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ABSTRACT
In a large E-commerce platform, all the participants compete for
impressions under the allocation mechanism of the platform. Exist-
ing methods mainly focus on the short-term return based on the
current observations instead of the long-term return. In this paper,
we formally establish the lifecycle model for products, by defining
the introduction, growth, maturity and decline stages and their tran-
sitions throughout the whole life period. Based on such model, we
further propose a reinforcement learning based mechanism design
framework for impression allocation, which incorporates the first
principal component based permutation and the novel experiences
generation method, to maximize short-term as well as long-term
return of the platform. With the power of trial-and-error, it is pos-
sible to optimize impression allocation strategies globally which
is contribute to the healthy development of participants and the
platform itself. We evaluate our algorithm on a simulated environ-
ment built based on one of the largest E-commerce platforms, and
a significant improvement has been achieved in comparison with
the baseline solutions.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; Policy
iteration; • Applied computing→ Online shopping;

KEYWORDS
Reinforcement Learning, Mechanism Design, E-commerce
ACM Reference Format:
Hua-Lin He, Chun-Xiang Pan, Qing Da, and An-Xiang Zeng. 2018. Speeding
up the Metabolism in E-commerce by Reinforcement Mechanism Design .
In Proceedings of ACM SIGIR Workshop on eCommerce (SIGIR 2018 eCom).
ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Nowadays, E-commerce platform like Amazon or Taobao has de-
veloped into a large business ecosystem consisting of millions of
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customers, enterprises and start-ups, and hundreds of thousands of
service providers, making it a new type of economic entity rather
than enterprise platform. In such a economic entity, a major re-
sponsibility of the platform is to design economic institutions to
achieve various business goals, which is the exact field of Mecha-
nism Design [1]. Among all the affairs of the E-commerce platform,
impression allocation is one of the key strategies to achieve its busi-
ness goal, while products are players competing for the resources
under the allocation mechanism of the platform, and the platform
is the game designer aiming to design game whose outcome will
be as the platform desires.

Existing work of impression allocation in literature are mainly
motivated and modeled from a perspective view of supervised learn-
ing, roughly falling into the fields of information retrieval [2, 3] and
recommendation [4, 5]. For these methods, a Click-Through-Rate
(CTR) model is usually built based on either a ranking function
or a collaborative filtering system, then impressions are allocated
according to the CTR scores. However, these methods usually op-
timize the short-term clicks, by assuming that the properties of
products is independent of the decisions of the platform, which
may hardly hold in the real E-commerce environment. There are
also a few work trying to apply the mechanism design to the al-
location problem from an economic theory point of view such
as [6–8]. Nevertheless, these methods only work in very limited
cases, such as the participants play only once, and their properties
is statistically known or does not change over time, etc., making
them far from practical use in our scenario. A recent pioneer work
named Reinforcement Mechanism Design [9] attempts to get rid of
nonrealistic modeling assumptions of the classic economic theory
and to make automated optimization possible, by incorporating the
Reinforcement Learning (RL) techniques. It is a general framework
which models the resource allocation problem over a sequence of
rounds as a Markov decision process (MDP) [10], and solves the
MDP with the state-of-the-art RL methods. However, by defining
the impression allocation over products as the action, it can hardly
scale with the number of products/sellers as shown in [11, 12].
Besides, it depends on an accurate behavioral model for the prod-
ucts/sellers, which is also unfeasible due to the uncertainty of the
real world.

Although the properties of products can not be fully observed
or accurately predicted, they do share a similar pattern in terms



SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA Hua-Lin He et al.

of development trend, as summarized in the product lifecycle the-
ory [13, 14]. The life story of most products is a history of their
passing through certain recognizable stages including introduction,
growth, maturity and decline stages.
• Introduction: Also known as market development - this is
when a new product is first brought to market. Sales are low
and creep along slowly.
• Growth: Demand begins to accelerate and the size of the total
market expands rapidly.
• Maturaty: Demand levels off and grows.
• Decline: The product begins to lose consumer appeal and
sales drift downward.

