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ABSTRACT
Although deep learning techniques have been successfully applied
to many tasks, interpreting deep neural network models is still a
big challenge to us. Recently, many works have been done on visu-
alizing and analyzing the mechanism of deep neural networks in
the areas of image processing and natural language processing. In
this paper, we present our approaches to visualize and understand
deep neural networks for a very important commercial task—CTR
(Click-through rate) prediction.We conduct experiments on the pro-
ductive data from our online advertising system with daily varying
distribution. To understand the mechanism and the performance
of the model, we inspect the model’s inner status at neuron level.
Also, a probe approach is implemented to measure the layer-wise
performance of the model. Moreover, to measure the influence from
the input features, we calculate saliency scores based on the back-
propagated gradients. Practical applications are also discussed, for
example, in understanding, monitoring, diagnosing and refining
models and algorithms.
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1 INTRODUCTION
Click-through rate (CTR) prediction plays a crucial role in com-
putational advertising. In the common cost-per-click advertising
system, advertisements are ranked by the product of the bid price
and the predicted CTR when bidding for impression opportunities.
Therefore, the revenue of the multi-billion business heavily relies
on the performance of the CTR prediction model.

Deep learning techniques have been successfully applied to CTR
prediction tasks [6, 7, 23]. Deep neural networks (DNNs), composed
of stacked layers of neurons, have the capability to extract the
nonlinear patterns from features and thus reduce the burden of
nontrivial feature engineering. However, the working mechanisms
of deep learning models are still not well understood. The lack of
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interpretability becomes an obstacle for deep learning, and raises
concerns on the reliability of deep learning applications, especially
for critical industrial implementations.

Many recent progresses have been made in visualizing and in-
terpolating deep learning models for image processing [15, 18, 20,
21, 26, 29] and natural language processing [3, 4, 14, 16, 27]. In this
paper, we present a series of approaches to visualize and analyze a
simple DNN model for CTR prediction on the productive data from
our search advertising platform. The model’s performance decay is
investigated over datasets with daily varying distribution, and the
distributions of the output scores are also compared for different
training stages. We inspect the model’s inner status down to neuron
level. We study the statistical properties of the neurons’ statuses for
the hidden layers, and investigate the high-level representations
learned by the model through t-SNE projection [17, 21]. A probe
method [2] is applied to dissect model’s performance layer by layer
for different datasets. Moreover, to measure the influence of the
input features, we calculate saliency scores for the feature groups
based on back-propagated gradients.

Beyond the classic model evaluation metrics [11, 12], we open up
the "black box" and inspect the DNN model from the output to the
input end. Understanding the model’s mechanism can help us not
only design and diagnose models, but also monitor the algorithmic
advertising system for daily production.

2 EXPERIMENTAL SETTING
2.1 Datasets
We perform experiments on the productive CTR prediction data
from the search advertising platform of our company. Started from
a typical Wednesday, our data are collected over eight consecutive
days. The training set is sampled from day one. To investigate decay
of the model’s performance, we evaluate the model on a daily basis
from day one to day eight. The eight test sets are, in turn, denoted
by test1, test2, ..., test8. Each dataset contains about 150 million
instances which are randomly sampled from the ad impression logs
of the corresponding day. Note that there are no overlap between
test1 and the training set. The setup of datasets simulates the real
world environment for the CTR prediction task, i.e., the model
is trained with historical data and deployed to serve the future
online traffic, where the data distribution varies and differs with
the training data by nature.

