Product Categorization with LSTMs and Balanced Pooling Views

Michael Skinner*
Seattle, Washington

ABSTRACT

Recurrent Neural Networks (RNNs), and LSTMs in particular, have
proven competitive in a wide variety of language modeling and
classification tasks. We explore the application of such models to
the Rakuten Data Challenge, a large-scale product classification
task. We show that a straightforward network architecture and
ensembling strategy can achieve state of the art results when trained
effectively. We also demonstrate the positive impact of tightening
the connections between recurrent and output layers through the
use of pooling layers, and introduce the Balanced Pooling View
architecture to take advantage of this. Our final solution, produced
with a bidirectional ensemble of 6 such models, achieved a weighted
F1 score of 0.8513 and won the challenge by a wide margin.

KEYWORDS

Rakuten Data Challenge; text classification; neural networks; deep
learning

1 INTRODUCTION

The Rakuten Data Challenge. The goal of the challenge is to
classify each product into one of 3008 categories given the title of
the product. As an additional challenge, the categories are highly
unbalanced and intrinsically noisy as sellers take responsibility for
categorizing their own products.

The dataset contains 1 million categorized products, of which 80%
were available for training and the remaining 20% were reserved
for a test set. The test set categories were not available during
the challenge, except through a provisional leaderboard to score
solutions on a subset of them.

Solutions were scored using the category-weighted average of F1
scores, with the leaderboard also showing weighted precision and
recall. That is to say, if there are some labeled documents D, with a
set of documents D, per category c in C, and a corresponding set of
documents D, per predicted category, then the weighted F1-score
is:

IDe N D|
recall, = ———
[De|

.. |Dc N bc'

precision, = ————
D] "

Fl. =2 precision, - recall.
c=2-

precisionC + recall,

i = > 1Del - F1

ceC

weighted-F1

*Correspondence to: research@mcskinner.com

It is worth noting that the weighted recall used for this challenge
is equal to accuracy. With some small abuse of notation in the last
line:!

weighted-recall |D|‘;|DC recall,

1De N D| N De|

‘|D|Z' b

= i Z IDe N Del

ceC
_IDnD]
|D|

Our contributions. Our contributions are as follows: 1) We
achieve state-of-the-art results for this dataset, applying the method-
ology of [6, 9] by focusing on regularizing and training straight-
forward LSTM architectures effectively. 2) We extend the above
methodology to the problem of sizing a configurable model archi-
tecture and evaluating potential design improvements. We note
that the resulting model architectures are robust to changes to the
training schedule, and vice versa. 3) We introduce the Balanced
Pooling View architecture, an extension of concat pooling from [6],
to extract signal from variable-length recurrent outputs, and show
that this improves performance compared to existing architectures.

Overall challenge results. Our approach won the challenge by
a wide margin. Our final submission achieved an F1 score of 0.8513
on the test set, maintaining the recall of the next best solution
while improving precision from 0.8425 to 0.8697, decreasing the
false positive rate by 17.5% from 15.75% to 13%.2 Our position at or
near the top of the leaderboard was held for much of the contest, an
advantage of the simple but methodical approach to model design,
training, and iteration. In addition, our models do not take long to
train. It takes less than 24 hours on a commodity GPU to train our
final 6-network ensemble.

2 RELATED WORK

Several recent papers have shown the broad applicability of straight-
forward LSTM architectures. [6] were able to use transfer learning
on top of the same pre-trained LSTM architecture to achieve state-
of-the-art results on several text classification tasks. That work
builds on the work of [9], who used a single AWD-LSTM archi-
tecture to achieve state-of-the-art results on both character- and
word-level language modeling benchmarks.

The numerator D, N D, is the number of true positives i.e. correctly classified
documents for category c. The sum of this over all categories C is the number of
correctly classified examples in the entire dataset.

2While we can’t technically avoid false positives, we can effectively "not guess" by
picking a very rare category where they will not have a noteworthy impact on the
weighted scores.

eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

1e+05-

1e+03 -

Frequency

1e+01-

10 1000
Rank

Figure 1: The category frequencies are Zipfian for the most
common categories, but without the long tail for rarer cate-
gories.

