classification. The method, dubbed, fastText, uses lock free
asynchronous gradient descent optimization [8] of a log linear loss
function – it is actually a single layer perceptron with no non-
linearities in the activation functions. For details on the derivations
for the fastText model parameters and using a softmax loss func-
tion, see Section 7.

Generally, in a production setting, we have seen gradient boosted
decision trees (GBDTs) to perform just as well as state-of-the-art
Convolutional Neural Networks (CNNs), which has been previously
reported in [1]. However, although, GBDTs have the added advan-
tage of incorporating intuitive feature engineering as well as decid-
ing feature importance, their training time on large datasets can be
prohibitively slow. Recent trends in e-commerce industry has thus
shifted to using fastText or other deep learning approaches for
generic text classification problems, of which taxonomy classifica-
tion of product titles is a specific instance. Deep learning techniques
are a continuously evolving family of models with varying degrees
of architecture engineering, optimization algorithms and parameter
fine tuning methods and as such it is difficult to assign a baseline
model using this family of methods.

We thus choose to use fastText as a quick way to solve the
taxonomy classification problem. Further fastText apparently has
less parameters to tune than comparable deep learning methods.
The reason for the choice of the word apparent will become clear
once we explain the graphs in Fig. 5. The fastText method in [4]
employs many tricks, including hashing to a fixed vocabulary size
of n-grams, lock free asynchronous gradient descent optimization
[8], averaging of word representations as document representation
and others. Further, given a training set containing NV words from
a vocabulary of V words and a number of passes over the data,
i.e. epochs, equal to E, the learning rate, α , at time t is updated
according to

α (t ) = γ (1 − t

NV E
) (4)

where γ is a fixed parameter. Hence, unlike optimizing for the learn-
ing rate or step size found in more principled convex optimization
techniques, fastText uses an heuristic estimate and a linear decre-
ment of the learning rate that allows it to calculate an estimated
time of completion for the training phase to end.

The high degree of class imbalance becomes apparent upon
observing the Kullback Leibler (KL) divergences of the empirical
distribution over data points in the training set for each of the top
level categories, from their respective uniform distributions (see
Fig. 4). The RDC Challenge dataset may have exhibited this phe-
nomenon due to the dataset selection process, however, in general,
depending on common choices of e-commerce taxonomies for mid-
size organizations, KL divergences usually vary between 1.0 and
2.0 [1].

We initially split the 0.8M training dataset into a 10% Dev2 set, a
10% Dev1 set after excluding the Dev2 set, and the rest for training
and cross-validation. The splitting is done using stratified sampling.
Following a bi-level classification scheme in [1], we initially built

Figure 4: Class imbalancemeasured asKL divergences of em-
pirical distributions over data proportions in top level cate-
gories from their respective uniform distributions.

a baseline hierarchical cascading classifier using fastText, how-
ever, for this dataset, we found out that a “flat” fastText classifier
performed better by at least one percentage point absolute. Ad-
ditionally, the “negative sampling” loss function has also shown
better performance than the typical “softmax” loss. However, fine
tuning of parameters based on the negative sampling loss function
can show signs of overfitting.

For data preprocessing, we use the token normalizer mentioned
in [1]. We first tokenize using whitespace and lowercase the to-
kens. Then for each token, we separate any adjoining punctuations
from numbers (decimal or otherwise). We replace all numbers with
a @NUMBER@ literal token and remove all punctuation tokens. We
preserve alphanumeric tokens in the hope that sometimes longer
alphanumeric strings encode model numbers that are unique to
each category. For instance, the surface form of the title, “"Ana Silver
Co Rainbow Moonstone Earrings 2 1/4"" (925 Sterling Silver) - Hand-
made Jewelry EARR346812"” gets converted to “ana silver co rainbow
moonstone earrings @NUMBER@ @NUMBER@ @NUMBER@ @NUMBER@ ster-
ling silver handmade jewelry earr34681” using our normalization
scheme. For the baseline, we also do not remove any stop words or
perform any morphological operations on the resulting tokens. The
entire training dataset is de-duplicated using the (category label,
title normal form) tuples.