Our data contains 34 groups of sparse categorical features (around
100 million binary features in total), e.g., user id, user’s city, user’s
gender, user’s age level, query id, query words, shop id, ad’s cat-
egory, etc.. Note that there are no combinational features in this
study.
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2.2 Model setting
The DNN model contains four fully-connected hidden layers. From
layer 1 (closest to input) to layer 4 (right before output layer), the
layer’s width is set to 256, 128, 64 and 32 neurons. The formulation
for the output vector of kth hidden layer, denoted by hk , can be
written as:

hk = ReLU (Wkhk−1 + bk ), (1)

Where Wk is the weight tensor of all the connections from the
neurons of layer (k − 1), bk represents the bias term and ReLU
(rectifier linear unit) function is used as the activation function.
The output layer uses a sigmoid function to map the output to a
float number between 0 and 1 as the predicted probability of click:

Pctr = Siдmoid(W5h4 + b5). (2)

For the training process, Pctr is compared against the ground truth
label and cross entropy is calculated as the loss function. For each in-
put instance, the sparse feature ids are embedded into 8-dimensional
float vectors [6, 7, 23]. For feature groups containing multiple fea-
ture ids per instance, e.g., query words, sum pooling operations are
applied to enforce each feature group to produce an 8-dimensional
embedding vector. The embedding outputs are concatenated into a
272-dimensional vector, denoted by h0, as the input to layer 1. The
embedding vectors are trained jointed with the other parts of the
model.

The experiments are run on distributed TensorFlow [1] released
by Google. The model is trained by Adagrad optimizer [8] with
learning rate = 0.005, initial accumulator value = 0.0001 and mini-
batch size = 1000. Glorot and Bengio’s method [10] is used for
initialization. We visualize the model’s inner status by dynamically
dumping the processing data based on model graph.

3 RESULTS
3.1 AUC and Prediction Score
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Figure 1: AUC score as a function of training step for train-
ing and test sets.

To measure the performance of model, we employ AUC (area
under curve of the receiver operating characteristic plot) as the

key metric. AUC is a widely used measure for evaluating the CTR
performance [12].

In Fig. 1, we present the evolution of the model’s AUC as a
function of the training steps for training and test sets. With the
training going on, the train AUC keeps growing, while all the test
AUCs follow a same pattern — first rises and then decreases due to
overfitting. The model generalizes best at step 210000. Comparing
the eight test AUCs for the same time step, the model’s performance
decay can be disclosed as a function of dataset. The test AUC score
decreases monotonically from day one to day five. As expected,
this is because the distribution of the test data differs with the
training set, and the difference grows day by day. After that, AUC
upswings for the last three days and surpasses day four. This is in
accordance with a characteristic of our business scene — although
the data varies from day to day, the users’ behaviors on our website
have weekly periodic patterns. This non-monotonic change of AUC
is evident for the regime from under-fitting to weak overfitting
(before step ∼ 400000). At larger training steps, overfitting becomes
severe and the model performs same bad for the last five days.
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Figure 2: Distribution of predicted CTR for models at train-
ing step 210000 and step 600000. The X-axis denotes the
predicted CTR normalized by the average click ratio of the
training set.

Fig. 2 provides insights into the distribution of predicted CTR
score for training, test1 and test5 sets. At training step 210000, the
AUC decay from training set to test1 is mainly because the CTR of
the positive (clicked) samples in test1 are more under-predicted by
themodel. The further decay from test1 to test5 is mainly due to that
the negative (non-clicked) samples in test5 tend to be predicted with
higher CTRs (the train and test1 curves overlap for the negative
samples and can hardly be distinguished by eye). For training step
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Figure 3: Mean outputs of the neurons in layer 3 for training and test1 sets, for training step 100000, 210000, 300000 and 600000.
Each bar represents a neuron.
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Figure 4: Mean outputs of the neurons in layer 4 for training and test1 sets, for training step 100000, 210000, 300000 and 600000.
Each bar represents a neuron.
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Figure 5: Standard deviations of the outputs of the neurons in layer 3 for training and test1 sets, for training step 100000,
210000, 300000 and 600000. Each bar represents a neuron.
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Figure 6: Standard deviations of the outputs of the neurons in layer 4 for training and test1 sets, for training step 100000,
210000, 300000 and 600000. Each bar represents a neuron.

