Noise-aware Missing Shipment Return Comment Classification
in E-Commerce

Avijit Saha*
Flipkart Internet Private Limited
Bangalore, India
avijit.saha@flipkart.com

ABSTRACT

E-Commerce companies face a number of challenges in return
requests. Claims of missing-items is one such challenge, where cus-
tomer claims that main product is missing from shipment through
return comments. It is observed that dominant part of such claims
are inadvertent given the limited literacy of customers. Some of
them have fraud intent. At Flipkart, such claims are evaluated man-
ually to examine whether the comment relates to missing item.
Classification of the claim intent automatically saves human band-
width and provides good customer experience by reducing the turn
around time to customers. However, this is challenging as com-
ments are replete with spell variations, non-English vernacular
words, and are often incomplete and short. This is compounded by
noisy labeling of such comments due to human bias and manual
errors.

To classify the claim intent, we apply conventional as well as
deep learning methods. To handle label noise, we employed state-
of-the-art noise-aware techniques, which fail to perform due to
pattern specific label noise. Motivated by the wide pattern specific
label noise, we encode domain heuristics as labeling functions (LFs)
which label subsets of the data. However, LFs may conflict and
prone to noise. We address the conflict by defining a conflict-score
to rank the LFs. Proposed method of noise handling with LFs out
performs all the state-of-the-art noise-aware baselines.

KEYWORDS

E-Commerce, Text, Comment, Noise, Data Programming, Deep
Learning, Machine Learning

ACM Reference Format:

Avijit Saha, Vishal Kakkar, and T. Ravindra Babu. 2018. Noise-aware Missing
Shipment Return Comment Classification in E-Commerce. In Proceedings of
ACM SIGIR Workshop on eCommerce (SIGIR 2018 eCom). ACM, New York,
NY, USA, 8 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

E-commerce companies face a large number of return requests of
various types (reason-codes). Missing-item is one such reason-code
where customer claims that main product is missing from shipment.

“Equal Contributions

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

Vishal Kakkar*
Flipkart Internet Private Limited
Bangalore, India
vishal . kakkar@flipkart.com

T. Ravindra Babu
Flipkart Internet Private Limited
Bangalore, India
ravindra.bt@flipkart.com

Unlike a usual return, product pick up from customer is avoided
in a missing-item return. Example of a missing-item return is -
customer ordered a handset and received a stone in place of the
handset. A confirmed case of missing item results in loss to the
company since there is a definite fraud with one of the stakeholders
such as buyer, seller or delivery team. Hence, a careful scrutiny is
necessary before the approval of any missing-item returns.

A missing-item return request is generated broadly for two rea-
sons. The first can be due to definite fraud with one of the stake-
holders. Secondly, given limited literacy levels of customers, it is
observed that the claims do not always refer to missing-item but
inadvertently claimed as missing-item. For example, a missing-item
return with customer comment T did not like the item.” clearly indi-
cates that the return belong to a return category other than missing-
item. Because here customer received the main product. Hence, the
return should be cancelled. We call this a comment-mismatch (cus-
tomer’s comment does not match with the return reason-code).
On the other hand, a missing-item return with customer comment
‘T ordered a phone but received an empty box. clearly indicates
that the return belong to the missing-item category. This return
should be approved. This is referred by non-comment-mismatch
(customer’s comment matches with the return reason-code).

At Flipkart, a dedicated operation team assesses the compatibility
of customers’ comments on missing-item return with the missing-
item reason-code. Each missing-item return — passes through this
process and - is rejected when the return comment is incompati-
ble with the missing-item reason-code, otherwise approved. This
process wastes lot of human bandwidth and is prone manual mis-
takes. Moreover, it hampers the customer experience due to the
lag between the return placement time and its status update to the
customer. Hence, we want to automate this process. In terms of
Machine Learning problem, given a missing-item return comment,
we want to predict whether it is a comment-mismatch (positive
class) or non-comment-mismatch (negative class).

Customer comments are generally very noisy mainly because
of three reasons: a) spelling mistakes: empty is misspelled in com-
ment ‘Emety box’, b) usage of regional languages: comment ‘Galt
order ho gya h’, which means I ordered wrong product, uses Hindi
language, and c) varied comment length: token counts in a com-
ment ranges [1, 323]. To handle such difficulties, we employ word
embedding and meta features. Besides conventional classification
method (xgboost [6]), we use BLSTM [24] to capture the sequential
information in the comments.

