Large-Scale Taxonomy Problem: a Mixed Machine Learning
Approach

Quentin Labernia
Tohoku University, GSIS
quentin@dais.is.tohoku.ac.jp

Toshiyuki Oike
Tohoku University, GSIS
oike@dais.is.tohoku.ac.jp

Yashio Kabashima*
Tohoku University, GSIS
kabashima@dais.is.tohoku.ac.jp

Kohei Asano
Tohoku University, GSIS
asano@dais.is.tohoku.ac.jp

Michimasa Irie
Tohoku University, GSIS
irie@dais.is.tohoku.ac.jp

Jinhee Chun
Tohoku University, GSIS
jinhee@dais.is.tohoku.ac.jp

Takeshi Tokuyama
Tohoku University, GSIS
tokuyama(@dais.is.tohoku.ac.jp

ABSTRACT

Rakuten Data Challenge suggests tackling the Large-Scale Taxon-
omy Challenge. Given a large amount of product titles and category
paths leading to these products, we would like to predict the cate-
gory path of a given product, only based on its title. The provided
paths are structured as a forest of 14 trees. The learning process is
split into two steps: we first retrieve the tree the input belongs to
and then handle the category path. We describe data embedding
which represents an important task in this challenge and then in-
troduced the so-called two step architecture. The original idea is
based on deep neural network model. We also introduce an actual
method as second step modification since the former second step is
not efficient enough. This last technique makes usage of multiple
sets of random forest classifiers to navigate inside each tree.

KEYWORDS

Machine Learning, Natural Language Processing, Deep Neural Net-
work, Random Forest

1 INTRODUCTION

As part of the SIGIR 2018 workshop, we tackle in this paper the
Rakuten Data Challenge. E-commerce websites handle a large vari-
ety of data and their products are categorized in some way: when a
new product is given to the system, one has to compute its category.
For instance, an inkjet printer is an office product, an electronic
office good, and of course kind of printer. Rakuten Data Challenge
addresses this problem in the following terms. Given only the ti-
tle of a product, try to predict its path through some categories
— as usually shown to the customer in most e-commerce website.
Each path starts out from one of the root categories, reaches to the
actual product’s category, going through some intermediate lev-
els. For example, the product 'Replacement Viewsonic VG710 LCD
Monitor 48Watt AC Adapter 12V 4A’ is associated with such path
3292>114>1231. We refer to this problem as large-scale taxonomy
classification.

Rakuten Data Challenge focuses on machine learning techniques
as the amount of data is large, about one million instances. Also,
labels correspond to paths in tree structure. Considering these

*Corresponding Author

characteristics, it might seem more natural to tackle this problem
using machine learning techniques rather than typical data mining
methodologies like FCA — Formal Concept Analysis — or logical
rules based approaches. Such approaches indeed lead to high compu-
tation complexity and could simply fail because of the not adequate
input and output data representation.

Up to now, datasets which are representative of practical us-
age of e-commerce websites have not been made public yet and
Rakuten Data Challenge provides such dataset. However, it brings
with it serious challenges. Among those, the large size of the dataset
represents one of the main issue. This justifies the large-scale classi-
fication appellation. One indeed needs to handle around 0.8 million
of instances each of them consisting of a textual feature - title of the
product - and categories’ path description. The output label consists
of an ordered list of categories. We are dealing with a classification
problem and each distinct list is a different label. Considering the
test dataset, we come up with more than 3000 distinct list configura-
tions. Labels are also unbalanced with regard to the input instances
and we put emphasis on that point in section 5. Some categories like
“4015” foster a lot of product whereas some others do not. Handling
very small classes along with over-representative ones represents
another big issue. The last considered point is related to the noisy
semantic of each instance’s title. We are referring here to the fact
that the title of a product can include the name of the product or its
description which is more or less precise. Although two products
share some words, it might be the case they are actually very differ-
ent and so are not categorized under the same label. For instance,
a laptop whose name is given after a given fruit, a book which
talks about this fruit: both share common words. To get rid of such
mistakes is a fundamental and necessary condition for our model
to predict labels in the most efficient way.