600000, the model overfits the training data such that it aggressively
predicts the CTR towards zero for both clicked and non-clicked
samples. This is attributed to the high skewness of the data. The

proportion of clicked samples is lower than 10%, so under-predicting
the CTR for all samples may still reduce loss in training. This shape
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of distribution changes significantly as the data become different,
the scores move rightwards and the distribution becomes blurred.

3.2 Neuron Status
In this subsection, we investigate the statistics of the neurons’
statuses for different training stages and datasets. These statistical
properties depict the model’s representation of the input data, and
can help us to interpret the model’s performance and working
mechanism.
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Figure 7: Average standard deviation of neurons’ outputs
for layer 3 as a function of dataset, for training step 100000,
210000 and 600000. The output’s standard deviation is first
calculated for each neuron, and then averaged over all the
64 neurons of layer 3.

The mean outputs of the neurons within layer 3 and 4 are illus-
trated in Figs. 3 and 4, respectively. Correspondingly, the standard
deviation of the neurons’ outputs are plotted in Figs. 5 and 6. For
step 100000 and 210000, the results are quite close between the
underfitting and well-fitting stages. About a quarter of the neu-
rons are barely activated. Significant changes are observed for the
overfitting regime (step > 300000). More neurons become activated.
Also, the difference between the training and test sets grows with
the degree of overfitting, especially in the standard deviation (Figs.
5 and 6). The higher standard deviation on the training set indi-
cates that the neurons become over sensitive to the input of the
training data. Fig. 7 presents the variation of the standard deviation
averaged over all the 64 neurons of layer 3 as a function of dataset.
For all the three different training stages, the trend of the average
standard deviation correlates with the model’s AUC score (Fig. 1).

To gain more knowledge about the collaborative patterns of
neurons inside the model [21, 26], for each layer, we calculate the
correlations among the neurons. Neurons’ statuses before activation
are used. We measure the average degree of neurons’ correlations
by averaging the absolute value of all the correlation coefficients
for each layer. The average strength of correlations is plotted as a
function of training step in Fig. 8. The degree of correlation climbs
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Figure 8: Average magnitude of the correlations among the
neurons for each hidden layer. The evolution as a function
of training step is plotted for training and test1 set.

up with the height of layer. This indicates that the DNN model is
refining the input information through the successive layers [22,
24, 28]. Only very limited portion of the input information can be
transfered to the output layer.

After step 210000, the neurons’ correlation deceases monotoni-
cally with training step for all hidden layers. Recalling the enhanced
neuron activation observed for this overfitting regime (Figs. 3 and
4), we can interpret that the model starts to explore more predictive
patterns from the input information. However, the deceasing test
AUC (Fig. 1) reveals that the boosted representation of the input
from training data can not be well generalized to predict the test
data.

In order to inspect the spacial structure of the high-level rep-
resentations for the input data, we project the neurons’ output
vectors to 2-dimensional space using t-SNE method [17, 21]. The
t-SNE projection is able to preserve neighborhoods and clusters
of the data points in the original representation space. In Fig. 9,
we illustrate the projection results for layer 2, 3 and 4 at training
step 210000. The presented 10000 clicked and 10000 non-clicked
instances are randomly selected from the training set.

For layer 3 (the center plot in Fig. 9), we can clearly see the
regions with concentrated clicked points. We find that the training
process enhances the concentration of clicked points for the training
set, indicating that the model learns more discriminative represen-
tation for the training data. For the test datasets, we observe that
the concentrated distribution disappears when overfitting happens.
Unlike the case of image classification in Ref. [21], no class separa-
tion is observed even at severely overfitting stage. This is mainly
due to the highly noisy and skewed data for the CTR prediction
task.
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Figure 9: Visualization of the output vectors for layer 2, 3 and 4 using t-SNE method, at training step 210000. Clicked and
non-clicked samples are represented by red and blue points, respectively

Comparingwith the left plot in Fig. 9, the concentration of clicked
points of layer 2 is obviously worse than layer 3. This agrees with
the assumption that for a properly trained DNN model, the dis-
criminative quality of the hidden layer’s output increases with the
height of the layer [2, 5, 21]. However, as revealed in the right plot
of Fig. 9, the clicked points for layer 4 show no improvement in
the degree of concentration and look even slightly more scattered.
Recalling the very strong correlations among the neurons in layer
4 (Fig. 8), one may doubt whether the output of layer 4 is more
predictive than layer 3. This issue will be further discussed in the
following subsections.

