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ABSTRACT

Customers reviews are becoming increasingly important to assist
the purchase decision in e-commerce platforms. Reviews from cus-
tomers usually reflect the aspects of a product or service that are
deemed valuable by other customers, which may not be mentioned
or emphasized in product descriptions. Accumulating an abundant
amount of reviews for products is an efficient approach to build
customer trust and often observed with positive correlation of con-
version increase. However, at the same time, the enormous amount
of reviews becomes an obstacle for a customer to fully grasp the
consensus opinion on aspects that he/she truly cares about. Addi-
tionally, the vast diversity in vocabulary used in reviews introduces
difficulty for quick and accurate comprehension. To address the
above-mentioned issues, we present an end-to-end pipeline for
product aspects detection from customer reviews and sentiment
analysis. In the paper, we describe the aspects detection approach
for both explicit and implicit aspects. We further develop a gated-
RoBERTa-based sentiment classifier for sentiment analysis, which
exhibits outstanding performances in multi-domain corpus.
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1 INTRODUCTION

Intuitive and smooth browsing experience of e-commerce websites
has been the key to encourage better engagement and drive rev-
enue. While retailers are providing abundant information regarding
products specification and features from manufacturer, consensus
is reached on the fact that customer reviews play an essential role
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in purchase decisions. There are several reasons. First, the knowl-
edge gap between manufacturer and customer obstructs a pleasant
shopping experience. For example, while the description "This dish-
washer is made to perform at only 50 dBA" is straightforward for
a professional, a customer may have difficulty in distinguishing
whether it is noisy or not. Second, manufacturer may fail to deliver
or highlight the specification that a customer deems important. For
example, the product specification of a refrigerator may contain
no information regarding noise, whereas it is one of the most com-
mon topics in reviews. Third, customers frequently refer to reviews
before purchase, judging the popularity and quality of a product.

However, reviews of a popular product, which accumulate to
the number of several thousand or more, become infeasible to
comprehend. Meanwhile, merely reading the top reviews in a web-
page is likely to cause bias in the evaluation of a product. As a
solution, aspect extraction is the process of summarizing product-
relevant information and determining the opinion expressed on
it using natural language processing (NLP) techniques. Figure 1
is an example of organizing customer reviews in pros and cons,
improving readability and communication.
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Figure 1: Example of summarized pros and cons based on
customer reviews at a product page of e-commerce.

Aspect extraction faces challenges in that mapping colloquial
language to technical terms and scaling to dozens of domains with-
out loss of accuracy. WordNet has been leveraged to infer semantic
similarity [22], but effectiveness is impaired due to occasional lack
of synonymous relationship between words that are actually se-
mantically close. Synonyms based semantic clustering using GloVe
[14] and word2vec [26] have also been proposed. However, we
found that Google Universal Sentence Encoder (USE) [4] based
semantic inference proves to be more accurate. Inferring similarity
of phrases using USE outperforms ELMo [30], BERT [9] and XLNET
[45] as an encoder, in that USE applies a transformer architecture
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and is trained to identify the semantic textual similarity (STS) be-
tween sentences. Though BERT-based models have been proposed
to tackle aspect detection and sentiment analysis as a one stop
solution [29], the expense of large scale labeling and difficulty of
domain adaption prevent its commercial application.

Sentiment analysis models should be adaptive to the extremely
vast difference in vocabulary and language of reviews introduced
by millions of products. However, applying one single model for
all products reviews could damage performances significantly. It
is possible to address the issue by training individual models for
subsets of products, but it lacks scalability given dozens or hundreds
of categories in a retailer’s catalog.

In this work, we present the pipeline of aspect extraction and
aspect-based sentiment analysis, deployable at e-commerce plat-
form with multi-domain adaptation. We leverage the capacity of
pre-trained transformer architecture, RoOBERTa [25], to significantly
improve the accuracy in detecting pros and cons of products across
domains. The contributions of the study can be summarized as
follows:

e Propose the explicit and implicit aspect extraction frame-
work scalable at e-commerce platform.

e Propose semantic-based aspect emerging using USE.

e Propose and benchmark the gated RoBERTa sentiment clas-
sifier.