The plots in Fig. 5 confirms the non-deterministic nature of
fastText due to the use of asynchronous SGD. In fastText, each
thread reads its own view of the data, creates a mini-batch of size
one, and updates the parameter matrices without any locking mech-
anism. This type of lock free parameter updates have been shown to
be just as effective as their synchronous counterparts under the as-
sumptions of feature sparsity in the data [8]. The plots in Fig. 5 show
absolute accuracy results on our 10% Dev2 set for two different sce-
narios, after training a bi-level fastText classifier on the training
data that results after excluding the Dev1 and Dev2 sets. For the
first scenario, we run fastText for forty runs with the same param-
eter settings of dim=min(120,K/2), epoch=100, wordNgrams=3,
loss=softmax, thread=45, with K being the number of classes
for a particular subtree rooted at a classification node in the taxon-
omy tree. For this scenario, we obtain the mean absolute accuracy
to be 74.0908 with a standard deviation of 0.0741. For the second
scenario, we run fastText for six different runs with the same
settings, except that the number of threads are set to 1, 2, 5,
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Figure 5: Absolute accuracy results on our 10% Dev2 set for the following two scenarios. Left: Forty different runs of fastText
using the exact same settings. Right: Six different runs of fastText using the same settings except for the number of threads.

15, 30 and 45 respectively. The solid bars in the right plot of Fig.
5 shows the number of threads and the corresponding accuracy
numbers are shown on the line graph above the solid bars.

We can observe from the graph in the right of Fig. 5, that the triv-
ially synchronous version of fastText, i.e. using just one thread,
is the weakest of all models. This makes sense since fastText is
just a singe layer perceptron with no non-linearities. Accuracy im-
proves by almost 70%when the number of threads is set to two, but,
plateaus off for the other settings of thread counts after that. For
our Dev2 set, we obtain the best accuracy using thirty threads and
that is the number of threads we set for all of our fastText baseline
runs. The asynchronous SGD of fastTextwith a mini-batch size of
one, raises a legitimate concern – the number of threads apparently
behaves as a parameter that regulates generalization performance
and is machine architecture dependent. Needless to mention that
this behavior is independent of the loss function used. In our ex-
periments, the default setting of twelve threads have shown lower
performance than thirty threads for this task.

After some minimal experiments on our Dev2 set, we finalized
the settings of our fastText baseline, RITB-Baseline (see Table
3 and Fig. 3), to be the following: -dim 300 -minn 4 -maxn 10
-wordNgrams 3 -neg 10 -loss ns -epoch 3000 -thread 30.
We have set a high number of epochs due to the availability of free
computational cycles in our servers.

In the next section, we briefly highlight the methods used for the
data challenge task by the teams who have submitted their system
description papers.

5 SYSTEM DESCRIPTIONS
Below is a list of each team’s systems. Their team names, affilia-
tion and system description paper title available on the workshop
website can be seen in Table 3.

• Team CorUmBc submitted one system (0.7690 F1 score)
based on a Bidirectional Long Short Term Memory Network
(BiLSTM) to capture the context information for each word,
followed by a multi-head attention model to aggregate useful
information from these words as the final representation of
the product title. Their model adopts an end-to-end archi-
tecture without any hand-crafted features and regulated by
various dropout techniques.

• Team HSJX-ITEC-YU submitted one system (0.7790 F1
score) that uses K Nearest Neighbors (KNN) classification
model and the Best Match (BM) 25 probabilistic information
retrieval model. The top k product title matches of the BM25
model are then classified by the KNN model.

• Team JCWRY submitted one system (0.8295 F1 score) that
uses deep convolutional neural networks with oversampling,
threshold moving and error correct output coding to predict
product taxonomies. Their best accuracy is obtained through
an esemble of multiple networks, such as Kim-CNN [5] and
Zhang-CNN [9], trained on different extracted features in-
puts, inlcuding doc2vec [6], NER and POS features.

• TeamMKANEMAS submitted one system (0.8399 F1 score)
that formulates the task as a simple classification problem
of all leaf categories in the given dataset. The key feature
of their system is the combination of a Convolutional Neu-
ral Network and Bidirectional LSTM using ad-hoc features
generated from an external dataset (Amazon Product Data)
[3][6].

• Team mcskinner submitted one system (0.8513 F1 score)
using a straightforward network architecture and ensemble
LSTM strategy to achieve competitive results. The positive
impact of tightening the connections between recurrent and
output layers through the use of pooling layers is also demon-
strated. The author similarly provides practical details on
their training methodology and algorithms for probability
calibration. The final solution is produced by a bidirectional
ensemble of 6 LSTMs with Balanced Pooling View architec-
ture.