During the lifecycle, new products arrive continuously and outdated
products wither away every day, leading to a natural metabolism
in the E-commerce platform. Due to the insufficient statistics, new
products usually attract few attention from conventional supervised
learning methods, making the metabolism a very long period.

Inspired by the product lifecycle theory as well the reinforcement
mechanism design framework, we consider to develop reinforce-
ment mechanism design while taking advantage of the product life-
cycle theory. The key insight is, with the power of trial-and-error,
it is possible to recognize in advance the potentially hot products
in the introduction stage as well as the potentially slow-selling
products in the decline stage, so the metabolism can be speeded
up and the long-term efficiency can be increased with an optimal
impression allocation strategy.

We formally establish the lifecycle model and formulate the
impression allocation problem by regarding the global status of
products as the state and the parameter adjustment of a scoring
function as the action. Besides, we develop a novel framework
which incorporates a first principal component based algorithm
and a repeated sampling based experiences generation method,
as well as a shared convolutional neural network to further en-
hance the expressiveness and robustness. Moreover, we compare
the feasibility and efficiency between baselines and the improved
algorithms in a simulated environment built based on one of the
largest E-commerce platforms.

The rest of the paper is organized as follows. The product lifecy-
cle model and reinforcement learning algorithms are introduced in
section 3. Then a reinforcement learning mechanism design frame-
work is proposed in section 4. Further more, experimental results
are analyzed in section 5. Finally, conclusions and future work are
discussed in section 6.

2 RELATEDWORK
Many researches have been conducted on impression allocation
and dominated by supervised learning. In ranking phase, search
engine aims to find out good candidates and brought them in front
so that products with better performance will gain more impres-
sions. Among which click-through rate is one of the most common
representation of products performance. Some research presents an
approach to automatically optimize the retrieval quality with well-
founded retrieval functions under risk minimization frame-work
by historical click-through data [15]. Some other research proposed
an unbiased estimation of document relevance by estimating the
presentation probability of each document [16]. Nevertheless, both

of these research suffer from low accuracy of click-through rate
estimation for the lack of exposure historical data of start-ups.

One of the most related topics in user impressions allocation is
item cold-start problem [17], which has been extensively studied
over past decades. Researches can be classified into three cate-
gories: hybrid algorithms combining CF with content-based tech-
niques [18, 19], bandit algorithms [20–22] and data supplement
algorithms [23]. Among these researches, the hybrid algorithms
exploit items’ properties, the bandit algorithms are designed for
no item content setting and gathering interactions from user effec-
tively, and the data supplement algorithms view cold-start as data
missing problem. Both of these research did not take the whole prod-
uct lifecycle of items into account for the weakness of traditional
prediction based machine learning model, resulting in long-term
imbalance between global efficiency and lifecycle optimization.

The application of reinforcement learning in commercial system
such as web recommendations and e-commerce search engines has
not yet been well developed. Some attempts are made to model
the user impression allocation problem in e-commerce platform
such as Tabao.com and Amazon.com. By regarding the platforms
with millions of users as environment and treating the engines
allocating user impressions as agents, an Markov Decision Process
or at least Partially Observable Markov Decision Process can be
established. For example, an reinforcement learning capable model
is established on each page status by limit the page visit sequences
to a constant number in a recommendation scene [24]. And another
proposed model is established on global status by combining all
the item historical representations in platform [11]. However, both
of these approaches struggled to manage an fixed dimensionality
of state observation, low-dimensional action outputs and suffered
from partially observation issues.

Recently, mechanism design has been applied in impression
allocation, providing a new approach for better allocating user im-
pressions [9, 25]. However, the former researches are not suitable
for real-world scenes because of the output action space is too large
to be practical. In this paper, a reinforcement learning based mech-
anism design is established for the impression allocation problem
to maximize both short-term as well as long-term return of prod-
ucts in the platform with a new approach to extract states from all
products and to reduce action space into practical level.