2 RELATED WORK

Aspect extraction is the foundation of aspect-based sentiment anal-
ysis. Relevant methods have been proposed by researchers over the
past decades. Supervised models generally performs better than un-
supervised models, but lack adaption in domain migration [36]. Su-
pervised models include conditional random field (CRF) [6, 13, 20],
integration of neural networks and CRF [41, 43], semantic parsing
using dependency relations [21, 33], tree-based model [15] and Lex-
icalized HMM-based model [17, 18]. Recognizing the disadvantage
of supervised approach, researcher also proposed novel CRF-based
method to adapt the model to new domains [38]. Hybrid approach
of rule-based model and neural network have also been developed
for domain adaptation [10]. While deep neural network models
[2, 31] are gaining popularity with improved performances, recent
advance in transformer based language model inspired its applica-
tion in aspect extraction [46].

Unsupervised models in aspect extraction are widely used and
are more robust in diverse kinds of domains. Intuitively, models
based on statistical characteristics are proposed, utilizing frequency,
association and linguistic features [35, 37]. A rule-based method
[14] showed that even though there exists a large disparity in vo-
cabulary between manufacturer and customer, domain-specific
information significantly improves aspect discovery. There are also
bootstrapping [1, 49], pointwise mutual information (PMI) [34] and
word alignment approaches [23, 24].

Semi-supervised model have been proposed to guide clustering of
similar aspects by using a few seed words [27, 47]. Seeding aspects
extracted from product information are used to guide discovery of
related words from reviews by a labeled LDA [42].

While the majority of researches focus on explicit aspect ex-
traction, implicit aspects provide abundant information regarding
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customers’ opinion, which should be fully utilized. Rule-based ap-
proach relies on the dependency parsing to mark words that fit in
a specific pattern as implicit aspects [32]. CRF is used to recognize
implicit aspect indicator which is logically associated with an ex-
plicit aspect [3, 8]. Additionally, the idea of association mining is
proposed and its applications include utilizing co-occurrence rules
[19], calculating PMI to infer semantic association [39] and apply-
ing hybrid model with collocation extraction and semi-supervised
LDA topic model [16].

Multiple methods have been proposed on sentence level senti-
ment analysis. Deep learning models have been gaining momentum
with extraordinary performances [28, 48]. To further improve deep
learning model, a divide-and-conquer approach is developed to
group sentences into several types before applying convolutional
neural network classifier [5]. The introduction of transformer-base
language model [9] has revolutionized natural language process-
ing and significantly improved sentiment analysis compared to
recurrent neural network [40]. Transformer models have also been
applied in both aspect detection and sentiment analysis [29].

3 EXPLICIT AND IMPLICIT ASPECT
EXTRACTION

The length of a product review varies significantly, from one phrase
or sentence to a lengthy paragraph with several topics. A long
review could be formidable to read, but it is likely to contain some
aspects of a product that a customer cares about. Aspect extraction
is the process of recognizing and distilling relevant information
and assist in better communication. Aspect extraction of review
text is performed on sentence level, while one sentence can contain
one to two aspects of a product. The methodology is consisted
of four parts: 1. pre-processing of raw review text, 2. explicit and
implicit aspect extraction, 3. semantic merging of similar aspects, 4.
mapping implicit aspects to corresponding explicit aspects. Figure
2 shows the flow of the above mentioned steps.

3.1 Pre-Processing

Pre-processing of raw texts standardizes the language and removes
unnecessary information in raw texts. It improves the quality of
part-of-speech (POS) parsing and is applied to raw reviews before
aspect extraction. The pipeline of pre-processing is consisted of the
following steps: 1. a contraction is replaced with its formal form,
2. URLs are removed, 3. information added by retailer/vendors are
removed, 4. reviews text are broken down to sentences. The pipeline
is implemented using NLP module Spacy v2.2.4 [12].

3.2 Explicit Aspect Extraction

The aspect of a product describe an attribute or feature of a product
and is often discussed frequently in reviews. The frequent occur-
rence of a term is a necessary criteria of it being an aspect. How-
ever, customers express opinions on a variety of things, including
themselves, family, previous purchase and comparable products.
The challenge of identifying a true aspect involves differentiat-
ing whether a frequent term is related to the product itself or not.
Mostly, the aspect of a product appears in the form of a noun or
noun phrase. Meanwhile, certain verb phrases also qualify.
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Figure 2: Flowchart of Explicit and Implicit Aspect Extrac-
tion.