• Team minimono submitted one system (0.7994 F1 score)
based on word-level sequence-to-sequence neural networks
widely used in machine translation and automatic docu-
ment summarization. By treating taxonomy classification as
a translation problem from a description of a product to a
category path. The text of the product name is viewed as
the encoder input and the sequence of category name as the
decoder output.

• Team neko submitted one system (0.8256 F1 score) that
treats category prediction as a sequence generation task.
The authors built a word-level sequence-to-sequence model
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Team Name Affiliation System Description Paper

CorUmBc University of Maryland Baltimore County Large Scale Taxonomy Classification using BiLSTM with Self-Attention
HSJX-ITEC-YU York University & Trent University A Best Match KNN-based Approach for Large-scale Product Categorization

JCWRY Individual Researchers
An Empirical Study of Using An Ensemble Model in E-commerce Taxonomy
Classification Challenge

MKANEMAS Yahoo Japan Corporation
Convolutional Neural Network and Bidirectional LSTM Based Taxonomy
Classification Using External Dataset at SIGIR eCom Data Challenge

mcskinner Individual Researcher Product Categorization with LSTMs and Balanced Pooling Views
minimono University of Tsukuba Encoder-Decoder neural networks for taxonomy classification
neko Rakuten Institute of Technology Singapore Unconstrained Production Categorization with Sequence-to-Sequence Models
RITB-Baseline Rakuten Institute of Technology Boston Overview of the SIGIR 2018 eCom Rakuten Data Challenge
Tyken2018 Tohoku University Large-Scale Taxonomy Problem: a Mixed Machine Learning Approach
Topsig Queensland University of Technology TopSig at the SIGIR’eCom 2018 Rakuten Data Challenge
tiger JD.com Multi-level Deep Learning based E-commerce Product Categorization
Uplab Uplab SAS Ecommerce Product Title Classification
Waterloo University of Waterloo Team Waterloo at the SIGIR E-Commerce Data Challenge

Table 3: List of participants who submitted system description papers. All submitted papers are available at: https://sigir-ecom.
github.io/accepted-papers.html.

to generate non-constrained product categories that are not
limited to the labels from the training set. The final model
is an ensemble of several attentional sequence-to-sequence
models.

• Team Tyken2018 submitted one system (0.7509 F1 score)
that builds upon a two-step architecture where the first step
classifies the input product title to the genre tree it belongs
to and the second step predicts its category path. For the
path prediction, two methods are proposed, original method
and actual method. They originally proposed a shallow feed-
forward fully connected or deep neural network, i.e., 50-layer
ResNet architecture [2] depending on how complex the tree
structure is, but constructed a hierarchical style model in the
end.

• Team Topsig submitted one system (0.7941 F1 score) that
utilizes random indexing to create topological signatures
(TopSig) to categorize the product names in the provided
data sets. The authors make use of their open-source Top-
Sig tool to generate dimensionality-reduced signatures and
search for these signatures. The signature generation ap-
proach used by TopSig has been shown to be effective at
different tasks. The approach can be regarded as a variation
on LSH to approximate nearest neighbour search.

• Team tiger submitted one system (0.8379 F1 score) that com-
bines machine learning, deep learning, and natural language
processing to create a multi-level and multi-class deep learn-
ing tree method. This includes multiple models based on
single-label and multi-level label predictions, as well as char-
acteristics of the product tree structure. The training dataset
and the test dataset are merged to pre-train word vectors
to calculate semantic similarity. To address the unbalanced

category issue, sampling and data enhancement techniques
are used. They build eight sample datasets according to the
category hierarchy and develop two classification algorithms
to build models for different levels and search paths using
category trees.

• Team Uplab submitted three systems based on different
classifier types, including single flat linear Support Vector
Machines classifier (0.8366 F1 score), a top down esemble
which combines top-level and sub-level classifiers (0.8173 F1
score) and a CNN with pre-trained word embeddings (0.6509
F1 score). The authors found that TF-IDF with both bi-gram
and uni-gram features work best for categorization.

• TeamWaterloo submitted one system (0.7781 F1 score) that
uses multinomial naive-bayes, logistic regression, batched
gradient-descent and neural softmax classifiers retro-fitted
for the hierarchical classification objective. The authors eval-
uate different classification methods, including flat and hier-
archical classification, and implement a general framework
to tackle the task of taxonomy classification.