There is also increasing interest in the topic of robust training
schedules, often with aggressively high learning rates. [8] intro-
duced the cosine annealing schedule, which follows the descending
shape of a cosine wave. Training starts with a high learning rate,
then drops to lower learning rates, before plateauing to finish the
cycle. Results obtained after one or more iterations were found to
have better generalization error than those from other learning
rate schedules. A symmetrical low-high-low triangular learning
rate schedule from [14], dubbed Cyclical Learning Rates (CLR) was
shown to have similar performance and generalization properties.
It was promptly refined into the 1cycle policy in [15], which added
an additional annealing phase and suggested a single policy cycle
rather than several as in [8, 14]. The results from [6] were obtained
with a Slanted Triangular Learning Rate (STLR), an asymmetrical
variant of CLR in which learning rate is increased over less time
and then decreased for more.

3 DATA PREPARATION
3.1 Exploratory Analysis

With 800k examples available for training, this constitutes a fairly
large dataset. With 3008 categories to pick from, it also constitutes
a large-scale classification problem. For comparison, the text classi-
fication datasets in [6] ranged in size from 5.5k to 560k examples,
but with only 2 to 14 categories. The categories are also highly
unbalanced, although we see in Figure 1 that the tail is not quite as
long as if it were Zipfian.

Due to time constraints, the product titles were not examined
closely. A brief overview is given in Figure 2, but only a few things
were relevant to the modeling: 1) The maximum sequence length
of 274 still allows for reasonably large batches to fit into GPU
memory. 2) The wide distribution of lengths implies some potential

Michael Skinner

15000 -

[
> .
& 10000 -
S *
= S .
IjQ_ ’ e
(4 o
k4
])
5000 -
» .
<

0 100 200
Title Length

Figure 2: Product titles range in length from 1 character
up to 274. The bulk of the data appears to be normally dis-
tributed around a mean just below 60, with a long tail. How-
ever there is an obvious artifact which peaks at 80 charac-
ters. This is presumed to be some systemic behavior, like a
display limitation.

for inefficiency if long titles are placed into batches next to short
titles, which results in a large number of meaningless pad tokens
to process.

3.2 Tokenization

Due to the high incidence of symbols and alphanumeric product
codes, we opted for character-level tokenization. Word-level tok-
enizers are not well suited for this task, and poor tokenization leads
to an unnecessarily large and sparse parameter space to optimize
over. To further alleviate sparsity concerns, any characters that
occurred fewer than 10 times were replaced with an "unknown"
token. Adding in typical tokens for padding, beginning, and end of
string, the final vocabulary size was 128 tokens.

Categories were treated as an opaque classification label. No
attempts were made to leverage the existing taxonomy rather than
letting the networks learn their own. Representation learning is
quite powerful, and there is some risk of adversely biasing the
results by imposing a hierarchy in advance.

The int-encoding of both categories and characters was fre-
quency ordered, such that tokens with higher frequencies had lower
indices. This is a common practice, and allows for simple cutoff-
based implementations for techniques like adaptive softmax from

[3].
3.3 Training/Validation Split

We set aside 25% of the training data as a validation set, using
stratified sampling to ensure good representation across categories.
We chose this set to have 200k examples, like the test set, in order to

Product Categorization with LSTMs and Balanced Pooling Views

ensure that all model changes could be accurately evaluated during
the challenge. This reduced reliance on the public leaderboard and
enabled a methodical process for new ideas from introduction to
deployment.

At the end of the challenge, with the model architecture finalized
and training parameters dialed in, the validation data was used to
train one last batch of models for the final submission. The 33%
increase in training data improved the F1 score on the leaderboard
by nearly 0.01, which was enough to change the final standings
from a tossup to decisive.

4 MODEL ARCHITECTURE

4.1 Baseline Model

Following the lead of [6, 9], the baseline model uses a straight-
forward LSTM architecture. Character tokens are looked up in an
embedding of size n,, which feeds into a multi-layer LSTM of width
n. and depth ng, which feeds into a linear layer of width n, = |C]|
to produce a score for each category. In addition, there are dropout
layers after the embedding, between the recurrent LSTM layers, and
after the LSTM output. Those have respective dropout probabilities
de, dy, and d,.