Also, the manual label generation process, which marks a missing-
item return comment as comment-mismatch/non-comment-mismatch,
is very noisy. The sources of noise are manual error, human bias,
and lack of well calibrated operation team. The label noise varies

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

depending on the patterns and is non-iid. This is clearly visible by
the fact that the overall label noise is ~ 15% and a specific pattern
‘T ordered x quantity of an item but received y quantity’ has 50%
noise. Due to this reason, the state-of-the-art noise-aware [11] base-
line, which uses BLSTM as the base model, fails severely. In fact, we
observed a performance degradation of this noise-aware BLSTM
over vanilla BLSTM.

The pattern specific noise variation and high noise on certain pat-
terns motivate us to use noise correction based on domain heuristics.
Like data programming[20], we express weak supervision strate-
gies or domain heuristics as labeling functions (LFs) which label
subsets of the data. However, LFs may conflict and prone to noise.
To our best knowledge, no one has employed LFs to rectify label
noise.

In a typical data programming setting, only data points are avail-
able and LFs are created to generate labels. The LFs may conflict on
certain data points and have varying error rates. To handle it, data
programming defines a generative process over the LFs to learn
the correctness probability of each LF on each data instance. This
information is then used to fit a noise-aware classifier.

The key difference between our setting and the data program-
ming is the availability of noisy labels (we call it as true LF) in our
case. Unlike data programming, we would like introduce less noisy
LFs compared to the true LF. Due to all these reasons, instead of
applying data programming directly, here resort to a simple method.
and promising methods to correct label noise using LFs, and leave
out the exploration of data programming as future work.

We define multiple LFs to alter the noisy labels in our dataset.
However, applying them directly to flip the noisy labels is impossi-
ble because the LFs conflict with each other - same data instance is
labeled as positive by a LF and negative by another LF. This requires
us to generate a ranked list of LFs. To do that, we define a conflict
score, which captures how less a LF conflicts with other LFs. Then,
the ranked LFs are applied to alter the true labels. In case of conflict
between LFs, the LF with the least conflict score is chosen to alter
the noisy label. We show that proposed method of noise handling
with LFs out performs all the state-of-the-art noise-aware baselines
as well as vanilla baselines.

We integrate the following aspects in the paper.

e Explanation of a real world problem and its challenges
e Exploratory data analysis and feature engineering
o State-of-the-art baselines - xgboost and LSTM and their
noise-aware variants
Noise handling with labeling functions
Proposed conflict-score to handle conflicts
Shown superior performance of the proposed method

Section 2 contains insights into data. Related work, feature engi-
neering, modeling, experimentation, and conclusion are described
in Section 3, 4, 5, 6, and 7, respectively.

2 DATA
2.1 Description

The data in our study comes from the customer comments on
missing-item return requests. We use one year of customer com-
ments: April 2017 - Mar 2018. We consider a comment-mismatch as
positive label and a not-comment-mismatch as negative label. Table

Avijit Saha, Vishal Kakkar, and T. Ravindra Babu

10000
8000

6000

of comments

4000

- ““"
0

10

I
20 30 40 50

&0 70
of words

Figure 1: Frequency distribution of comments w.r.t. word
count

ez g
livery

H@

,em It\ Service aie
F j i caid prodct

5N

tol

we wrederu

orce-cd

seree Wik relej:rr_i:-'!'-
Mipka-t

gt L3 sy receive

el mer “m'n:-::l 155U -

F:'ﬁl f.‘_i_,.-.;rﬁi-.snﬂ l S S llng _ me-_l..: Cance

Jazleen B

Want mme, feeas
saying MK

Wi ert Fleasc

Figure 2: Word clouds

1 describes the dataset statistics. We can observe ~ 41% are positive
labels. We count the number of words in a comment by tokenizing
it. Table 1 also shows that the word count of comments ranges
[1,323]. The plot clearly shows the existence of widely variable
length comments in our dataset. To deep dive, we plot a histogram
of number of comments w.r.t. word count in Figure 1. We clip the
plot at word length 75 for better visualization. Clearly, it is a long
tail distribution - approximately 51% of comments has less than ten
words. However, there exists a fat tail of comments with very high
word count.

Table 2 shows example of customer comments with different
word count. Interestingly, we can observe the presence of spell
error - ‘My mistek’ and regional language - ‘Sir khali box mila
h’ (Hindi). Often, comments are very noisy and do not adhere to
grammar rules - ‘Not working Good; tow time same product bye
mistack accepted so remove it’. To provide more insight on the
data, we show a word cloud of our dataset in Figure 2. Some of
the important keywords are cx (customer), product, mobile, box,
missing, and empty. The cx words occurs in the comments when
customer calls customer care to place the return request.