6 RESULTS
Twenty six research groups/individuals participated in the data
challenge. Each team submitted their predicted category-id-path
on the test set in the same TSV format as the training set (Table 1).
We score the system submissions against the gold standard using
weighted precision, recall and F1 as defined in Section 3. The final
results are summarized in Figure 3. The left hand side of Figure 3
shows the leaderboard in Stage 1 (evaluated on the first 20,000 test
titles) and the right hand side shows stage 2 results (evaluated on
the entire set of test titles).

https://sigir-ecom.github.io/accepted-papers.html
https://sigir-ecom.github.io/accepted-papers.html
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In Stage 1, the top five teams are teammcskinner, teamMKANE-
MAS, team tiger, team Uplab and team JCWRY with 0.8510,
0.8421, 0.8404, 0.8375 and 0.8278 weighted-F1 scores, respectively.
In Stage 2, the same five teams rank at top five with 0.8513, 0.8399,
0.8379, 0.8366 and 0.8295 weighted-F1 scores. The rank does not
change much between Stage 1 and Stage 2, except for team Uplab-
2, team Tyche and team HSJX-ITEC-YU. Table 4 shows the list
of teams whose ranks is higher in Stage 2 than in Stage 1.

Team Name ∆ Rank Stage 1 Rank Stage 2 Rank
Uplab-2 +3 11 8
Tyche +1 13 12
HSJX-ITEC-YU +5 16 21

Table 4: List of teams that rank higher in Stage 1 than in
Stage 2.

With regards to F1 scores, the difference between Stage 1 and
Stage 2 is less than 0.01 except for team HSJX-ITEC-YU, whose
score difference is more than 0.06. Table 5 shows the the list of top
twenty teams whose F1 score is higher in Stage 2 than in Stage 1.

Team Name Stage 1 F1 Stage 2 F1 Stage 2 Rank
mcskinner 0.8510 0.8513 1
JCWRY 0.8278 0.8295 5
neko 0.8245 0.8256 6
Uplab-2 0.8149 0.8173 8
Tyche 0.7976 0.8004 12
VanGuard 0.7871 0.7884 15
HSJX-ITEC-YU 0.7176 0.7790 16
Waterloo 0.7767 0.7781 17
Sam-chan 0.7617 0.7666 19
Tyken2018 0.7431 0.7509 20

Table 5: List of the top twenty teams that have higher F1
score in Stage 1 than in Stage 2.
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7 APPENDIX
The loss function for fastText, mentioned in [4], is the following
log likelihood function:

L = log
( N∏
n=1

f (BAxn )tn
)
=

N∑
n=1

tn log(f (BAxn )) =
N∑
n=1

Ln (5)

where tn is the label of the nth training instance. The optimization
problem on the training set is to find the optimal parameters A∗

and B∗ by minimizing the negative log likelihood in Equ. 5.

argmin
A∗,B∗

−
1
N

×

N∑
i=1

Ln (6)

The parameter matrix A connects the input features to the units
in the hidden layer of dimension H . This matrix is a look-up ta-
ble over the words [4] and H is a parameter of the model. The
weight parameter matrix, B, connects the hidden units to the out-
put units. The kth output unit of the nth instance contributes to
the conditional probability of the output yn,k , of the kth label be-
ing 0 or 1. That is, for a particular nth instance (xn , tn ), we have,
Ln =

∏K
k=1 y

tn,k
n,k where tn,k ∈ {0, 1}.

From now on, let L = −Ln , so that we can clear up the notation.
Also, the data is assumed to be i.i.d so that p(X) =

∏N
n=1 p(xn ). Let

the input nodes be labeled as xi , i ∈ {1, ...,D}; the hidden layer
nodes be labeled as zj , j ∈ {1, ...,H } and the output layer nodes be
labeled as vk ,k ∈ {1, ...,K}. The target for the input x = {xd } is a
one-hot K vector with the kth entry to be 1 if x belongs to class
k . Let vk be the input to the kth output unit i.e. vk = BTk z with
zh =

(∑D
d=1Ad,hxd

)
.

Using the method of maximum likelihood estimation on the
loss function L, where tk ∈ {0, 1} and yk = p(vk ) ∈ [0, 1], or,
equivalently, using gradient descent minimization on L, we can
derive the updates for model parameter estimators.