The model sizing process began with a deliberately small archi-
tecture. Following a rule of thumb, n, = max(|V|/2,50) = 50 for
our 128-wide vocabulary. The values n,, = 64 and ng; = 2 were cho-
sen to be deliberately small, and because the latter is the PyTorch
default. Dropouts were chosen based on an existing example, with

. = 0.15,d, = 0.25, and d,, = 0.35.

This initial model was quickly tuned and tested as per the method-
ology in 5.2. After initial results were shown to quickly plateau, n,,
was doubled and the model rerun until this phenomenon stopped
at a width of 512.

4.2 Concat Pooling

The idea of concat pooling, as proposed in [6], is to augment the last
LSTM output with average- and max-pooled aggregates over the
entire sequence. The idea is that the network can become excited
about certain categories at any point during the sequence, and the
average and maximum are able to capture this information more
easily than the final output. In our experiments, this was found to
be true, increasing validation precision, recall, and F-score by 0.01,
a substantial increment on the leaderboard. We note a few likely
advantages from the pooling layers:

(1) Short-circuiting the outputs from all time steps directly to
the loss function means direct feedback for the earlier time
steps, leading to faster and more reliable convergence.

(2) The same direct connection introduces a sort of data aug-
mentation for the RNN output layer. Instead of only solving
the translation problem for the last hidden state, it benefits
from successfully understanding the intermediate states as
well.

(3) The average pooling is similar in spirit to the ResNet from
[5], in which subsequent computations only need to make ad-
ditive adjustments, i.e. error corrections, on the output from
the previous layer. It is possible that this idea of sharing re-
sponsibility for the overall prediction has nice generalization
properties that are shared across domains.

eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

4.3 Balanced Pooling View

Since average- and max-pooling aggregations were able to help
the output layer extract more information from the recurrent layer,
it stands to reason that additional aggregates might also help. Al-
though not commonly mentioned, min-pooling is trivial to imple-
ment as minpool(x) = —maxpool(—x), and therefore easy to test. In
addition, we believe that the use of both min- and max-pooling
might encourage the network to use the full range of possible acti-
vations, and therefore become more expressive, than when using
max-pooling alone to prefer large activations. We call this a Bal-
anced Pooling View (BPV) architecture, and find that it increased
the F-score by 0.006 for a single network, trained for 40 epochs, as
compared to concat pooling without the min-pool addition. This
architecture and its precursors are outlined in Figure 6.3

It is worth noting that the widening of the pooling options also
expands the size of the final output weight matrix, and therefore
the capacity of the model. In addition, independent dropout across
the views means that most of the 512-wide recurrent outputs will
be at least partially observable most of the time.

To understand the impact of pooling alone, we trained a separate
network with the same capacity as the concat pooled networks but
multiple copies of the final RNN output rather than the different
pooled views. This network did not surpass the performance of the
non-pooled baseline model,* so we conclude that the performance
improvement comes from increasing the ability of the network
to extract signal from the recurrent outputs. See Figure 6 for a
visualization of the final BPV architecture.

4.4 Ensembling

Previous work has shown the benefits of bidirectional training
on sequence tagging ([12]) and text classification ([6]). Reversing
the input sequence acts as a sort of data augmentation, and train-
ing a second independent model adds the known advantages of
ensembling as in [11].

Bidirectional training is more powerful than a simple 2 network
ensemble. Various ensembles of 2 networks in the same direction,
forward or backward, were never as good as bidirectional ensembles.
The effect of directionality is explored a bit more in Section 5.7.5.
This technique improved our model performance as well, increasing
the F1 score by 0.013 with pooling and 0.011 with BPV, and is
another significant increment on the leaderboard.

As many additional models and training parameters were tested,
it was found that it was not uncommon for solutions to converge
to the current best single model result. Despite the lack of single
model gains, building an ensemble from several models was found
to improve overall performance, continuing to fall in line with
results from [11]. An 8 network ensemble, 4 each forward and
backward, increased the F-score by another increment of nearly
0.01 on the validation set.

3This has been placed on the last page of this paper to avoid disruption to the layout.
4To make things worse, it also had trouble converging.

eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

5 EXPERIMENTS

5.1 Implementation Details

All models were implemented in PyTorch ([10]) and trained on a sin-
gle Paperspace P5000 instance with a 16GB NVIDIA Quadro P5000
with 2560 CUDA cores. We used the cross-entropy loss function,
which implies a softmax over the final activations.