In this paper, we introduce two methods to tackle the challenge.
The original method refers to our first idea which results are not
convincing. Hence, we also introduce the actual method whose
differences with the original one will be discussed in section 4.
This last method has been used to get results of Rakuten Challenge
shown in section 5.

As for data preprocessing, we give a detailed explanation of how
do we address most of the previously mentioned problems in a
logical way. Once the input and output data are formatted in the

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

right way, we define the architecture of the models we built to
perform the prediction. Both methods are introduced. Based on
this architecture, we outline the experiment strategy. Finally, we
compare differences between the two strategies and provide critical
explanations of our work.

2 DATA OVERVIEW

The provided data is composed of one million instances, split be-
tween the training dataset (80%) and test dataset (20%). A pair
(xi,yi) denotes the instance of index i. A sample of data picked up
from the training dataset is shown in table 1.

The input data — title x; — is composed of one feature formated
as a string of UTF-8 characters. It corresponds to the title of the
product. A title x; has a specific length and potentially contains
special characters such as the trademark character.

Title x; Path y;
Circuit Breaker Standard BR-330 2199>4592>12
Nike Sun Sport Visor 343278 Black 1608>2227>574>522
Style & Co. Jacquard Cowl-Neck Top 1608>4269>3031>62

Table 1: Data sampled from the training dataset. Categories
are given as integers.

The taxonomy is a tree as stated in the Rakuten Data Challenge
rules. After gathering all the nodes — each actually corresponds to
one category — we end up with a forest of 14 trees. One tree is sort
of very general category of product. It is obviously possible to link
the root node of all the trees together so we form a unique tree.
However, we chose to not perform such operation since it would
make more sense to build specialized models managing one of these
general categories at a time. Indeed, the classification logic between
electronic products and make-up goods — for instance — could be
potentially totally different. As a result, we consider the existence of
Ty, ..., Ti4, the trees we build from the given learning dataset only.
A node of a tree T; is a category ¢ € N. This category corresponds to
the node in the forest, which means that such category c is unique
across all the trees. Notice that tree Ti4 is degenerated in the sense
that it contains only one node.

The output data, or labels, are tuples of categories. One tuple
y; = (c1,...,cp,) describes a path of categories — associated with
the instance x; -, that is: ¢1 is a root node of one tree Ty, cy is one of
the ¢; child nodes, and so on until we reach cp, , the end of the path.
After running analysis on the provided datasets, we found that cp,
is actually always a leaf, thus we consider the following hypothesis
to always be true: for any instance (x;, y;), the last component of
Yi, cp,., is a leaf of a tree. A predicted tuple j; matches its ground
truth counterpart y; if and only if both tuples are equal - perfect
matching between the two. Put another words, our goal is to find
a tuple with the right amount of components and each of these
components have to match the provided ground truth.

We do not proceed to any data augmentation, either for data
processing or model usage. This paper focuses on getting the best
results while just relying on the title as input feature. Here, we find
more interests to look at how we could obtain consistent results
with semantically noisy title features as recalled in the introduction.

Q. Labernia et al.

Let us fix an important notation hereafter used: all the variables
written with a tilde is a predicted value from our models. Next
section introduces the data preprocessing based on the previously
stated hypothesis.

3 DATA PREPROCESSING
3.1 Input Features

Let’s first take a look at the input feature transformation process.
We describe two steps corresponding to bag of words and word2vec
processes. Both representations are further used in section 4 and
so we introduce them once at a time as follows.

3.1.1 Bag of words. A title x; is a string of characters whose
encoding is UTF-8. We split the title into words using space char-
acters. The integer q; denotes the number of words in the title
x;i. We define a binary vector representation of each word and so
create a dictionary using the previously split words. The size of the
vocabulary corresponds to the number of distinct words we meet in
the training dataset because we build it using the training dataset.
We drop the least and “most” frequent words if respectively: a word
appears less than ten times ; a word’s frequency for each tree is
high and about the same across all the trees — such words are not
discriminative across different categories. When dealing with an
instance x;, any word which does not belong to the dictionary is
simply dropped. Any word w; j — word j of the title x; — can be
encoded into a binary vector of size w. One can notice we do not
proceed to any lemmatization of the words. We refer to the bag of
word vector of the title x; using xj.