3 PRELIMINARIES
3.1 Product Lifecycle Model
In this subsection, we establish a mathematical model of product
lifecycle with noises. At step t , each product has an observable
attribute vector xt ∈ Rd and an unobservable latent lifecycle state
zt ∈ L, where d is the dimension of the attribute space, and L =
{0, 1, 2, 3} is the set of lifecycle stages indicating the the introduction,
growth, maturity and decline stages respectively. Let pt ∈ R be the
CTR andqt ∈ R be the accumulated user impressions of the product.
Without loss of generality, we assume pt and qt are observable,
pt ,qt are two observable components of xt , the platform allocates
the impressions ut ∈ R to the product. The dynamics of the system
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can be written as 
qt+1 = qt + ut

pt+1 = pt + f (zt ,qt )

zt+1 = д(xt , zt , t)

(1)

where f can be seen as the derivative of the p, and д is the state
transition function over L.

According to the product lifecycle theory and online statistics,
the derivative of the CTR can be formulated as

f (zt ,qt ) =


(ch − cl )e

−δ (qt )

(2 − z)(1 + e−δ (qt ))2
+ ξ , z ∈ {1, 3}

ξ , z ∈ {0, 2}
(2)

where ξ ∼ N(0,σ 2) is a gaussian noise with zero mean and vari-
ance σ 2, δ (qt ) = (qt − q̃t z − δµ )/δσ is the normalized impressions
accumulated from stage z , q̃t z is the initial impressions when the
product is firstly evolved to the life stage z, δµ ,δσ are two unobserv-
able parameters for normalization, and ch , cl ∈ R are the highest
CTR and the lowest CTR during whole product lifecycle, inferred
from two neural networks, respectively:

cl = h(xt |θl ), ch = h(xt |θh ), (3)

where h(·|θ ) is a neural network with the fixed parameter θ , indi-
cating that cl , ch are unobservable but relevant to attribute vector
xt . Intuitively, when the product stays in introduction or maturity
stage, the CTR can be only influenced by the noise. When the prod-
uct in the growth stage, f will be a positive increment, making the
CTR increased up to the upper bound ch . Similar analysis can be
obtained for the product in the decline stage.

z = 0 z = 1 z = 2 z = 3g : t > t1 t > t3q > q2

t > t2, q < q2

Figure 1: State transition during product lifecycle

Then we define the state transition function of product lifecycle
as a finite state machine as illustrated in Fig. 1. The product starts
with the initial stage z = 0, and enters the growth stage when the
time exceeds t1. During the growth stage, a product can either step
in to the maturity stage if its accumulated impressions q reaches q2,
or the decline stage if the time exceeds t2 while q is less than q2. A
product in the maturity stage will finally enter the last decline stage
if the time exceeds t3. Otherwise, the product will stay in current
stage. Here, t1, t2, t3,q2 are the latent thresholds of products.

We simulate several product during the whole lifecycle with
different latent parameters (the details can be found in the experi-
mental settings), the CTR curves follow the exact trend described
in Fig. 2.

3.2 Reinforcement Learning and DDPG
methods

Reinforcement learning maximizes accumulated rewards by trial-
and-error approach in a sequential decision problem. The sequen-
tial decision problem is formulated by MDP as a tuple of state
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Figure 2: CTR evolution with the proposed lifecycle model.

space S, action space A, a conditional probability distribution
p(·) and a scalar reward function r = R(s,a),R : S × A → R.
For states st , st+1 ∈ S and action at ∈ A, distribution function
p(st+1 |st ,at ) denotes the transition probability from state st to st+1
when action at is adopted in time step t , and the Markov property
p(st+1 |st ,at ) = p(st+1 |s1,a1, · · · , st ,at ) holds for any historical tra-
jectories s1,a1, · · · , st to arrive at status st . A future discounted
return at time step t is defined as Rγt =

∑∞
k=t γ

k−tR(sk ,ak ), where
γ is a scalar factor representing the discount. A policy is denoted
as πθ (at |st ) which is a probability distribution mapping from S to
A , where different policies are distinguished by parameter θ .