5.2 Training Methodology

Following the advice in [13], the batch size was increased until
GPU memory struggled to keep up, which it did at a batch size
of 256. Due to large variances in the text lengths leading to an
unnecessarily large and inefficient number of pad tokens per batch,
it was desirable to organize the batches to have similar lengths. In
order to avoid the same batch ordering every time, the sorting is
done in chunks of several batches at a time. Sorting 50 batches of
examples at a time cut training times by approximately half, and
it also appeared to have a regularizing effect. This is perhaps due
to an observed correlation between title length and categorization
difficulty, in which shorter titles are more difficult. Experiments
with a fully randomized training set not only lost the 2x speed gain,
but also resulted in poorer performance. Changing the width of the
sorting window to 10 or 250 batches did not appear to impact the
results.

Models were optimized using SGD with momentum, using a
cross-entropy loss function. Adam was attempted a few times, but
it required learning rates that were two orders of magnitude smaller,
and still exhibited difficulty in converging. This is in line with re-
search from [16] on the weakness of adaptive gradient methods. [4]
provides further reason to believe that SGD leads to faster training
and better generalization error.

In general we rejected training or architectural changes that sub-
stantially reduced the learning rate. This follows the insight from
[13] that high learning rates have a regularizing effect, improving
generalization error while also reducing training time. Our rule of
thumb is a sort of corollary: if high learning rates are desirable, then
it is undesirable when modeling variants are surprisingly intolerant
to those same learning rates.

5.3 Hyperparameter Tuning

When training each new model architecture, we followed the disci-
plined approach from [13]. First the peak learning rate was chosen
using a learning rate sweep as described in [14]. The sweep starts
with a low learning rate, at which nothing much happens. As the
learning rate continues to increase, the training and validation loss
eventually drop, level out, and then diverge. An example of this is
shown in Figure 3.

Good peak rates were found to exist just short of the basin in
which loss has leveled out. Our methodology was to choose the first
learning rates to be on the high end of plausible, sometimes in the
basin, and then decrease the estimate until a short training run of 5
epochs trains without exhibiting signs of divergence or oscillation
at the peak rate. Peak learning rates found this way were near 1,
and sometimes even higher. For the highest performing models,
the learning rates were further tuned by hand within a small range
to squeeze out remaining performance gains. The majority of our

Michael Skinner

training loss

0.0 05 10 15 20 25 30
learning rate

wvalidation loss
L=

0o 05 10 15 20 25 10
learning rate

accuracy
L) [*¥] - w (=21

=]
=

=
(=

0o 05 10 15 20 25 0
learning rate

Figure 3: A typical learning rate sweep, run for 1 epoch with
alearning rate that increases linearly to 3. The learning rate
levels off substantially around 0.8, with one last drop around
1.3. Using a 40 epoch 1cycle policy, peak learning rates of 0.7,
0.8, and 1.0 were all found to perform well.

models, including those used for our final submission, were trained
with a learning rate of 0.8.

Momentum was also chosen according to the approach in [13],
running a learning rate sweep for several options and comparing
the loss curves. Good momentums have nice convergence proper-
ties like a quick descent, a low minimum loss, and a longer basin
before divergence. The best momentums for this challenge were
around 0.95, which is fairly high given the observation in [9] that
momentum is not usually preferred for language modeling. While
our experiments with low momentum SGD were able to achieve

Product Categorization with LSTMs and Balanced Pooling Views

0.3

L R -

learning rate
(=]
=

momentum

03
02
01
0.0
0 20000 40000 60000 80000
iterations

eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

0.94

0.92

=
o
=

0.88

0.86

0 0000 40000 60000 BOO0O
iterations

Figure 4: A typical 1cycle policy with a peak learning rate of 0.8, an initial learning rate 20x smaller, momentum ranging from
0.95-0.85, and with 10% of the iterations reserved for final annealing at very low learning rates. This example was used on a

training run of 40 epochs with 2344 batches per epoch.

very high learning rates, as high as 10, the models were not able to
converge to low losses.

Weight decay was chosen similarly, with early experiments
quickly showing that weight decay above 0 led to difficulty with
convergence. Due to time considerations, this parameter was left
at 0 for the remainder of the SGD runs rather than trying to tune it
further.