7.1 Parameter updates for the output layer
We first begin by finding the updates to the B parameter from Equ. 6.
For brevity, we drop the subscript n henceforth. Taking derivatives
of the loss function at the output layer w.r.t. Bk,h , we obtain,

∂L

∂Bk,h
= −(tk − yk )zh (7)

where, yk = p(vk ) = so f tmax(vk ) = eB
T
k z/

∑K
k ′=1 e

BTk′z
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Derivation: For a particular nth instance, we have

−L =

K∑
k=1

tk logyk

=

K∑
k=1

tk

(
vk − log

K∑
k ′=1

exp(vk ′)
)

(8)

=

K∑
k=1

tk

(
BTk z − log

K∑
k ′=1

exp(BTk z)
)

=

K∑
k=1

tk

( H∑
h=1

Bk,hzh − log
K∑

k ′=1
exp

( H∑
h=1

Bk,hzh

))
(9)

Using chain rule of derivatives,

∂L

∂Bk,h
=
∂L

∂vk

∂vk
∂Bk,h

For the first term, we have:

−
∂L

∂vk
= tk −

∂
(
log

∑K
k ′=1 exp(vk ′)

)
∂vk ′

∂vk ′

∂vk

= tk −
exp(vk ′)

log
∑K
k ′=1 exp(vk ′)

δkk ′

= tk − yk

For the second term, we have:

∂vk
∂Bk,h

=
∂
(∑H

h=1 Bk,hzh
)

∂Bk,h
= zh

leading to,

∂L

∂Bk,h
= −(tk − yk )zh (10)

Thus for the Bk,h parameter update, we have:

B
(t+1)
k,h = B

(t )
k,h + α × −

∂L

∂B
(t )
k,h

= B
(t )
k,h + α ×

(
tk − y

(t )
k

)
z
(t )
h (11)

where α is the learning rate that is updated as shown in Equ. 4.

7.2 Parameter updates for the input layer
Taking derivatives of the loss function at the output layer w.r.t.
Ah,d , we obtain,

∂L

∂Ah,d
= −

( K∑
k=1

(tk − yk )Bk,h

)
xd (12)

Derivation: As in the previous section, for a particular nth
instance, we have, using the chain rule of derivatives,

−
∂L

∂Ah,d
=

K∑
k=1

(
∂L

∂vk

∂vk
∂zh

)
∂zh
∂Ah,d

=

K∑
k=1

©«(tk − yk )
∂
(∑H

h=1 Bk,hzh
)

∂zh

ª®®¬
∂zh
∂Ah,d

=

K∑
k=1

(
(tk − yk )Bk,h

) ∂ (∑D
d=1Ah,dxd

)
∂Ah,d

leading to,

∂L

∂Ah,d
= −

( K∑
k=1

(tk − yk )Bk,h

)
xd (13)

Thus for the Ah,d parameter estimator update, we have:

A
(t+1)
h,d = A

(t )
h,d + α × −

∂L

∂A
(t )
h,d

= A
(t )
h,d + α ×

( K∑
k=1

(
tk − y

(t )
k

)
B
(t )
k,h

)
xd (14)

Note that the document or sentence representation in fastText
is obtained by an averaging of the vector representations of the
constituent n-grams. Thus, the gradients involving x are normalized
by the number of word and/or character n-grams in the input x.

7.3 Asynchronous Stochastic Gradient Descent
The general expression for updating the estimators of a parameter
w, in a gradient descent optimization scheme is given by,

w(t+1) = w(t ) + αu (15)
where α is the learning rate or step length and u is a descent direc-
tion, which is set to − ∂L

∂w(t ) . The fastText model relies on asyn-
chronous stochastic gradient descent (ASGD) method of optimiza-
tion following [8], where, several cores can update any component,
w(t )
j , several times, but atomically, on the same iteration.
Both ASGD and SGD depend on finding unbiased estimators of

gradients. The key difference is that for the former, the gradient
computation for parameter estimators is allowed to use stale val-
ues of the previously updated parameter iterates. Convergence is
shown to happen for certain scenarios, where the loss functions
are convex and the stochastic gradients are assumed to be bounded
in expectation. In the original ASGD paper [8], this convergence
is shown for a fixed step size. The convergence analysis for ASGD
in [7] is shown for the non-bounded gradient assumption and a
continuously decreasing step size, which is the case for fastText.

It is mentioned in [7], that the permutation of indices for the
parameter vector or matrix updates when there are inconsistent
reads and writes by several cores is crucial for good performance.
In fastText, the compute cores start iterating over the data from
fixed positions in the training file and not randomly as in the case
of true SGD. This might be a reason why the solution computed
by fastText, is not stochastically optimal with regards to the as-
sumptions mentioned in [7].
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