The target of agent in reinforcement learning is to maximize the
expected discounted return, and the performance objective can be
denoted as

max
π

J = E
[
R
γ
1
��π ]

= Es∼dπ ,a∼πθ [R(s,a)] (4)

where dπ (s) is a discounted state distribution indicating the possi-
bility to encounter a state s under the policy of π . An action-value
function is then obtained iteratively as

Q(st ,at ) = E
[
R(st ,at ) + γEa∼πθ [Q(st+1,at+1)]

]
(5)

In order to avoid calculating the gradients of the changing state
distribution in continuous action space, the Deterministic Policy
Gradient(DPG) method [26, 27] and the Deep Deterministic Policy
Gradient [28] are brought forward. Gradients of the deterministic
policy π is

∇θ µ J = Es∼d µ
[
∇θ µQ

w (s,a)
]

= Es∼d µ
[
∇θ µ µ(s)∇aQ

w (s,a)|a=µ(s)
]

(6)

where µ is the deep actor network to approximate policy function.
And the parameters of actor network can be updated as

θ µ ← θ µ + αE
[
∇θ µ µ(st )∇aQ

w (st ,at )|a=µ(s)
]

(7)

where Qw is an obtained approximation of action-value function
called critic network. Its parameter vectorw is updated according
to objective

min
w

L = Es∼d µ
[
yt −Q

w (st ,at ))
2] (8)

where yt = R(st ,at ) + γQ
w ′(st+1, µ ′(st+1)), µ ′ is the target actor

network to approximate policy π , Qw ′ is the target critic network
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to approximate action-value function. The parametersw ′,θ µ
′

are
updated softly as

w ′ ← τw ′ + (1 − τ )w

θ µ
′

← τθ µ
′

+ (1 − τ )θ µ (9)

4 A SCALABLE REINFORCEMENT
MECHANISM DESIGN FRAMEWORK

In our scenario, at each step, the platform observes the global infor-
mation of all the products, and then allocates impressions according
to the observation and some certain strategy, after which the prod-
ucts get their impressions and update itself with the attributes as
well as the lifecycle stages. Then the platform is able to get a feed-
back to judge how good its action is, and adjust its strategy based
on all the feedbacks. The above procedures leads to a standard
sequential decision making problem.

However, application of reinforcement learning to this problem
encounters sever computational issues, due to high dimensionality
of both action space and state space, especially with a large n.
Thus, we model the impression allocation problem as a standard
reinforcement learning problem formally, by regarding the global
information of the platform as the state

s = [x1,x2, ...,xn ]
T ∈ Rn×d (10)

where n is the number of the product in the platform,d is the dimen-
sion of the attribute space, and regarding the parameter adjustion
of a score function as the action,

a = π (s |θ µ ) ∈ Rd (11)

where π is the policy to learn parameterize by θ µ , and the action a
can be further used to calculate scores of all products

oi =
1

1 + e−aTxi
, ∀i ∈ {1, 2, ...,n} (12)

After which the result of impression allocation over all n products
can be obtained by

ui =
eoi∑n
i e

oi
, ∀i ∈ {1, 2, ...,n} (13)

Without loss of generosity, we assume at each step the summation
of impressions allocated is 1, i.e.,

∑n
i ui = 1. As is well known,

products number n(billions) is far bigger than products attributes
dimensions d(thousands) in large scale E-commerce platforms. By
such definition, the dimension of the action space is reduced tod , sig-
nificantly alleviating the computational issue in previous work [12],
where the the dimension of the action space is n.

The goal of policy is to speeded up the metabolism by scoring
and ranking products under the consideration of product lifecycle,
making the new products grow into maturity stage as quickly as
possible and keeping the the global efficiency from dropping down
during a long term period. Thus, we define the reward related to s
and a as

R(s,a) =
1
n

n∑
i


1
ti

ti∫
t=0

p(t)
dq(t)

dt
dt

 (14)

where ti is the time step of the i-th product after being brought
to the platform, p(t),q(t) is the click through rate function and
accumulated impressions of a product respectively. The physical

meaning of this formulation is the mathematical expect over all
products in platform for the average click amount of an product
during its lifecycle, indicating the efficiency of products in the
platform and it can be calculated accumulatively in the online
environment, which can be approximately obtained by