5.4 Training Schedule

We used the 1cycle learning rate policy from [15]. Learning rates
follow a low-high-low triangular schedule as in [14], followed by a
few iterations of increasingly very low learning rates. The typical
low rate used was 10-20 times smaller than the peak, and the very
low rate is a few orders of magnitude smaller still. See Figure 4 for
an example, with the parameters selected using the methodology in
Section 5.3. A few variations like the Slanted Triangular Learning
Rate (STLR) from [6] were tested and not found to perform any
better or worse than the 1cycle policy. The results were found
similarly insensitive to the ratio of the peak learning rate to the
lower starting value.

In the early phases of the competition, networks were trained
for 20 epochs using a 1cycle policy with a peak learning rate
of 1,5 with the remaining parameters as specified in Figure 4. In
the later phases of the competition networks were trained for 40
epochs, with the peak learning rate reduced to 0.8. This is exactly
the parameterization shown in Figure 4.

When testing new model architectures or training parameters,
we used short training runs of 5 epochs to filter for clear improve-
ments. This was enough to distinguish ideas, while keeping the
training time within 30 minutes. Each doubling of the schedule
length to 10, 20, and then 40 epochs was shown to improve results,

SFor the most common network architecture. When dropout was increased, learning
rate was decreased to balance the increased regularization from higher dropout.

and so the full training schedules were again chosen based on tim-
ing considerations. In the early phases of the challenge we used a
schedule of 20 epochs so that a competitive 2 network ensemble
could be trained in under 4 hours, enough to test a few quality
ideas per day. The final schedule of 40 epochs was chosen so our
tuned model, a bidirectional ensemble of 6 BPV networks, could be
trained in under 24 hours. There were no apparent gains from a 60
epoch training cycle, though we also did not take time to carefully
re-tune the hyperparameters.

5.5 Model Variants

This section outlines the most interesting of the various extensions
that we tried to add on to the basic model. None led to a performance
improvement, but several maintained the same performance.

5.5.1 Larger Models. While decreasing the LSTM width by a
modest amount did decrease performance, no increases to the model
width or depth were able to increase model performance. Adding
additional layers before or after the LSTM led to overfitting or other-
wise poor convergence. Increasing LSTM depth ng to 3, increasing
the LSTM width n,, by 50%, and increasing the embedding size n,
to 64 all led to the same performance as the baseline model.

5.5.2 Regularization Tuning. We tested a variety of changes to
the dropout magnitude and mix, and none were found to improve
F1 score. Lowering the dropout in any of the layers was prone
to problems with overfitting. In particular, d, = 0.1 is a common
choice, but did not add enough regularization and led to overfit-
ting in our experiments. This includes experiments in which we
increased to de = 0.4 and d, = 0.4 to match the tuning from [6].

Increasing the dropout by a consistent factor across all layers
resulted in better cross-entropy loss, but did nothing to improve
discriminative accuracy. We also tested the introduction of a batch
normalization layer right after the LSTM but before dropout and

eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

decoding. The resulting networks were sometimes competitive, but
prone to diverging during the fitting process.

5.5.3 RNN Variants. Swapping out the LSTM for simpler models
like GRU led to degraded performance. The QRNN model from [2]
was found to be much faster to train as advertised, but also suffered
from slightly degraded performance compared to LSTM.

5.5.4 Adaptive Softmax. Given the unbalanced nature of the cat-
egories, it seems worthwhile to focus network bandwidth on high-
frequency categories rather than the rare ones. Adaptive softmax,
as proposed in [3], does this by partitioning the output categories
and then using increasingly small bottleneck layers in front of each
partition to limit the number of weights that need to be learned. No
variation of this technique managed to improve upon the concat-
pooled network, which apparently was not having trouble with
this number of categories as compared to the O(million) weights
to which adaptive softmax intends to scale.

5.5.5 Training Variants. Noting the positive results that [1] had
with an auxiliary loss function, we experimented with accuracy as a
weighted component of the loss function. Even at high weightings
this did not appear to have a substantial effect on performance.

5.6 Prediction Generation

The model is trained according to a cross-entropy loss function,
but the challenge is scored according to a weighted F1-score. A
simple highest probability wins strategy is not optimal in this case,
and it is better to select a discriminative cutoff for each category to
maximize an estimate of the F1-score. This can be done directly from
the probabilities output by the network. Assuming well-calibrated
probability estimates...