3.3 Probe Evaluations
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Figure 10: Test AUC scores of the probe LRmodels as a func-
tion of test dataset for three training steps: 100000, 210000
and 600000.

To investigate the effectiveness of the hidden layers, we imple-
ment Alain & Bengio’s probe approach [2]. DNN model is expected
to mining for predictive patterns from input features through layers
of transformations, and then feed the extracted information into
the simple linear classifier at the output end. For each layer, we use
the layer’s output vector as input features to train a LR (Logistic
Regression) model to predict CTR. The LR model serves as a probe
to evaluate the usefulness the hidden layer. A higher performance
of the LR probe implies that the transformation of this layer makes
information more predictive, and thus benefits the performance of
the whole DNN model.

The LR models are trained on the data of the training set until
convergence, with the DNNmodel fixed, and then the performances
are evaluated on the tests sets. As shown in Fig. 10, for training
step 210000, the performance increases from layer 1 to layer 3,
indicating that these layers do transform input information to be
more predictive. The probe’s performance for layer 4 is the same
as layer 3, indicating that layer 4 is not as useful as the previous
three layers. This is consistent with the observations in the last
subsection.

The change of AUC along each curve (in Fig. 10) illustrates how
the hidden layer reacts to the varying data distribution. At training
step 210000 where the DNN model generalizes best, the effective-
ness of all the layers varies as a function of dataset in the same
pattern with the DNN model. In contrast, for training step 100000,
where the DNN model is underfitting, layer 1 behaves differently
with the other layers. Moreover, for step 600000, the DNN model
overfits the training data such that the learned information trans-
formations begin to fail for test data. Therefore, the performance
of probes is very low and fluctuates significantly.

3.4 Feature Group Saliency
For the input end of the DNN model, we study how the input
features influence the model with the back-propagated gradient
signals [16]. The embedding output of the sparse feature ids (con-
catenated as h0) can be treated as the input for the following deep
neural network. With the model fixed, for each input instance, we
calculate the gradient of h0 with respective to the model’s output
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Pctr :

g0 = ∇h0Pctr . (3)

The magnitude of each element of the gradient vector g0 quanti-
fies the sensitivity of the model’s output to the change in the par-
ticular embedding element. It describe how much a small change
in a particular embedding value could affect the final output Pctr .
Given a dataset, we calculate the saliency score for each feature
group by averaging the mean absolute value of the corresponding 8
gradient elements in g0 over the whole dataset. This saliency score
provides us with an average measure of the model’s sensitivity to
each feature group for the given dataset.

We illustrate the saliency scores in Fig. 11. Overall, the model
is becoming increasingly sensitive to all the feature groups during
training. In the overfitting regime, the score of feature group 10 rises
up dramatically and becomes much higher than the other feature
groups. This feature group is composed of user ids, in which the
number of ids is larger than any other feature group by at least
two orders of magnitude [9]. For this training stage, the model is
trained to memorize the vast amount of information from user ids
that is not generalizable, and thus significantly deteriorates the
performance on test datasets.

4 DISCUSSION
4.1 Role of Layer 4
The results about layer 4 raise a question about the necessity to
include this layer in the model. To answer this question, we modify
the neural network and investigate the impact on performance of
the retrained models. We modify layer 4 by reducing or increas-
ing its width by a factor of two, or even remove layer 4 from the
model. It turns out that these modifications do not affect the mod-
els’ performance (highest test AUCs) for the different test dataset.
Although not harmful, there is no benefit to include layer 4 in the
DNN model.