R(s,a) ≈
1
n

n∑
i

1
ti

ti∑
τ=0

piτu
i
τ (15)

A major issue in the above model is that, in practices there will
be millions or even billions of products, making combinations of
all attribute vectors to form a complete system state with size n ×d
computationally unaffordable as referred in essays [11]. A straight-
forward solution is to applying feature engineering technique to
generate a low dimension representation of the state as sl = G(s),
where G is a pre-designed aggregator function to generate a low di-
mensional representation of the status. However, the pre-designed
aggregator function is a completely subjective and highly depends
on the the hand-craft features. Alternatively, we attempt to tackle
this problem using a simple sampling based method. Specifically,
the state is approximated by ns products uniformly sampled from
all products

ŝ = [x1,x2, · · · ,xns ]
T ∈ Rns×d (16)

where ŝ is the approximated state. Then, two issues arise with such
sampling method:
• In which order should the sampled ns products permutated
in ŝ , to implement the permutation invariance?
• How to reduce the bias brought by the sampling procedure,
especially when ns is much smaller than n?

To solve these two problem, we further propose the first principal
component based permutation and the repeated sampling based
experiences generation, which are described in the following sub-
sections in details.

4.1 First Principal Component based
Permutation

The order of each sampled product in the state vector has to be
proper arranged, since the unsorted state matrix vibrates severely
during training process, making the parameters in network hard to
converge. To avoid it, a simple way for permutation is to make order
according to a single dimension, such as the brought time ti , or the
accumulated impressions qi . However, such ad-hoc method may
lose information due to the lack of general principles. For example,
if we sort according to a feature that is almost the same among
all products, state matrix will keep vibrating severely between ob-
servations. A suitable solution is to sort the products in an order
that keep most information of all features, where the first principal
components are introduced [29]. We design a first principal compo-
nent based permutation algorithm, to project each xi into a scalar
vi and sort all the products according to vi

et = arg max
∥e ∥=1

(
eTst

Tste
)

(17)

ê =
βê + (1 − β) (et − ê)
∥βê + (1 − β) (et − ê)∥

(18)

vi = êTxi , i = 1, 2, · · · ,ns (19)
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where et is the first principal component of system states in current
step t obtained by the classic PCA method as in Eq. 17. ê is the
projection vector softly updated by et in Eq. 18, with which we
calculate the projected score of each products in Eq. 19. Here 0 <
β < 1 is a scalar indicating the decay rate of ê . Finally, the state
vector is denoted as

ŝ = [xk1 ,xk2 , · · · ,xkns ]
T (20)

where k1,k2, · · · ,kns is the order of products, sorted by vi .

4.2 Repeated Sampling based Experiences
Generation

We adopt the classic experience replay technique [30, 31] to enrich
experiences during the training phase just as other reinforcement
learning applications. In the traditional experience replay tech-
nique, the experience is formulated as (st ,at , rt , st+1). However,
as what we describe above, there are Cnsn observations each step
theoretically, since we need to sample ns products from all the n
products to approximate the global statistics. If ns is much smaller
than n, such approximation will be inaccurate.

To reduce the above bias, we propose the repeated sampling
based experiences generation. For each original experience, we do
repeated sampling st and st+1 form times, to obtainm2 experiences
of

(ŝit ,at , rt , ŝ
j
t+1), i, j ∈ 1, 2, · · · ,m (21)

as illustrated in Fig. 3. This approach improves the stability of ob-

(st, at, Rt, st+1)

agentSliding Pool Sampling
Batch

t

agentSliding Pool Sampling
Batch

(oi,t, at, Rt, oj,t+1)

t

at+1 at+1

Figure 3: Classical experiences generation(left): One experi-
ence is obtained each step by pair(st ,at , rt , st+1); Repeated
sampling based experiences generation(right): m2 experi-
ences are obtained each step by pair(ŝit ,at , rt , ŝ

j
t+1)

servation in noise environment. It is also helpful to generate plenty
of experiences in the situation that millions of times repetition is
unavailable.