Explicit aspect are obtained in sentences where the aspect word
appears in its lemmatized or a slightly modified form such as in
plural. For example, in sentence "Works well, lots of space, loving
the side by side design much more than my old french door!, "space”
is an explicit aspect of a refrigerator. Extraction of explicit aspect
involves three components. First, raw explicit aspects are obtained
by recognizing the noun chunks in a sentence. Second, phrases that
are consistent with the following POS structures are considered
aspect: 1. adjective-to-verb, 2. adjective-preposition-verb, 3. noun-
preposition-verb, 4. noun-preposition-noun. Third, raw aspects are
filtered with a global and category specific stoplists.

3.3 Implicit Aspect Extraction

Review sentences containing implicit aspect often utilize verb or
adjective for conveying information instead of using a noun. Read-
ers could infer the corresponding explicit aspect semantically and
logically. For example, in sentence "It is gorgeous and very easy to
use!”, the adjective "gorgeous" implies the aspect of "design/style".
Recognizing implicit aspect is achieved by identifying adjectives
that are not in a curated stoplist. The stoplist includes adjectives
that are rarely related to objects, or features of products. Addition-
ally, implicit aspects utilizing verbs are conveniently captured in
verb phrases described in previous section.

3.4 Semantic Merging of Similar Aspects

An aspect may have several ways of phrasing. For example, aspect
"space" of a refrigerator could be expressed as "room", "space” and
"space layout". Semantically similar aspects need to be merged be-
fore being presented to customers. To perform semantic merging,
Universal Sentence Encoder (USE) is utilized to encode aspects

to high dimensional vectors. And then pairwise cosine similarity
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(Equation 1) is calculated for explicit and implicit aspects individu-
ally,
A-B

|A] - |B|
where A and B represent the embedding vectors of aspects.

Further, merging of raw aspects is guided by hierarchical ag-
glomerative clustering (HAC), where leaf nodes are grouped to
represent multiple concepts in aspects. HAC based on the pairwise
similarities are created for explicit and implicit aspects respectively.
Aspect clusters are obtained by applying cut-off on the hierarchical
tree, while the cut-off value is chosen by maximizing the average
Silhouette value of all samples. Individual Silhouette value is given
by

cos(0) = (1)

b(i) - a(i)
max{a(i),b(i)}
where a(i) is the mean distance between i and all other data points
in the same cluster and b(i) is the smallest mean distance of i to all
points in any other cluster. Customized merging criteria is used as
a supplement to the above steps.

For explicit aspects, the most frequent word/phrase in a cluster
is chosen to represent the collective meaning of the cluster.

s(i) = (2

3.5 Merging of Implicit and Explicit Aspects

All the words in a implicit aspect cluster are used to find their
corresponding explicit aspect. First, synonyms and antonyms of the
adjectives are retrieved from WordNet [11]. Second, the lemmatized
noun forms of the synonyms and antonyms are obtained and cross
matched with the explicit aspects. Third, the matching explicit
aspect with the highest number of occurrence is chosen to be the
aspect of the implicit cluster, while clusters with no matches are
abandoned.

Figure 3 shows an example of the hierarchical relationship of
implicit aspects using USE as the encoder, where implicit clusters

non non non

are generated for 1) "expensive", "costly”, "cheap"”, "economical", 2)
"noisy", "loud", "quiet", 3) "wide", "large", "big", "spacious" given
optimized cut-off at 0.59. The three clusters are mapped to explicit

aspects 1) price, 2) noise and 3) space, respectively.

3.6 Aspect Ranking

Aspects of the products are grouped into pros and cons based on the
common opinion expressed on them. Ranking is assigned to aspects
among which the top ones are shown in e-commerce platform. The
ranking method should account for both the polarity of the aspect
and frequency of mentioning in reviews. For a particular aspect,
x? value is calculated using the number of positive, negative and
neutral opinions, assuming there is an equal distribution. Aspects
with smaller than threshold p-values are ordered and the top ones
are selected for display.

4 SENTIMENT ANALYSIS

Sentiment analysis model classifies sentences with aspects in them
into three types: positive, neutral and negative. The sentiment la-
bels enable the process of grouping aspects into pros and cons
of products, which makes reviews more readable and easier to
comprehend. The proposed gated RoBERTa sentiment classifier
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Figure 3: Hierarchical Clustering of Implicit Aspects Based
on Cosine Similarity.

utilizes the state-of-the-art transformer architecture and outper-
forms traditional recurrent neural network models. The model also
address the the issue of multi-domain adaptability with the gate
mechanism, in which the model decides whether incorporating
the categorical information in prediction. The proposed model is
trained and benchmarked using labeled customer reviews of Home
Depot. Further, performances are compared between four models,
1) model that applies convolutional neural network and LSTM, 2)
RoBERTa-based classifier trained separately on two domains, 3)
RoBERTa-based classifier trained collectively on two domains, 4)
gated RoBERTa classifier trained collectively on two domains.