Noise-aware Missing Shipment Return Comment Classification in E-Commerce SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

Table 1: Data Statistics

of instances | % of negatives

% of positives | min word count in any comments | max word count in any comments

O(100k) 59 41

1 323

Table 2: Example of comments with different word count

Word Comment
Count

1 Missing

Sorry
2 Product missing.
My mistek
4 I got one jacket
empty box no watch
8 Charged more than 172/- from the MRP on box
Sir mera phone nahi tha box ke andar

Table 3: Example of noisy labels

Word Comment Actual | True
count Label | Label
1 Ghh -1 1

Missing 1 -1
2 Wrong delivery -1 1
Missing product 1 -1
4 Customer wants the refund -1 1
Product is not there 1 -1
8 Please replacement this product -1 1
otherwise return my money
Item missing your department , 1 -1
Very poor bad service

2.2 Label Noise

Recall, non-comment-mismatch implies a genuine return request of
type missing-item and comment-mismatch implies a return request
anything other than missing-item type. Given a missing item return
comment, our operation team at Flipkart mark it as either comment-
mismatch (positive) or non-comment-mismatch (negative). This
label generation process is very noisy due to manual error, human
bias, and lack of well calibrated operation team. Table 3 shows
example of noisy labels for comments with different word count.
Actual label and true labels represents the label in the dataset and
the expected label, respectively. We show noisy labels from one,
two, four, and eight word count comments. For each word count,
we show one comment whose label should be positive but marked
as negative and one comment whose label should be negative but
marked as positive.

2.3 Noise Statistics

To estimate the overall noise in our dataset, we manually relabeled
3k randomly chosen examples and consider it as test dataset. We
calculate the noise by considering mismatch between the actual
label and true label on the test dataset. The overall noise is estimated

to be 15.65%. Also, the positive and negative classes have 10.06%
and 19.45% noise, respectively.

3 RELATED WORK

Preprocessing is an important step for text classification. Two im-
portant blocks [1] of preprocessing are - 1) Tokenization and 2)
Filtering. Tokenization [23], which is the initial step of prepro-
cessing, divides a text document into words known as tokens. In
Filtering, stop words are removed.

Then, the preprocessed text is converted into feature vectors. One
of the widely used model for feature generation is the bag-of-words
(BOW) model [18]. It represents a document to a k-dimensional fea-
ture vector, where the individual co-ordinate represents the count
of a specific word in the document. Often, term frequency-inverse
document frequency (tfidf) [18] is used to penalize a frequently
occurring word. Recently, word2vec (w2v) [19] model gained much
attentions. It embeds a word to a k-dimensional vector space by
preserving the property that words occurring in the same context
will have higher similarity score. Word2vec [16] features are used
for text classification in many ways - summation of the w2v em-
bedding vectors, mean of the w2v embedding vectors, and tf-idf
based weighted sum of the w2v embedding vectors corresponding
to all the words in a document.

Support vector machines (SVMs) [14] are widely employed for
text classification. Athanasiou [2] has applied gradient boosting ma-
chine for sentiment analysis task, and shown superior performance
over SVM, Naive Bayes, and neural network. Gradient boosting ma-
chine is a boosting algorithm where each iteration fits a new model
to get better class estimation. Each newly added model is corre-
lated with the negative gradient of the loss function, and the loss is
minimized using gradient descent. Extreme gradient boosting (Xg-
boost) [6] is another boosting algorithm with better regularization
and performs well in practice.

Recently deep learning algorithms[15, 22] have shown promis-
ing performance in text classification. Specifically, recurrent neural
networks (RNNs) [15] are the widely used architectures to capture
the sequential information. Long term short memory networks
(LSTMs) [12] is a variant of RNN which helps to overcome some of
the problem of RNN like, vanishing gradient problem and helps to
remember the context over long text. Many flavours of LSTMs are
proposed [22] to for text classification, such as Multilayer-LSTM,
Bidirectional-LSTM (BLSTM), and Tree-Structured LSTM. In Mul-
tilayer LSTM, LSTMs are stacked over each other to capture the
non-linearity. In BLSTM, both past and future information are pre-
served using two hidden states, and it helps to learn the context
better.

Noisy label can be handled broadly by three approaches [9]: a)
label-noise robust models [4, 6], b) data cleansing methods [5, 13],
and c) label-noise tolerant learning algorithms [3, 11]. In label-noise
robust methods, label-noise is handled by reducing the overfitting.

SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

Even though, theoretically learning algorithms are robust to label-
noise, in practice performance varies from algorithm to algorithm,
such as bagging perform better than the boosting [8]. Data cleans-
ing methods filter out data points which appears to be mislabeled.
Filtering can be done with various approaches, such as outlier
detection [13], removal of all the misclassified data points by a clas-
sifier [5], and removal of any points which disproportionately in-
creases the model complexity [10]. In label-noise tolerant algorithm,
noise is handled explicitly in the modeling step. Label-noise robust
logistic regression [3] modifies the loss function to handle noise.
Recently, a probabilistic neural-network based framework [11] is
developed, which views the true label as a latent variable and a
softmax layer is used to predict it. The noise is explicitly modeled
by an additional softmax layer that predict the noisy label based on
both the true label and the input features.

As creating labeled training data is difficult and time consuming,
many approaches are developed to generate training data automati-
cally, such as distant supervision [7, 17] and data programming [20].
Distant supervision heuristically maps a knowledge base of known
relations to an unknown domain to generate training data. Data pro-
gramming is a generic framework to create dataset pragmatically
using distant supervision. It expresses weak supervision strategies
or domain heuristics as labeling functions (LFs) which label sub-
sets of the data. The LFs may conflict on certain data points and
have varying error rates. To handle it, data programming defines a
generative process over the LFs to learn the correctness probability
of each LF on each data instance. This information is then used to
fit a noise-aware classifier.

4 FEATURE ENGINEERING

In this Section, we will discuss all the hand crafted features which
are used for conventional Machine Learning models.

4.1 Meta Features

We construct nine meta features as shown in Figure 3. Word count,
char count, alpha count, digit count, and non-alphanumeric count
compute the number of words, characters, alphabets, digits, and
non-alphanumeric characters in a comment. To show the discrimi-
nating power of each meta feature, in Figure 3, we show histogram
of each feature w.r.t. both positive and negative class. In each sub-
plot, the blue and green histogram represents the distribution for
negative and positive class, respectively.

In each subplot, the blue distribution is right shifted. It implies
that in general comments from the negative class are longer, have
more alphabets, digits and non-alphanumeric characters compare
to the comments from the positive class. This is explained by the
fact that short comments lack descriptive ability, and thus have
higher chance of being comment-mismatch. Interestingly, unique
character count and unique alphabet count are the most discrimi-
nating features - there is a clear separation between the distribution
of positive and negative class for these two features.

4.2 Word2vec Features

We observed that our dataset is very noisy. For example, a keyword
like ‘missing’ has numerous variations - missing, misssing, misisng,
missig, etc. Moreover, there are semantically similar words, such as

Avijit Saha, Vishal Kakkar, and T. Ravindra Babu

Table 4: Example of Spell Variation and Synonym

missing | mobile | product | ordered
mising mobil | prodcut orderd
misssing fone produict odered
misisng | device | produc order
khali handset | prioduct | booked
empty phone item purchased

‘empty’ and ‘khali’ both means empty. Also, customers use regional
language, such as hindi (‘mujhe product nahi mila’). To handle
these complexities, we train a word2vec model with 200 dimension
on one year customer’s return comments data from all the return
reason-codes. The number of comments are O(10M). We train the
word2vec by considering words which occurs at-least 25 times in
our corpus. For tokenization, we use Gensim [21] simple_preprocess
method.

Table 4 shows similar words from the word2vec model for four
keywords - missing, mobile, product, and ordered. We can observe
that the word2vec model is able to capture spelling variations. It
is also able to capture semantically similar word, such as missing
and empty, mobile and handset, device and phone, and ordered
and purchased. Moreover, the regional language variation is also
captured, such as missing and khali (hindi), mobile and fone (hindi),
and missing and illa (tamil).

4.2.1 Sum of Word2vec Features: We sum the individual 200-
dimensional embedding vector for each word in a comment and
use it as the final feature in model. To handle out-of-vocabulary
word, we fall back to the 200-dimensional zero vector.

4.2.2 Weighted Word2vec Features: We fit a tfidf model on the
training data. Then, we calculate a weighted sum of the individual
200-dimensional embedding vector for each word in a comment.
Where weight of individual word embedding is assigned from the
tfidf score of the word.

4.3 Bag-of-words (BOW) Features

Each comment in the training dataset is preprocessed with Gensim
preprocessing. Then, a bag-of-words (BOW) model is trained with
5k vocabulary size and with English stop words removal.

5 MODEL
5.1 BASELINE

We tried multiple conventional Machine Learning algorithms widely
used for text classification, such as SVM, naive Bayes, logistic re-
gression, random forest, and xgboost. In our data, around 50% of
the comments are long and we found that often long comments
have sequential information, such as ‘customer ordered 2 items but
received only 1’. To capture the sequential information, we exper-
imented with different RNN based models, such as RNN, LSTM,
Multi-layer LSTM, and Bi-directional LSTM (BLSTM). In below,
we only describe the best performing models from each of this
approach.