4.2 Regularization
Analysis in the previous section reveals that the model become over
sensitive to the input when overfitting. Also, the high correlations
among neurons for layer 3 and 4 (Fig. 8) imply that there might be
severe co-adaptations [25]. One may hope to use regularizations
to control overfitting and obtain better performance on test data.
We have tried L1 and L2 regularization [11], and dropout [25], for a
variety of hyper-parameters. However, no improvement is obtained.
In future, more work needs to be conducted on improving model’s
generalization power.

4.3 Feature Treatment
Subsection 3.4 discloses the problem that the model is greatly sen-
sitive to the feature group of user ids when overfitting. Other than
regularization, it is also possible to improve the models’ general-
ization power by optimizing the input features. User id is a highly
granular feature group. Inputting it directly to the embedding-based
deep neural network may not be the optimal choice. Following the
idea of Wide&Deep [6], we remove user id from the embedding
layer. The bias of each user id is represented by a float number
buser and added immediately into the output layer:

Pctr = Siдmoid(W5h4 + b5 + buser ). (4)

This bias is trained jointly with the other parts of the model. We
find this approach can improve AUC on the test datasets by about
0.1%.

5 APPLICATIONS
With the visualization and analysis techniques presented above, we
discuss some of the practical applications in this section.
• The distribution of the predicted CTR score is very important for
real-time bidding auctions. Understanding the score distribution
can help us to design better calibration methods [13, 19]. Also,
score distribution can help to find outliers or bad-fitted samples,
which can in turn be used to improve the model.

• Inspections of model’s inner status and gradient signals open
up the "black box" of the DNN model, helping us to understand
the mechanism of the model and the influence of features. These
approaches can be used to diagnose the model, like (but not
limited to) underfitting/overfitting, gradient vanishing/explosion,
ineffective model structure, etc.. A deep understanding of the
model’s mechanism can help us to design better model structure,
training algorithm and features.

• For online advertisting, it is of great importance to monitor the
model’s online performance and the health of data pipeline. Feed-
ing the model with problematic data can cause disaster. However,
it is very difficult to describe and monitor the distribution of the
extremely sparse and high-dimensional data. Moreover, monitor-
ing the model’s online performance may not be sufficient. The
model predicts CTR for hundreds of candidate ads for each biding,
while only very few ads can win the bidding and get feedback
from impression. The classic performance metrics are mainly
based on those feedbacks, and thus can only cover a limited
portion of biased data.
The DNN model, by nature, transforms the sparse input data
into dense numerical representations. Therefore, the statistics of
neurons’ output and the gradient signals can be implemented as
a new kind of metrics to monitor the distribution of the input
data. Note that no feedback labels are needed to calculate these
quantities. For example, as illustrated in Fig. 7, the average stan-
dard deviation for layer 3’s output changes with the naturally
varying distribution of input data. Problematic input data can
cause more significant change in the statistics.

6 CONCLUSION
In this work, we visualize and analyze a simple DNNmodel for CTR
prediction down to neuron level. Model training and evaluations
are performed over a series of datasets. The model is inspected from
the output to the input end. The statuses of neurons are studied
using a variety of methods. Gradients of the feature embeddings
are used to create a salience map to describe the influence of the
feature groups. The analysis provides insightful knowledges of the
model’s mechanism, helping us to monitor, diagnose and refine the
model.

Currently, we are applying these approaches to build a model-
based evaluation and monitoring system for our online advertising
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Figure 11: Gradient-based saliency score of the 34 feature groups for training and test1 sets. Each bar represents a feature
group.

platform. Based on our industrial scenario, future workwill focus on
exploring more approaches to interpret deep learning, investigating
more complex algorithms and applying these approaches to design
better models and algorithms.
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