4.1 Sampling and Labeling

22247 and 15784 review sentences are randomly sampled from two
categories, appliances and tools, respectively. Among the two, there
are 26 sub-categories and the random sampling is conducted in a
way to reflect the distribution of review sentences in the whole
dataset (Table 1). Human annotated sentiment labels are assigned
to the samples. Positive, negative and neutral sentiments account
for 45.01%, 30.65%, 24.34% of all samples, respectively.
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Table 1: Labeling of Samples.

Sub-Category Number
Power Tools 4016
Hand Tools 3012
Power Tool Accessories 2626
Tool Storage 1519
Air Compressors, Tools & Accessories 1450
Ranges 1430
Mini Fridges 1377
Small Kitchen Appliances 1374
Wall Ovens 1373
Microwaves 1371
Dishwashers 1368
Range Hoods 1352
Cooktops 1342
Washers & Dryers 1335
Freezers & Ice Makers 1332
Refrigerators 1326
Appliance Parts 1306
Floor Care 1297
Beverage Coolers 1260
Household Appliances 1252
Garbage Disposals 1236
Wet/Dry Vacuums 969
Trash Compactors 916
Flashlights 875
Safety & Security 730
Welding & Soldering 587

4.2 Gated RoBERTa Classifier

The gated RoBERTa classifier is an integration of pre-trained RoBERTa
model and a gate mechanism that regulates the information flow
to down stream pipeline. Reviews may contain domain-specific
language, such as domain-specific words, or common words with
variations of semantic meaning, which can only be accurately inter-
preted in a context. The gate mechanism consumes both the cate-
gory information and the text processed with pre-trained ROBERTA
model, using a fully connected layer of neural network. It decides
whether to pass along the category information to down stream,
depending on the criteria that it formulates during training. The
gate operates with the logic that it suppresses extra information
that may impede the performance when the text is easy to interpret,
whereas feeding all information to the model on difficult samples.
The objective of the mechanism is to increase domain adaptability
of sentiment classifier, given more than dozens of categories in a
retailer’s catalog.

In Figure 4, category information is appended to the RoOBERTa
output before going through a fully connected layer, followed by a
sigmoid activation. The value from the sigmoid activation decides
whether category information should be preserved by multiplying
itself with the category information and then feeds the later pipeline
together with the output from pre-trained RoBERTa.
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Figure 4: Architecture of Gated RoBERTa Classifier.

5 PERFORMANCE EVALUATION
5.1 Metrics

Metrics for predictive model comparison includes accuracy, Matthews
correlation coefficient (MCC) (Equation 3), Cohen’s Kappa [7] (Equa-
tion 4) and precision.

TP - TN - FP - FN

MCC = ®)
/(TP + FP)(TP + FN) (TN + FP) (TN + EN)
Kappa = Ploj_pp: 4)

In the above equations, TP, TN, FP, FN, p¢ and p, mean true positive,
true negative, false positive, false negative, accuracy and hypothet-
ical probability of chance agreement, respectively.

5.2 Models of Sentiment Analysis

The gated RoBERTa model, along with two additional RoOBERTa-
based schema are fine tuned using the labeled data. First, RoOBERTa-
based classifier are trained separately on appliances and tools data,
which produces two trained models. Second, RoBERTa-based clas-
sifier is fine tuned on the dataset without separating the two cate-
gories. The RoBERTa-based classifier is consisted of the pretrained
RoBERTa model and two layers of fully connected layers, imple-
mented with Huggingface transformer library [44]. To benchmark
the performance of transformer based classifier, one recurrent neu-
ral network classifier is implemented with one convolutional layer
and one LSTM layer. A reserved test set is used to compare the
above mentioned models.
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Table 2: Performance of Predictive Models

Models Accuracy McCC Kappa
Conv+LSTM 0.666448  0.476716  0.472205
RoBERTa trained seperately ~ 0.8997 0.857224  0.856966
RoBERTa trained together ~ 0.898005  0.841215  0.840983
Gated RoBERTa 0.916382 0.870304 0.870078

Table 2 and Figure 6, 7, 8 show the performance of all four mod-
els, where gated RoBERTa exceeds the best of the rest in terms
of accuracy, MCC and Kappa. Overall, transformer based classi-
fiers significantly outperform the model utilizing recurrent neural
network.