5.1.1 Xgboost: A xgboost model is trained with all the features
described in Section 4. The model parameter is tuned by grid search.

Noise-aware Missing Shipment Return Comment Classification in E-Commerce SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

30000 30000 30000 s npegative
2 25000 2 2 25000 positive
@ 20000 5 2 20000
£ E 20000 E
E 1s000 g E 1s000
|5 S S
% 10000 S 10000 % 10000
* 500 * * 5000

0 0 o
] 100 200 300] 500 1000 1500 0 250 500 750 1000 1250
word count char count alpha count

0000 15000
£ £ 30000 £ 12500

40000
E 30000 E 20000 E Hneee
s 20000 S :
= s -

o © 10000 5 Shoo
* 10000 A * cop
0]]
0 10 20 30 40 50 o 100 200 300 400 0 20 a0 60
digit count non-alphanumeric count unique char count
12000 snaoe
40000
£ 10000 £ aoaoo £
@ o 2 30000
£ BoOD E 30000 E
E E E
& 600D 5 S
g 8 0000 S 20000
5 4000 = -
10000
* o0 # 10000 #*
0 0 o
] 5 10 15 20 s] 2 4 6 8 10 20 30 40 50

unique alpha count

unique digit count

10 o

ic count

Figure 3: Meta features

While performing the grid search, we restrict the max depth of
individual tree to 8 and max number of estimators to 500. The best
parameters are chosen using 5-fold cross-validation.

5.1.2 BLSTM: We used BLSTM which avoids feature engineer-
ing. In BLSTM, both past and future information are preserved
using two hidden states, and it helps to learn the context better.
We experimented with word2vec pretrained embedding from the
word2vec model as well as learning the embedding from scratch in
the network itself. We tune the number of neurons in the BLSTM.
We also experimented by adding fully connected relu layes in the
network before the output layer. The best parameters are tuned
based on a validation set.

5.2 NOISE-AWARE BASELINE

We tried two approaches to handle noisy labels: 1) data cleansing
method and 2) label noise-tolerant algorithm.

5.2.1 Data Cleansing Method: The goal of such methods is to
filter out data points which appears to be mislabeled. Here, we
apply a model prediction based filtering method [5].

In this filtering approach, we divide the training dataset into
k-folds (five-folds). We train a xgboost model (with the best pa-
rameters found in 5.1.1) on k-1 folds and apply it to predict labels
for k-th fold. This process is repeated k times to get labels for
the entire training dataset. Then we filter out instances with dis-
agreement between the actual label and the predicted label. On
the filtered training data, a xgboost model (with same parameter)
is trained which forms the final model. We refer this method as
xgboost+filtering.

5.2.2 Label Noise-Tolerant Algorithm: In label-noise tolerant
algorithm, noise is handled explicitly in the modeling step. Here, a
probabilistic neural-network based framework [11] is considered to
handle label-noise. This framework views the true label as a latent

variable. A softmax layer is used to predict the true label. The noise
is explicitly modeled by an additional softmax layer that predict
the noisy label based on both the true label and the input features.

Assuming the non-linear function applied on an input x be h =
h(x), the true label y is modeled by:

exp(ul h+b;)
Z;‘Il exp(ulTh +by)

Py = ilx;w) = L.k (1)

Where k is the number classes and w is the network parameter-
set (including the softmax layer). Next a softmax output layer is
added to predict the noisy label z based on both the true label and
the input features:

exp(ulh+bip)
p(z =]|y = i, X; Wnoise) = ! (2)
Z;‘zl exp(ul?;h + b;ip)
plz =jlx) =p(z = jly = i,x)p(y = ilx) (3)

Where, wyise represents parameters in the second softmax layer.
Given n training data points with feature vectors x1, x2, ..., x, with
corresponding labels z1, z2, ..., z, and true labels y1, y, ..., yp, the
log likelihood term of the model parameters is written as:

Zlogp(ZAxt), t=1,..,n 4)
7

This modeling approach is named as c-model and learned using
a neural-network training. For our experiment, the h function is
considered to be a BLSTM, with the same parameter as in Section
5.1.2. This model is referred as BLSTM+noise-aware.

SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

Table 5: Example of Labeling Functions (LFs)

def lambday,ytia) (x):
return 1 if # of positive integer tokens in x >= 2 else 0

def lambdagoap(x):
return -1 if IsTokenPresent(soap, x) else 0

5.3 NOISE HANDLING WITH WEAK
SUPERVISION

We encode domain heuristics as labeling functions (LFs) [20], which
label subsets of the data. However, LFs may conflict and prone to
noise. Assuming data point and class pair (x, y) are drawn from the
distribution X X {-1,1},aLF 4; : X — {1,0,—1} is a user-defined
function that encodes some domain heuristic, and provides non-
zero label for some subset of the data points. Where 1 and -1 refer
to the positive and negative class respectively. And 0 refers to the
case where LF can not label the instance. LFs collectively generate
a large but potentially overlapping set of training labels. LFs can be
created in many ways, such as leveraging domain specific patterns
to label data points or use existing knowledge bases to generate
labels.

We consider that the actual labels came from a LF named A ye,
which has 100% coverage. As introduction of a more noisy LF than
Atrue Will increase overall noise in the dataset, unlike data pro-
gramming, we introduce less noisy LFs than A;,y¢. Lets consider A
denotes the m newly created LFs - {4;},, each of which looks at
the domain specific patterns to label data points.

A specific pattern is observed in the comments - ‘T ordered x
quantity of an item but received y quantity’. This is partial delivery,
as the customer has received part of the order, and should be marked
as comment-mismatch. With this pattern, a LF lambda, 4,14 is
defined in Table 5. We also observed that customer often writes
they have received soap instead of a mobile phone. This is a gen-
uine missing-item request, and should be marked as non-comment-
mismatch. With this pattern, a LF lambdaseap is also defined in
Table 5. The IsTokenPresent function returns true when soap is one
of the token of comment x. Table 6 describes the statistics of all the
LFs. Where coverage represents the percentage of instances with at
least one label, conflict represents the percentage of instances with
conflicting labels, and overlap depicts the percentage of instances
with more than one labels.

To deep dive, we show conflict and overlap count in Table 7
and Table 8, respectively. Where a cell (i, j) in Table 7 defines the

number data instances where (4; == 1and A; == -1) or (4; == -1
and Aj == 1). Similarly, a cell (i, j) in Table 8 defines the number
data instances where (; == 1and A; == 1) or (A; == -1 and
Aj==-1).

As LFs conflicts with each other applying them directly to flip
the true labels is impossible. This requires us to generate a ranked
list of LFs. To do that, for each A; € A, we define a conflict-score
as below. Note, conflict count of A; is calculated by summing the
number of conflict between A; and each rule from A — A;.

Avijit Saha, Vishal Kakkar, and T. Ravindra Babu

Table 6: Statistics of Labeling Functions

of LFs | Coverage (%) | Overlap (%) | Conflict (%)
17 100 40 9
Table 7: Conflict Count
true | partial | phone missing | soap
true 0 5,752 368 44
partial 5,752 0 247 54
phone missing | 368 247 0 0
soap 44 54 0 0
Table 8: Overlap Count
true | partial | phone missing | soap
true 0O(100k) 3,619 1,819 621
partial 3,619 9,371 0 0
phone missing | 1,819 0 2,187 42
soap 621 0 42 665
unique conflicts of A; with other LFs
cf_score,, = (5)

Coverage of 1;

Intuitively, the cf_score captures how much a LF conflicts with
other LFs. With this score, Algorithm 1 denoise the training data.

Asorted

ing order w.r.t the cf_score,,.

contains the sorted list of m newly created rules in ascend-

Algorithm 1 Label Denoising with Labeling Functions (LFs)

Input: X, Asrye,

Asorted

Output: Y: final label vector
append A¢,ye at the end of Jsorted

for x; € X do
flag=0

for 1; € 150rted do

yi = Aj(x;)

if y; # 0 then

flag=1
break
end if
end for

if flag==0 then
Yi = Atrue(Xi)

end if
end for

After denoising the training data with Algorithm 1, we apply the
xgboost and BLSTM model on the denoised training data. This two
approaches are named as xgboost+best-sequence and BLSTM+best-

sequence.

Noise-aware Missing Shipment Return Comment Classification in E-Commerce SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

Table 9: Train and Test Dataset Statistics

Type | # of instances | % of neg | % of pos | Label type
Train O(100k) 59 41 Noisy
Test 3,000 51.5 48.5 Clean

6 EXPERIMENTS
6.1 Dataset

The complete data consists of O(100k) instances out of which ran-
domly chosen 3k instances forms the test data and rest forms the
train data. The test dataset is manually relabeled to generate clean
labels. Table 9 shows train and test data statistics. Note, the test
dataset size is small because manual relabeling is time consuming.