3.1.2 word2vec. The next step is dimensionality reduction of
each words in the title x;. To do so, we use the well known word2vec
technique[7]. We set each resulting word to be an element of R2°0°,
Since titles are not of fixed size, we need to either build a model
which can handle such variable length inputs, or transform the
data into a predefined fixed format. Since our words are embedded
in sort of semantic space using word2vec, we state that it makes
sense to perform the addition of all the words of one title to get a
significant meaning. Considering titles of Internet marketplaces,
words order usually does not matter. For instance, “red shoes”
and “shoes / red” should be meaningful speaking quite close.
Moreover it gives us an elegant way to take into account all the
words in the title while having a final fixed size. To recap, given
xj a title, we first embed its binary vector words w;. 1, . . ., wi,g; in
a semantic space and obtain u;,1, . .., u;,q,. We then aggregate all
the words using sum to form the final title #; = X1¢j<q, ui,j- We
feed the machine learning model with these ;.

3.2 Output labels

This section is specifically designed for the original method. Labels
are originally formated like “c1>c>. . .>cp,” as mentioned in sec-
tion 2. However, such format cannot be efficiently used as output
label because it would have to be parsed. Each leaf is reached by
only one path so it is theoretically possible to proceed to the pre-
diction task considering multiclass — an instance is associated with
one and only one leaf, which also corresponds to only one path. By
doing so, we do not take any advantage of the tree structure hypoth-
esis. Also, there exist some paths containing a very small number

Large-Scale Taxonomy Problem

@/é)\@ é
Figure 1: Example of a category tree. Valid labels are paths
starting from the root node 1 and reaching one of the leaves
4 to 8. One can also notice any valid label share the same

length. Each box represents the local information one need
to take into account when walking from the root node.

of instances. Therefore, we consider the tree structure and suggest
another way of performing prediction. We choose to transform
these raw labels y; into binary vectors z;. Our goal is to describe
the path from the root node to one leaf by giving to which direction
we go at each level. An easy way to proceed is to first sort all the
nodes by level, then we encode which node we go through using a
binary vector. For instance, the path 1>3>8 shown in figure 1 could
be written as:

(0,1,0,0,0, 0,1)

—_——— ——

level 1 ~—— ——
level 2

The first level group tells us to keep going through the node 3
— within a level, we use category integer representation to order
nodes. The first subgroup of the second level is filled out with zeros
for the reason that it corresponds to the nodes reachable from 2.
Since it is mandatory to go through the root node, we ignore it and
start out from the second level of the tree. If the tree is big, it implies
very large labels. In order to reduce the size of such label, we use a
simple trick as a reworked idea of anchor representation, used for
instance in [6]. This idea is used in the case of image recognition
where the number of contained labels can differ between images.

A label y; belongs to exactly one of the 14 trees, thus we only con-
sider the k'™ tree. The height of this tree is Dy as defined in section
2. We also recall that the depth of a node is its distance to the root
node. We define L. 4 to be the set of nodes of depth d and the set
My g ={IC| | C C Li 4 Aevery nodes in C have the same parent}
with d > 0. The set My, 4 gathers the number of children of the
nodes in the level d — 1. The compressed vector z; is of length
ri = Xi<d<D, Max My 4 and can be represented as follows:

zi = ()

S~—— S~——
level 1: G 1:=max My ; level Dy : Gk,Dk '=max Mk,Dk

Looking at the figure 1 as an illustration, each group of components
has the size of the biggest box at the considered level. After choos-
ing a node g in the path, we can only reach its children child(g).
Therefore the way we compress is by considering child(g) — one box
in figure 1 - instead of L 4 - the whole layer. However, depending
on g, the number of elements in child(g) might differ, which is why
we encode a level d using Gy, 4 components - the biggest box in