It is worth noting that, the repeated sampling is conducted in
the training phase. When to play in the environment, the action
at is obtained through a randomly selected approximated state
ŝt , i.e., at = π (ŝ1t ). Actually, since at does not necessarily equal
to π (ŝit ),∀i ∈ 1, 2, · · · ,m, it can further help learning a invariant
presentation of the approximated state observations.

The overall procedure of the algorithm is described in Algo-
rithm 1. Firstly, a random sampling is utilized to get a sample of
system states. And then the sample is permutated by the projection
of the first principal components. After that, a one step action and
multiple observations are introduced to enrich experiences in expe-
rience pool. Moreover, a shared convolutional neural network is
applied within the actor-critic networks and target actor-critic net-
works to extract features from the ordered state observation [32, 33].

Algorithm 1: The Scalable Reinforcement Mechanism Design
Framework
Initialize the parameters of the actor-critic network
θ µ ,w,θ µ

′

,w ′

Initialize the replay bufferM
Initializem observations ŝ j0
Initialize the first principal component p̂ by ŝ0
foreach training step t do

Select action at = µ(ŝ1t |θ
µ )

Execute action at and observe reward rt
foreach j ∈ 1, 2, · · · ,m do

Sample a random subset of ns products
Combine an observation in the order of xTk ê

ŝ
j
t ←

(
xk1 ,xk2 , · · · ,xkns

)T
Update first principal component

et ← arg max
∥e ∥=1

(
eTŝ jTt ŝ

j
te
)

ê ← norm (βê + (1 − β) (et − ê))
end
foreach i, j ∈ 1, 2, · · · ,m do

M ← M ∪ {(ŝit ,at , rt , ŝ
j
t+1)}

end
Sample nk transitions fromM : (ŝk ,ak , rk , ŝk+1)
Update critic and actor networks

w ← w +
αw
nk

∑
k

(yk −Q
w (ŝk ,ak ))∇wQ

w (ŝk ,ak )

θ µ ← θ µ +
αµ

nk

∑
k

∇θ µ µ(ŝk )∇akQ
w (ŝk ,ak )

Update the target networks
w ′ ← τw ′ + (1 − τ )w

θ µ
′

← τθ µ
′

+ (1 − τ )θ µ

end

Finally, the agent observes system repeatedly and train the actor-
critic network to learn an optimized policy gradually.

5 EXPERIMENTAL RESULTS
To demonstrate how the proposed approach can help improve the
long-term efficiency by speeding up the metabolism, we apply the
proposed reinforcement learning based mechanism design, as well
as other comparison methods, to a simulated E-commerce platform
built based on the proposed product lifecycle model.

5.1 The Configuration
The simulation is built up based on product lifecycle model pro-
posed in section 3.1. Among all of the parameters, q2 is uniformly
sampled from [104, 106], t1, t2, t3,δµ ,δσ are uniformly sampled
from [5, 30], [35, 120], [60, 180], [104, 106], [2.5 × 103, 2.5 × 105] re-
spectively, and parameter σ is set as 0.016 . The parameters cl , ch
are generated by a fixed neural network whose parameter is uni-
formly sampled from [−0.5, 0.5] tomodel online environments, with
the outputs scaled into the intervals of [0.01, 0.05] and [0.1, 0.15]
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Table 1: Parameters in learning phase

Param Value Reference

ns 103 Number of products in each sample
β 0.999 First principal component decay rate
γ 0.99 Rewards discount factor
τ 0.99 Target network decay rate
m 5 Repeated observation times

respectively. Apart from the normalized dynamic CTR p and the
accumulated impressions q, the attribute vector x is uniformly sam-
pled from [0, 1] element-wisely with the dimension d = 15. All the
latent parameters in the lifecycle model are assumed unobservable
during the learning phase.

The DDPG algorithm is adopted as the learning algorithm. The
learning rates for the actor network and the critic network are 10−4
and 10−3 respectively, with the optimizer ADAM [34]. The replay
buffer is limit by 2.5 × 104. The most relevant parameters evolved
in the learning procedure are set as table 1.