...the estimated number of true examples n;,y for each category
is the sum of probabilities for that category.

...the estimated number of true positives n;, given a certain
discriminative cutoff is the sum of probabilities that make the cut.

...the number of guessed positives ngyess given a cutoff is the
number of probabilities that make the cut.

Given those estimates, it is possible to estimate the precision,
recall, and F1-score for each potential cutoff. Then the cutoff is
chosen by taking that for which the F1-score is maximized. It is
straightforward to compute this efficiently by sorting the proba-
bilities and using cumulative computations. See Algorithm 1 for
details. This strategy tends to increase precision at the expense of
recall, boosting the validation precision of bidirectional BPVs from
0.828 to 0.854 and an F1-score of 0.827 to 0.836, but at the cost of
dropping recall from 0.833 to 0.826.

5.6.1 Probability Calibration. Since the final probability esti-
mates are not guaranteed to be well calibrated, we apply a simple
piecewise linear model to ensure that the probability estimates are
suited for the F1 tuning. To do so, we first computed the actual ac-
curacy for each 1% increment of predicted probability. A prediction
of 20% should be correct 20% of the time, and if it is only correct
10% of the time then the raw estimate needs to be halved to get a
true probability.

Figure 5 shows these raw calibration factors, which are a bit
noisy. Rather than using these directly, we applied a simple moving

Michael Skinner

ALGORITHM 1: F1-Score Optimization

Data: P, probability estimates for each observation, for a
single category.
Result: p.,,;, an F1-optimizing cutoff below which values in P
should be rejected as predictions.

Nerye < sum(P)
sort P in descending order

Nep,o < 0

ﬁcut «—0

scorepesy < 0

fori <« 1to |P| do
Nguess,i < i

Nip,i < Nep,i—1 + Pi
reci < Nip,i/Ntrue

preci < ”tp,i/nguess,i
) _ reci-prec;
score; « 2 reci+prec;
if score; > scorep.s; then
Peut < pi

SCOrepesy <— score;

end
—— calibration
1s smoothed
approximation
16
14
12
10
0.8
06
0o 02 04 06 08 10
p_guess

Figure 5: Raw probability estimates from the ensemble tend
to be overconfident. Low probability estimates need a bit
of a boost, while mediocre probabilities need to be deflated.
A piecewise estimate is very close to the smoothed calibra-
tions.

average to visualize the broader trend. Since this trend appeared
piecewise linear, we applied such a fit to the data. Figure 5 shows
these smoothed probability factors as well. Applying these adjust-
ments to true up the raw network probabilities had a small but
positive effect on the validation performance, indicating an im-
proved fit. However, to be conservative, these estimates were not
applied to our final submission.

Product Categorization with LSTMs and Balanced Pooling Views eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

5.7 Results Table 1: Model Performance (Best-Wins, 20 Epochs)

5.7.1 Model Architecture. Table 1 shows the validation set per-
formance for each iterative improvement of the network architec- Model Precision Recall F-Score
ture, using the preliminary training schedule of 20 epochs and a Baseline 0795 0.804 0.796
simple best-wins strategy for selecting the prediction. We leave Concat Pooling 0806 0813 0.806
accuracy out of the tables, since it is the same as recall as shown Balanced Pooling View 0809 0816 0.809
in Equation 2. The introduction of concat pooling increases per- Bidirectional (CP) 0820 0826 0.819
formance by 0.01 or so on all evaluation metrics, and BPV adds an Bidirectional (BPV) 0821 0827 0.820
addition 0.003 on top of that. Using pairs of bidirectional networks
led to another boost of 0.01, but that also requires twice as long to Table 2: Model Performance (Best-Wins, 40 Epochs)
train. Section 5.7.5 provides a more apples-to-apples comparison.