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

Step 1
A
Xi — t; —— L > T
|
Original |
method F—— = —— — Jd
Step 2 [i
By
POpupupupn— Ly — Z; —> i
Actual —
method —

Figure 2: (Both methods) Overview of the two step architec-
ture for prediction. It includes model A as first step and
depending on its result, the corresponding model among
B, ..., 813 handles the input as second step.

one level. It ensures we can always encode child(g) while setting
up a fixed size. Let’s fix an ordering for each child(g). Since we only
pick exactly one node per level, we set up the n component to be
1 if and only if we select the n'™ node of child(g). Otherwise, we
put 0. That is, the previous 1>3>8 path of figure 1 can be rewritten
like so:

(0,1 s 0,1,0)

—_— —_——

level 1: Gi ;=2 level 2: Gy =3
By doing so, we drastically reduce the size of the labels and give
a fixed representation given the tree k: indeed, recall from section
2 that given any tree k, all its labels share the same length. Albeit
this representation is dependent on the tree we choose, it is not a
problem here since we build a specific model for each tree.

We obviously need to first compute for each tree its level repre-
sentation, that is Gy 1, ..., Gy, p,. Then it is possible to transform
any y; into its corresponding z;. Conversely, it allows us to get the
raw format label gj; back from the predicted z;.

4 MODELS DESCRIPTION

This section describes two different methods as recalled in section 1:
our original idea along with the practical method. Both are based
on a two step model architecture since we deal with the 14 trees
separately and do not gather them into a unique one. The process
is to first predict the tree T; the current input belongs to, and then
find the entire path in that selected tree as the second step. First
step model is denoted by A, while the second step ones are writ-
ten By, ..., Bisz. Step one is common to both methodologies and
only the latter part is what changes between the two. We put in
section 4.1 and section 4.2 the respective explanations for step one
and step two.

4.1 First step: classification over the trees

Let us consider an instance x;. We feed the model ‘A with t; - recall
that t; is the preprocessed title coming from x;. Our goal is to first

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

determine to which tree this instance belongs to. For that purpose,
we define the model A to be a neural network, whose output is a
class between 1 and 14. If the instance x; is classified as k € [[1;14]],
it means the instance is part of the tree T;. and thus further consider
the model By as second stage process. We use a five layers fully
connected neural network. Since we classify over 14 trees, model’s
output size is also 14. Loss function is softmax cross entropy as loss
function since any input title is associated with exactly one tree
— the use of softmax operation transforms the raw output into a
probability vector.

4.2 Second step: prediction of the path

4.2.1 Original Method. Each of the model B4y, .. ., B13 is either
a shallow neural network or a deep neural network. All the models
are independent each other. Depending on the characteristics of a
tree, we rely on different machine learning methods.

First, when trees have simple structures, we use shallow feed-
forward fully connected neural networks, each of these composed
of three layers. The model outputs z;. A label z; contains multiple 1,
thus they do not represent a probability distribution. Actually, each
group Gi, . ..,Gp, of z; is a probability distribution itself. Then we
choose to decompose the loss function in such a way we apply the
softmax cross entropy over each group, and we finally aggregate
the resulting values using summation. If we denote each group of z;
by gi,1, - - -, gi, D, — Which are of respective length Gy 1, ..., Gk p,
— then the loss function £ for the model By of tree Ty is given by:

Li(Zi,zi) = Z cross entropy(softmax(g; 4), gi,a)
1<d<Dy

Next, we consider hard tree structures, that is trees whose labels
z; have a high dimension. For this purpose, we rely on deep neural
networks, inspired by image processing technique. Since we deal
with fixed inputs, we do not consider recurrent networks and in-
stead focuses on deep convolutional neural networks. Let us recall
that inputs t; are embedded in a 2000 dimensional semantic space
created using word2vec[7] and then aggregating all the words in the
title using summation. We want to take advantage of convolution in
order to retrieve expressive features before applying classical fully
connected layers at the end of the network. To that purpose we
suggest the use of ResNet[2] in its 50 layer flavor. Such architecture
is based on residual blocks composed of three convolutional layers
and a shortcut link between the input and output of the layer. A
more detailed view of the architecture is shown figure 3. It allows us
to enjoy the expressiveness of a deep architecture and is known to
be easier to train than other deep convolutional models like VGG([8]
or AlexNet[4]. The loss function is same as the former shallow fully
connected neural networks’ one.