Comparisons are made within the proposed reinforcement learn-
ing based methods as
• CTR-A: The impressions are allocated in proportion to the
CTR score.
• T-Perm: The basic DDPG algorithm, with brought time
based permutation and a fully connected network to process
the state
• FPC: The basic DDPG algorithm, with first principal com-
ponent based permutation and a fully connected network to
process the state.
• FPC-CNN: FPC with a shared two-layers convolutional neu-
ral network in actor-critic networks.
• FPC-CNN-EXP: FPC-CNN with the improved experiences
generation method.

where CTR-A is the classic supervised learning method and the
others are the proposed methods in this paper. For all the experi-
ments, CTR-A is firstly applied for the first 360 steps to initialize
system into a stable status, i.e., the distribution over different life-
cycle stages are stable, then other methods are engaged to run for
another 2k steps and the actor-critic networks are trained for 12.8k
times.

5.2 The Results
We firstly show the discounted accumulated rewards of different
methods at every step in Fig. 4. After the initialization with the
CTR-A, we find that the discounted accumulated reward of CTR-A
itself almost converges to almost 100 after 360 steps (actually that
why 360 steps is selected for the initialization), while that of other
methods can further increase with more learning steps. It is showed
that all FPC based algorithms beat the T-Perm algorithm, indicating
that the FPC based algorithm can find a more proper permutation
to arrange items while the brought time based permutation leads
to a loss of information, making a drop of the final accumulated
rewards. Moreover, CNN and EXP algorithms perform better in ex-
tracting feature from observations automatically, causing a slightly
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Figure 4: Performance Comparison between algorithms

improvement in speeding up the converging process. Both the three
FCP based algorithms converge to same final accumulated rewards
for their state inputs have the same observation representation.
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Figure 5: Percentage of impressions allocated to different
stages.

Then we investigate the distribution shift of the impression
allocation over the 4 lifecycle stages after the training procedure
of the FPC-CNN-EXP method, as shown in Fig. 5. It can be seen
that the percentage of decline stage is decreased and percentage
of introduction and maturity stages are increased. By giving up
the products in the decline stage, it helps the platform to avoid the
waste of the impressions since these products are always with a
low CTR. By encouraging the products in the introduction stage,
it gives the changes of exploring more potential hot products. By
supporting the products in the maturity stage, it maximizes the
short-term efficiency since the they are with the almost highest
CTRs during their lifecycle.

We finally demonstrate the change of the global clicks, rewards
as well as the averaged time durations for a product to grow up
into maturity stage from its brought time at each step, in terms
of relative change rate compared with the CTR-A method, as is
shown in Fig. 6. The global average click increases by 6% when the
rewards is improved by 30%. The gap here is probably caused by the
inconsistency of the reward definition and the global average click
metric. In fact, the designed reward contains some other implicit
objectives related to the metabolism. To further verify the guess, we
show that the average time for items to growth into maturity stage
has dropped by 26%, indicating that the metabolism is significantly
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speeded up. Thus, we empirically prove that, through the proposed
reinforcement learning based mechanism design which utilizes
the lifecycle theory, the long-term efficiency can be increased by
speeding up the metabolism.
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Figure 6: Metabolism relative metrics

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose an end-to-end general reinforcement
learning framework to improve the long-term efficiency by speed-
ing up the metabolism. We reduce action space into a reasonable
level and then propose a first principal component based permu-
tation for better observation of environment state. After that, an
improved experiences generation technique is engaged to enrich
experience pool. Moreover, the actor-critic network is improved by
a shared convolutional network for better state representation. Ex-
periment results show that our algorithms outperform the baseline
algorithms.

For the future work, one of the promising directions is to de-
velop a theoretical guarantee for first principal component based
permutation. Another possible improvement is to introduce the
nonlinearity to the scoring function for products.

REFERENCES
[1] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.

The Journal of finance, 16(1):8–37, 1961.
[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. Learning to rank using gradient descent. In Proceedings of
the 22nd international conference on Machine learning, pages 89–96. ACM, 2005.

[3] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning, pages 129–136. ACM, 2007.

[4] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[5] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recom-
mender systems handbook, pages 77–118. Springer, 2015.