5.7.2 Training Schedule. In Table 2 we show the benefit of in- Model Precision Recall F-Score
creasing the training schedule from 20 to 40 epochs. The concat Concat Pooling 0807 0814 0.808
pooled networks benefit from a modest scoring boost of 0.001 to Balanced Pooling View 0814 0.820 0.814
0.002 for a single network and 0.003 to 0.004 for a bidirectional Bidirectional (CP) 0823 0829 0.823
pair. The BPV architecture took better advantage of the increased Bidirectional (BPV) 0828 0.833 0.827
time, with scores growing 0.004 to 0.005 for a single network and
0.006 to 0.007 for the bidirectional network. In taking advantage Table 3: Model Performance (F1-Optimized, 40 Epochs)

of the extra epochs, BPV was able to grow the performance gap to
alternatives and highlight the increased modeling capacity of the

new architecture. Model Precision Recall F-Score
Concat Poolin 0.838 0.805 0.819

5.7.3 F1 Optimization. Table 3 shows the results after the F1 &
timizati g Th £ F1 optimization h) Balanced Pooling View 0.842 0.812 0.824
°p T,“Z? on Pt’rocg tu;e e use (:iF op “;“m. ton has a ¢ eaé Bidirectional (CP) 0.852 0.821 0.833
positive impact on both precision and F-score. Precision is increase Bidirectional (BPV) 0854 0.8% 0.836

by nearly 0.03 for all networks, while F-scores are all higher by 0.01
or so. This comes at a smaller cost to recall, which falls off by up
nearly 0.01 for some model architectures. This approximately 3 to
1 tradeoff of recall for precision is a good one to make in terms of
F1 score, and a result of choosing to break any near-ties away from Ensemble Size (in pairs) Precision Recall F-Score
large and precise categories. 0828 0.833 0.827
0.833 0.838 0.832
0.835 0.840 0.834
0.836 0.841 0.835
0.837 0.841 0.835

Table 4: Ensemble Performance (Best-Wins, 40 Epochs)

5.7.4 Ensembling. In Table 4 we show the performance improve-
ment for increasing ensemble sizes, using later stage networks
trained for 40 epochs. The 1-pair ensemble here is the same as
the bidirectional BPV results in Table 2. There is a big step when
increasing from 1 to 2 pairs, but results quickly level off after an
ensemble of even 4 pairs. Our final submission was generated by 3
pairs of networks trained with validation data included. A solution

G W N =

Table 5: Ensemble F1 Scores (Best-Wins, 40 Epochs)

with 4 pairs decreased the test scores slightly, and so we reverted Model 2 Networks 4 Networks
to a previous submission. Forward 0.825 0.830
5.7.5 Bidirectionality. Finally we examine the impact of direc- R?V.erse. 0.827 0.831
Bidirectional 0.827 0.832

tionality on validation set results. Table 5 shows the best-wins F1
scores for a few ensembles, while Table 6 shows the optimized
F1 scores. Interestingly, we found that reverse networks perform
slightly better than forward networks. Balanced bidirectional en-

Table 6: Ensemble F1 Scores (F1-Optimized, 40 Epochs)

sembles outperformed equivalently sized one-way ensembles in Model 2 Networks 4 Networks
either direction. Forward 0.835 0.839

Compared to the results in Table 2, it is clear that the bulk of the Reverse 0.835 0.840
improvement comes from ensembling. With only forward networks Bidirectional 0.836 0.841

a single model reaches a best-wins F1 of 0.814, adding a second net-
work improves to 0.825, and doubling the ensemble to 4 networks
improves again to 0.830. By comparison, an F1 increase of 0.002 for
reversing every other network is more modest. It is nonetheless a
noticeable improvement and does not add to the training time, so
it is worth including as a part of the ensembling strategy.

eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA

2-Layer
Input Embedding LSTM Activations
d d)
808> |—0——0~0~0 |_/_|
E —0O— —

I

)
T

-
-

|
T

)
[

|
Il

n
g —O——
<E0S> ——(O—] [

Michael Skinner

Pooling

E Final State
%___,..-_.._‘_ Average
Pvtl Max-Pool

m Min-Pool

--------- = Typical RNN

----- =Concat Pooling

-~Balanced
Pooling
View

Linear
Layer

Category
Scores

Figure 6: An illustration of the core RNN architecture, as well as Concat Pooling and BPV enhancements.

6 FUTURE WORK

Recalling the model refinements in section 5.5, we note that the
training process achieved remarkably similar results across a wide
variety of mutations to the model architecture. This was true of
both model changes as well as modifications to the learning rate
schedule, and is an encouraging result since it implies saturation of
the current model architecture and training methodology. It also
implies that further improvement is more likely to come from some
enhancement to either the input representation, or from additional
improvements to the extraction of signal from the recurrent layer
as in sections 4.2 and 4.3.