6.2 Experimental Setup

We compare performance of xgboost+best-sequence and BLSTM+best-
sequence against the baselines - xgboost, BLSTM, xgboost+filtering,
and BLSTM+noise-aware. Moreover, to showcase the benefits of
the conflict handling with the cf_score, we compare the perfor-
mance of xgboost+best-sequence and BLSTM+best-sequence with
xgboost+random-sequence and BLSTM+random-sequence. For random-
sequence, A°"t€4 consists of a of random permutation of m newly
created rules. Model performance varies for different random se-
quences. Hence, for both xgboost+random-sequence and BLSTM+best-
random, we repeat experiments 10 times with different random
permutation of A and report the mean and standard deviation. For
all the models, we fix random-state to 2018. As our dataset is well
balanced, we use accuracy as the evaluation metric.

6.3 Results

Table 10 shows the performance comparison between xgboost,
BLSTM, and their noise-aware variants. BLSTM is performing best
with an accuracy of 87.43. This proves that using sequence infor-
mation indeed benefits on our dataset. BLSTM and xgboost are
performing better than BLSTM+noise-aware and xgboost+filtering,
respectively. We can observe that the state-of-the-art noise-aware
algorithms are hurting the performance. We think that the rea-
son for such a performance degradation is due to the wide pattern
specific noise variation.

Table 10: Performance of Baselines

Model Accuracy
Xgboost 86.90
Xgboost-+filtering 86.47
BLSTM 87.43
BLSTM+noise-aware 87.33

Table 11 shows the performance comparison among our methods.
Again, BLSTM with best-sequence is performing best. BLSTM+best-
sequence and xgboost+best-sequence are performing better than
BLSTM+random-sequence and xgboost+random-sequence, respec-
tively. It proves the benefits of conflict handling among LFs by
cf_score. Note, the standard deviation of BLSTM+random-sequence

is quite low, and still BLSTM+best-sequence beats the BLSTM+random-
sequence, again proving conflict handling with cf_score helps.

Overall, BLSTM+best-sequence performs best, proving the ef-
ficacy of our proposed approach. Best-sequence provide benefits
over random-sequence proving the benefits of conflict handling
among LFs by cf_score. Sequence model BLSTM is able to provide
benefits over xgboost. We were able to improve the accuracy from
86.90% to 90.04% with the help of BLSTM, LFs, and cf_score.

Table 11: Performance of Proposed Methods

Model Mean Accuracy | Std
Xgboost+random-sequence 87.64 1.37
Xgboost+best-sequence 88.39 NA
BLSTM+random-sequence 88.37 0.02
BLSTM+best-sequence 90.04 NA

7 CONCLUSION

We discussed an important problem of classifying missing-item re-
turn comments into comment-mismatch/non-comment-mismatch.
We highlighted the data and noise related challenges in both com-
ments and labels. We have experimented with the state-of-the-art
Machine Learning and Deep Learning methods as well as their
noise-aware variants. We have proposed a simple method with
labeling functions (LFs) to denoise the training dataset. A conflict-
score is defined to handle the conflicts between LFs. Empirically,
we have shown efficacy of our approach over the baselines.

As future work, we intend to explore the complete data program-
ming framework to handle noisy labels.

REFERENCES

[1] Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D.

Trippe, Juan B. Gutierrez, and Krys Kochut. 2017. A Brief Survey of Text Mining:

Classification, Clustering and Extraction Techniques. CoRR abs/1707.02919 (2017).

arXiv:1707.02919 http://arxiv.org/abs/1707.02919

Vasileios Athanasiou and Manolis Maragoudakis. 2017. A Novel, Gradient Boost-

ing Framework for Sentiment Analysis in Languages where NLP Resources Are

Not Plentiful: A Case Study for Modern Greek. Algorithms 10 (2017), 34.

[3] Jakramate Bootkrajang and Ata Kaban. 2012. Label-Noise Robust Logistic
Regression and Its Applications. In Proceedings of the 2012 European Confer-
ence on Machine Learning and Knowledge Discovery in Databases - Volume
Part I (ECML PKDD’12). Springer-Verlag, Berlin, Heidelberg, 143-158. https:
//doi.org/10.1007/978-3-642-33460-3_15

[4] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (Oct. 2001), 5-32. https:
//doi.org/10.1023/A:1010933404324

[5] CarlaE. Brodley and Mark A. Friedl. 1999. Identifying Mislabeled Training Data.
J. Artif. Int. Res. 11, 1 (July 1999), 131-167. http://dl.acm.org/citation.cfm?id=
3013545.3013548

[6] Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785-794. https://doi.org/10.1145/2939672.2939785

[7] M. Craven and J. Kumlien. 1999. Constructing biological knowledge bases by
extracting information from text sources. In Proceedings of the International
Conference on Intelligent Systems for Molecular Biology.