4.2.2 Actual Method. As second step, we construct hierarchical
models. Let us recall that step one provides us the tree k the current
input belongs to. Put another words, we know the first category
c1 of the path y; = (c1,...,cp,). In order to predict the full path,
we construct 13 hierarchical classifiers By, . . ., B13 whose task is
to predict the rest of the path c; to cp, once at a time. Notice that
as for tree 14, the answer becomes obvious since T4 has only one
node.

Q. Labernia et al.

Hyperparameter Value Models
Model topology ResNet50[2] or Shallow NN All
Regularization {2-regularization All
. Softmax cross entro A
Loss function Vk € [1,13], L1 Py Bs
Optimizer Adam|3] All
Batch scheme Mini-batches (< 32) All

Table 2: (Original method) Gathered specifications as for
neural networks models. We use the following notation
Bs = 81, N ,813.

Residual Bottleneck Block ResNet50

Input
v

Convolution layer

relu

Convolution layer

¢ relu

Convolution layer

¢ relu

Convolution layer

16
Blocks

Output

Figure 3: (Original method) Broad representation of the
ResNet50 architecture. The number of stacked layers facili-
tates relevant features extraction and shortcuts help to train.
Each block contains a bottleneck convolutional structure.

We build the second model B of the tree k as follows. It is
based on a set of models By, ,, where n is a parent node label of
the tree k. The goal of each classifier By , is to output the child
node corresponding to the input title. Starting from the root node
of the tree k, we can navigate in the tree by predicting the nodes
of the path y;, once at a time. Theoretically, this strategy seems
to be computationally expensive since the number of parent node
increases exponentially with the layers. However, the maximum
number of node is less than 1000, which means that we can afford
such strategy.

Each classifier By ,, is fed with bag of words titles x; and outputs
the child node of n of the tree k which corresponds to our input.
We use random forest[1, 5] algorithm which has got 150 trees - this
hyperparameter is fixed for all By ,,. As for the implementation, we
rely on the open source library scikit-learn (http://scikit-learn.org/).
Algorithm 1 shows how to build the model B;. When classifying
a title x; in tree k, we call PredictionProcedure(k, x;, T, @) as de-
scribed in algorithm 2. The symbol T refers to the root node of the
tree k. This simple algorithm consists in starting from the root node

Large-Scale Taxonomy Problem

and going deeper once at a time by choosing the corresponding
classifier inside the set By.

Algorithm 1 HierarchicalRandomForest

Input Current node n
Training data S, = {(x, ¢,,) | cn € child(n)}
Output Trained model
1: if n is not a leaf node then
2 Bk, n < RandomForest(S)
33 Br « {Bin!}
4 for m € child(n) do
5 Sm — {(X, ¢m) | ¢m € child(c)}
6 B « By U HierarchicalRandomForest(m, Sy,)
7 end for
8 return B
9: else
10: return @ # It reaches leaf node.
11: end if

Algorithm 2 PredictionProcedure

Input Tree index k
Title as bag of words embedding x
Current node n
Current path p

Output Augmented path

while 7 is not a leaf node do
p < p with ¢, appended
Cn < Bk,n(x)
PredictionProcedure(k, x, c;, p)
end while
: p « p with ¢, appended
return p

NN RN

5 EXPERIMENTAL RESULTS

In this section, we report results of the Sigir Rakuten workshop
official evaluation. As stated in section 2, 0.8 million train data and
0.2 million test data are provided. As for test data, ground truth is
not given. A leaderboard system shows up the results at each stage
of the evaluation process. The computed evaluation metrics are
weighted-{precision, recall, f1} on the test set of exact Categoryld-
Path match and a ranking is set over the fl1-score. Visible in table 3
results we showed the best result in each original and actual model.
The Rakuten Data Challenge is split into two evaluation stages. The
first stage corresponds to the evaluation over a subset of the test
dataset and multiple submissions are possible. On the other hand,
the second stage consists of only one evaluation of the method over
the whole test dataset. Both original and actual methods have been
tested during the first stage while only the actual one is used for
the second stage. Table 3 summarizes these evaluations along with
their corresponding evaluation measures. The final ranking of the
method is 20 over 28 teams.