The input representation at this point is quite simple, and has not
yet been well explored. The cutoff of 10 occurrences for character
inclusion has not been challenged, and it is possible that more to-
kens could increase the model power. If that conjecture is true, then
it might also be worthwhile to try a hybrid word level tokenization
in which rare words are split into characters. Another alternative is
to try a hierarchical model as proposed in [7], who were working
on a short-phrase language identification task which bears some
similarity to this one. The idea of avoiding sparsity problems by
computing the word embeddings as a convolution over character
embeddings seems like it might apply well to this problem.

It is also possible that there are additional pooling or aggregation
techniques which could bolster the connection between recurrent
and output layers. An attention mechanism is one option, which
could use convolutions as in [1] to weight the most interesting time
steps. Multiple such attention vectors could also be generated and
viewed together, and network capacity could be tuned by increasing
both the complexity and number of such signal extractors.

ACKNOWLEDGMENTS

The author would like to his colleagues at Duetto for supporting
and embracing this research, even though it was done off the clock.
Thank you as well to the fast.ai community for developing and
supporting an amazing MOOC and deep learning library. Finally,

thank you to the challenge organizers for fostering a friendly and
collaborative environment around this new dataset, providing valu-
able feedback, and for answering the author’s numerous questions
throughout the process.

REFERENCES

[1] Mikolaj Binkowski, Gautier Marti, and Philippe Donnat. 2017. Autoregres-
sive Convolutional Neural Networks for Asynchronous Time Series. CoRR
abs/1703.04122 (2017).

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. 2016.
Quasi-Recurrent Neural Networks. CoRR abs/1611.01576 (2016).

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé
Jégou. 2017. Efficient softmax approximation for GPUs. In ICML.

Moritz Hardt, Benjamin Recht, and Yoram Singer. 2016. Train faster, generalize
better: Stability of stochastic gradient descent. In ICML.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016), 770-778.

Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. arXiv:arXiv:1801.06146

Aaron Jaech, George Mulcaire, Shobhit Hathi, Mari Ostendorf, and Noah A.
Smith. 2016. Hierarchical Character-Word Models for Language Identification.
In SociaINLP@EMNLP.

Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic Gradient Descent with
Restarts. CoRR abs/1608.03983 (2016).

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing
and Optimizing LSTM Language Models. arXiv:arXiv:1708.02182

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NIPS-W.

Michael P. Perrone. 1993. When Networks Disagree: Ensemble Methods for
Hybrid Neural Networks.

Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power.
2017. Semi-supervised sequence tagging with bidirectional language models. In
ACL.

Leslie N. Smith. 2018. A disciplined approach to neural network hyper-
parameters: Part 1 — learning rate, batch size, momentum, and weight decay.
arXiv:arXiv:1803.09820

Leslie N. Smith and Nicholay Topin. 2017. Exploring loss function topology with
cyclical learning rates. arXiv:arXiv:1702.04283

Leslie N. Smith and Nicholay Topin. 2017. Super-Convergence: Very Fast Training
of Neural Networks Using Large Learning Rates. arXiv:arXiv:1708.07120

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin
Recht. 2017. The Marginal Value of Adaptive Gradient Methods in Machine
Learning. In NIPS.

[2]
(3]

—_
_

=
i)

=
&

==
&

=
&

http://arxiv.org/abs/arXiv:1801.06146
http://arxiv.org/abs/arXiv:1708.02182
http://arxiv.org/abs/arXiv:1803.09820
http://arxiv.org/abs/arXiv:1702.04283
http://arxiv.org/abs/arXiv:1708.07120

	Abstract
	1 Introduction
	2 Related Work
	3 Data Preparation
	3.1 Exploratory Analysis
	3.2 Tokenization
	3.3 Training/Validation Split

	4 Model Architecture
	4.1 Baseline Model
	4.2 Concat Pooling
	4.3 Balanced Pooling View
	4.4 Ensembling

	5 Experiments
	5.1 Implementation Details
	5.2 Training Methodology
	5.3 Hyperparameter Tuning
	5.4 Training Schedule
	5.5 Model Variants
	5.6 Prediction Generation
	5.7 Results

	6 Future Work
	Acknowledgments
	References