[8] Thomas G. Dietterich. 2000. An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomiza-
tion. Machine Learning 40, 2 (01 Aug 2000), 139-157. https://doi.org/10.1023/A:
1007607513941

[9] Benoit Frénay and Ata Kaban. 2014. A Comprehensive Introduction to Label Noise.

i6doc.com.publ.

Dragan Gamberger, Rudjer Boskovic, Nada Lavrac, and Ciril Groselj. 1999. Exper-

iments With Noise Filtering in a Medical Domain. In Proc. of 16 th ICML. Morgan

Kaufmann, 143-151.

5

[10

http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1707.02919
https://doi.org/10.1007/978-3-642-33460-3_15
https://doi.org/10.1007/978-3-642-33460-3_15
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://dl.acm.org/citation.cfm?id=3013545.3013548
http://dl.acm.org/citation.cfm?id=3013545.3013548
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/A:1007607513941
https://doi.org/10.1023/A:1007607513941

SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA

[11]
[12]

[13]

[14]

[15]

[16]

[17

[18

[19]

[20

[21]

[22]

[23]

Jacob Goldberger and Ehud Ben-Reuven. 2017. Training Deep Neural-networks
Using a Noise Adaptation Layer.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735-1780. https://doi.org/10.1162/neco.1997.9.
8.1735

Victoria J. Hodge and Jim Austin. 2004. A survey of outlier detection methodolo-
gies. Artificial Intelligence Review 22 (2004), 2004.

Thorsten Joachims. 1998. Text Categorization with Support Vector Machines:
Learning with Many Relevant Features. In Proceedings of the 10th European
Conference on Machine Learning (ECML’98). Springer-Verlag, Berlin, Heidelberg,
137-142. https://doi.org/10.1007/BFb0026683

Ji Young Lee and Franck Dernoncourt. 2016. Sequential Short-Text Classification
with Recurrent and Convolutional Neural Networks. CoRR abs/1603.03827 (2016).
Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. 2015. Support vector machines
and Word2vec for text classification with semantic features.. In ICCI*CC, Ning
Ge, Jianhua Lu, Yingxu Wang, Newton Howard, Philip Chen, Xiaoming Tao,
Bo Zhang, and Lotfi A. Zadeh (Eds.). IEEE Computer Society, 136-140. http:
//dblp.uni-trier.de/db/conf/IEEEicci/IEEEicci2015. html#LillebergZZ15

Emily K. Mallory, Ce Zhang, Christopher Rif;, and Russ B. Altman. 2016. Large-
scale extraction of gene interactions from full-text literature using DeepDive.
Bioinformatics 32, 1 (2016), 106-113. https://doi.org/10.1093/bioinformatics/
btv476

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher
Ré. 2016. Data Programming: Creating Large Training Sets, Quickly. In NIPS.
3567-3575.

Radim Rehtifek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45-50. http://is.muni.cz/publication/
884893/en.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. CoRR abs/1503.00075 (2015).

Jonathan J. Webster and Chunyu Kit. 1992. Tokenization As the Initial Phase in
NLP. In Proceedings of the 14th Conference on Computational Linguistics - Volume 4
(COLING ’92). Association for Computational Linguistics, Stroudsburg, PA, USA,
1106-1110. https://doi.org/10.3115/992424.992434

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo
Xu. 2016. Text Classification Improved by Integrating Bidirectional LSTM with
Two-dimensional Max Pooling. CoRR abs/1611.06639 (2016).

Avijit Saha, Vishal Kakkar, and T. Ravindra Babu

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/BFb0026683
http://dblp.uni-trier.de/db/conf/IEEEicci/IEEEicci2015.html#LillebergZZ15
http://dblp.uni-trier.de/db/conf/IEEEicci/IEEEicci2015.html#LillebergZZ15
https://doi.org/10.1093/bioinformatics/btv476
https://doi.org/10.1093/bioinformatics/btv476
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.3115/992424.992434

	Abstract
	1 Introduction
	2 Data
	2.1 Description
	2.2 Label Noise
	2.3 Noise Statistics

	3 Related Work
	4 FEATURE ENGINEERING
	4.1 Meta Features
	4.2 Word2vec Features
	4.3 Bag-of-words (BOW) Features

	5 MODEL
	5.1 BASELINE
	5.2 NOISE-AWARE BASELINE
	5.3 NOISE HANDLING WITH WEAK SUPERVISION

	6 Experiments
	6.1 Dataset
	6.2 Experimental Setup
	6.3 Results

	7 CONCLUSION
	References