It is clear that our original method does not provide satisfactory
results. We suppose the main reason relies on how complex category
trees structure is and the number of data available for training
considering all distinct paths. It has to be said that this original

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

Method Precision Recall F1
Original (Stage 1) = 0.10 ~0.08 = 0.07
Actual (Stage 1) 0.75 0.76 0.74
Actual (Stage 2) 0.77 0.76 0.75

Table 3: Results of the two methods for each stage.

method’s issue is overfitting. The first consideration is that given
a tree, it might happen that a small number of training data is
only available. Even considering tree with large amount of data,
the original method fails to provide good generalization property.
Indeed, going deeper in the tree means having less data available for
training. Since deep neural networks are used in this context, deep
levels cannot be learned properly. This leads to get good results
on the training set and a very poor generalization ability. On the
other hand, the actual method provides good performance because
it relies on decision trees — more precisely, random forest algorithm
— combined with a simple bag of words embedding. Predicting
independently children of each node of the tree with such technique
gives us insurance that the learning process will lead to good and
comprehensible results even if near the leaves.

6 CONCLUSION

In this work, we suggest a two layer architecture which tackles the
large-scale taxonomy challenge as part of Rakuten Data Challenge
in SIGIR 2018 workshop. While putting the accent on machine
learning methodology, data preprocessing represents a major point
of attention. We create bag of words then embed each words of
the vocabulary in a semantic space and aggregate words of title
using summation. Bag of words are used for the actual method’s
second step while the further embedding is used for the rest. We
build a two step architecture to predict the final path associated
with a newly seen instance. The first step model A chooses which
tree we have to consider — for instance the k! -, we then feed
the right second step model — B; — to output the encoded path.
This second step is split into two different methods: original and
actual. Our original idea relies on a one shot fixed scheme encoding
of the whole category path. We rely on several machine learning
techniques: shallow feed-forward fully connected neural networks
and ResNet architecture. As for the actual method, we make usage
of hierarchical classification model composed of random forests
models. This method provide nice performances compared to the
former one as shown in section 5.

Because of the imbalanced classes and complex data structures,
our original strategy does not offer good performances. However,
we think that such method becomes very efficient when having
enough samples and a uniform distribution over the classes. Since
this situation appears in the shallow levels of most of the trees, we
think it could be worthy of combining the original method with the
actual one in order to improve overall performances.

ACKNOWLEDGEMENT

This work was funded by ImPACT Program of Council for Science,
Technology and Innovation.

SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

REFERENCES

[1] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5-32.

[2

[3

[4

—

= =

DOI: http://dx.doi.org/10.1023/A:1010933404324

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/
abs/1512.03385

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097-1105. http://papers.nips.cc/paper/
4824-imagenet-classification- with- deep- convolutional-neural-networks.pdf
Andy Liaw, Matthew Wiener, and others. 2002. Classification and regression by
randomForest. R news 2, 3 (2002), 18-22.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2015. SSD: Single Shot MultiBox Detector.
CoRR abs/1512.02325 (2015). http://arxiv.org/abs/1512.02325

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
CoRR abs/1310.4546 (2013). http://arxiv.org/abs/1310.4546

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014). http:
//arxiv.org/abs/1409.1556

Q. Labernia et al.

http://dx.doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	Abstract
	1 Introduction
	2 Data Overview
	3 Data Preprocessing
	3.1 Input Features
	3.2 Output labels

	4 Models description
	4.1 First step: classification over the trees
	4.2 Second step: prediction of the path

	5 Experimental results
	6 Conclusion
	References