The RoBERTa model collectively trained on the two categories
suffers decrease of performance compared to the separately trained
one, confirming the significance of the gated mechanism through
which contextual information is strategically incorporated. Addi-
tionally, precision of negative, neutral and positive cases is com-
pared on 26 sub-categories of appliances and tools. Gated RoBERTa
prevails in neutral and positives cases, and achieves a total of 40
winnings, which is more than half of all comparisons (Table 3).

5.3 The Gate Mechanism

To examine the effectiveness of the gate mechanism, its output is
grouped into seven bins with equal range. The values of gate output
range from 0.58 to 0.99, where small value indicates suppressed
category information to down stream processing. The gate output
is positively correlated with the average length of sentences, while
decreased prediction accuracy is associated with longer sentences
(Figure 5). It can be concluded that lengthy sentences tend to trigger
the gate mechanism, indicating increased difficulty in interpretation
and craving for additional information.
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Figure 5: Accuracy of Prediction Given Seven Ranges of Gate
Output. The label for each data point means accuracy and
average number of words in sentences

Specifically, some example sentences that lightly trigger the gate
mechanism include 1) "I adore how quiet this machine is, a must
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Table 3: Prevalence of RoOBERTa Based Models in Sub-Categories. The values represent the number of times the precision of a
particular model outperforms the other two in 26 sub-categories of appliances and tools.

Models Precision of Negative Precision of Neutral Precision of Positive Total
RoBERTa trained separately 9 8 6 23
RoBERTa trained together 9 5 1 15
Gated RoBERTa 8 13 19 40
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Figure 6: Performance Comparison of Positive Cases of ROBERTa Based Models in Sub-Categories of Appliances and Tools.

for open plan kitchens.", 2) "The dishwasher is easy to use, quiet,
and cleans my dishes!", 3) "I am completely satisfied with my new
refrigerator” and 4) "This refrigerator has been a wonderful buy for
us.". And sentences that excessively rely on category information
include 1) "By selecting the Sensor Cycle, the machine automatically
selects the right cycle for your load, saving on water and energy,
2) "And lastly, the chime reminder at the end of the wash cycle is
perfect to assist in notifying that things are complete, 3) "Also the
ice dispenser is not capable of doing its job without getting ice on
the floor, and the switching between ice and water, is not seamless
at all." and 4) "It whines and sounds like whiny dirt bikes reading
down my road.".

In general, sentences that are straightforward and contain category-
specific keywords usually rely less on the gate output, whereas the
contrary for sentences that lack category-specific keywords and
express opinions with metaphor or in a intricate manner.

6 CONCLUSION

Customer reviews provide valuable product insights that can be uti-
lized to enhance customer trust and conversion. Novel approaches

such as aspect extraction leverage the power of NLP technique to
reinforce readability and interpretation of large amount of infor-
mation in favor of frictionless shopping experience. In this study,
we propose the framework to generate product insights based on
customer reviews and present them based on the ranking of impor-
tance.

To fully exploit the capacity of reviews, we propose the method
to extract both explicit and implicit aspects. Additionally, USE em-
bedding is incorporated in hierarchical clustering to infer semantic
relationships, guiding the merge of aspects. While the output of
HAC is reproducible, it works well regardless of the shape of clusters
in hyperspace. Clustering of implicit and explicit aspects is achieved
by leveraging synonyms and antonyms of grouped implicit aspects.
Our approach requires no prior information of domains, but the
performance could be further improved with curated domain knowl-
edge. To address the difficulty of cross domain sentiment analysis,
we propose the gated RoBERTa sentiment classifier. We show that
the Gated RoBERTa model outperforms not only recurrent neural
network models, but also previous transformer-based models as
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Figure 7: Performance Comparison of Neutral Cases of ROBERTa Based Models in Sub-Categories of Appliances and Tools.
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Figure 8: Performance Comparison of Negative Cases of ROBERTa Based Models in Sub-Categories of Appliances and Tools.

well. The deployment of the framework increases customer engage- For future steps, aspect extraction could be upgraded to incorpo-
ment by 16% from baseline, indicating improvement of browsing rate implicit aspects expressed in nouns. Fine tuning of university
experience and potential of revenue increment.
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sentence encoder using in-house corpus could enhance the infer-
ence of semantic similarity in the context of home improvement
products. For sentiment analysis, more category-specific informa-
tion could be explored and leveraged to improve the performance
of the gated RoBERTa model.
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