[6] Roger B Myerson. Optimal auction design. Mathematics of operations research,
6(1):58–73, 1981.

[7] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and
Economic Behavior, 35(1-2):166–196, 2001.

[8] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

[9] Pingzhong Tang. Reinforcement mechanism design. In Early Carrer Highlights
at Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI, pages 5146–5150, 2017.

[10] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov
decision processes. Mathematics of operations research, 12(3):441–450, 1987.

[11] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. Reinforce-
ment mechanism design for fraudulent behaviour in e-commerce. 2018.

[12] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. Reinforce-
ment mechanism design for e-commerce. CoRR, abs/1708.07607, 2017.

[13] Theodore Levitt. Exploit the product life cycle. Harvard business review, 43:81–94,
1965.

[14] Hui Cao and Paul Folan. Product life cycle: the evolution of a paradigm and
literature review from 1950–2009. Production Planning & Control, 23(8):641–662,
2012.

[15] Thorsten Joachims. Optimizing search engines using clickthrough data. In
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM, 2002.

[16] Georges E Dupret and Benjamin Piwowarski. A user browsing model to predict
search engine click data from past observations. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 331–338. ACM, 2008.

[17] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35. Springer,
2011.

[18] Seung-Taek Park and Wei Chu. Pairwise preference regression for cold-start
recommendation. In Proceedings of the third ACM conference on Recommender
systems, pages 21–28. ACM, 2009.

[19] Martin Saveski and Amin Mantrach. Item cold-start recommendations: learn-
ing local collective embeddings. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 89–96. ACM, 2014.

[20] Jin-Hu Liu, Tao Zhou, Zi-Ke Zhang, Zimo Yang, Chuang Liu, and Wei-Min Li.
Promoting cold-start items in recommender systems. PloS one, 9(12):e113457,
2014.

[21] Oren Anava, Shahar Golan, Nadav Golbandi, Zohar Karnin, Ronny Lempel, Oleg
Rokhlenko, and Oren Somekh. Budget-constrained item cold-start handling in
collaborative filtering recommenders via optimal design. In Proceedings of the
24th International Conference on World Wide Web, pages 45–54. International
World Wide Web Conferences Steering Committee, 2015.

[22] Michal Aharon, Oren Anava, Noa Avigdor-Elgrabli, Dana Drachsler-Cohen, Sha-
har Golan, and Oren Somekh. Excuseme: Asking users to help in item cold-start
recommendations. In Proceedings of the 9th ACM Conference on Recommender
Systems, pages 83–90. ACM, 2015.

[23] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. Dropoutnet: Addressing
cold start in recommender systems. In Advances in Neural Information Processing
Systems, pages 4964–4973, 2017.

[24] Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. Usage-based web
recommendations: a reinforcement learning approach. In Proceedings of the 2007
ACM conference on Recommender systems, pages 113–120. ACM, 2007.

[25] Qingpeng Cai, Aris Filos-Ratsikas, Chang Liu, and Pingzhong Tang. Mechanism
design for personalized recommender systems. In Proceedings of the 10th ACM
Conference on Recommender Systems, pages 159–166. ACM, 2016.

[26] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems, pages 1057–1063, 2000.

[27] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning (ICML-14), pages 387–395,
2014.

[28] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[29] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdis-
ciplinary reviews: computational statistics, 2(4):433–459, 2010.

[30] Long Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8(3-4):293–321, 1992.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[32] Yu-Hu Cheng, Jian-Qiang Yi, and Dong-Bin Zhao. Application of actor-critic
learning to adaptive state space construction. In Machine Learning and Cyber-
netics, 2004. Proceedings of 2004 International Conference on, volume 5, pages
2985–2990. IEEE, 2004.

[33] Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game
with actor-critic curriculum learning. 2016.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Product Lifecycle Model
	3.2 Reinforcement Learning and DDPG methods

	4 A Scalable Reinforcement Mechanism Design Framework
	4.1 First Principal Component based Permutation
	4.2 Repeated Sampling based Experiences Generation

	5 Experimental Results
	5.1 The Configuration
	5.2 The Results

	6 Conclusions and Future Work
	References

