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ABSTRACT
Two-sided marketplaces, such as eBay, Etsy and Taobao, provide
services to satisfy the demand from both buyers and sellers; buyers
seek the relevant and interesting item to purchase, while sellers
reach out to their audience and grow their business. Concurrently,
platforms work to realize their business objectives, ranging from
growing user bases to maximizing revenue. It is challenging to ob-
tain a globally favorable outcome for buyer, seller and platform and
often results with the Search experience, one of the most impor-
tant entry point in E-commerce, attempting to satisfy conflicting
needs from multipe parties. To address this issue, we formulate
market-level metrics as constraints and demonstrate tuning con-
flicting metrics for business needs. We explore using Evolutionary
Strategies to optimize policies, improving both group-level and
market-level metrics for all parties simultaneously. We evaluate the
proposed method offline on the top 5,000 queries in Etsy search logs
and present results, validating our framework is successful in im-
proving the joint objectives without sacrificing buyer’s experience,
seller’s demand, and platform’s business interest.

CCS CONCEPTS
• Information systems → Learning to rank; Information re-
trieval diversity.
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1 INTRODUCTION
As online shopping becomes a dominant avenue for global buyers,
E-commerce companies strive to meet a wide range of often con-
flicting goals when showing products for their communities. While
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optimizing for buyer Conversion Rate, and therefore higher general
revenue or Gross-Merchandise-Value (GMV), is commonly consid-
ered the top objective, it is usually far from driving a healthy and
growing business. In fact, many E-commerce companies, especially
those with two-sided marketplaces, face a number of challenges due
to over-shackling to GMV optimization alone. Without appropriate
tempering, such a platform is usually unable to satisfy the short
term needs of buyers and sellers as well as the long term needs of
the business.

A typical two-sided marketplace such as eBay, Etsy and Taobao
has two distinct groups of customers where buyers use the platform
to seek the most relevant and interesting item to purchase and sell-
ers view the same platform as a tool to reach out to their audience
and grow their business. On top of that, the platform normally
would have its own objectives ranging from growing both buyer
and seller user bases to GMV maximization. It is not difficult to see
that it would be challenging to obtain a globally favorable outcome
for all parties.

Take showing relevant products to a buyer through the search
experience as an example. For a particular purchase intent, or some-
times with a specific item in mind, a buyer would likely discover a
spectrum of product listings from multiple sellers in a typical two-
sided marketplace. Some seem to be more relevant than others and
some even might look the same. A buyer has to decide among these
items with a positive experience such that he/she would return to
the marketplace next time. For sellers, however, they view search
result pages as prominent real estate to gain customers’ attention
and therefore potentially increase their market share. Maximizing
their success in search benefits both their brand and take home
pay, regardless of buyers’ overall experience on the site or ramifi-
cations to other sellers. On the mission of growing a marketplace,
the platform generally needs to step in and sometimes artificially
advantage under represented segments of sellers to give them more
exposure, creating a reasonably fair competition. However, it might
be equally risky to put established sellers in disadvantaged situa-
tions, who originally rank well on their own merit, and provide
a sub-standard experience to buyers as potentially fewer relevant
and lower quality goods are exposed higher through search results.

This scenario exemplifies a microcosm of the marketplace: any
interventions are likely to impact either buyers or sellers unfairly
to course correct for a greater perceived need. On another hand, a
two-sided platform also needs to be cautious about the situation
where the rich get richer and the poor get poorer, namely the
Matthew Effect, a factor of constant battle in most marketplaces [2].
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While power sellers often perform well due to better commercial
strategies and product fit than their peers, a healthy marketplace
cannot be solely dominated by a small segment of power sellers
and continue to grow. To make things even more complicated,
platforms, often operating as modern corporations, subsequently
attempt to compensate for these inefficiencies with organizations
and teams devoted to their respective customer: for example, buyer,
seller, and core market. Hence, as each team attempts to solve a
particular problem set, competing needs are demanded of the search
experience with each team expecting tuning for their particular
business focus. As often these asks are ill-defined and heuristically
measured, a grand challenge for building a search ranking algorithm
to satisfy all fronts is presented.

In this paper, we address how a company-aligned search ex-
perience can be provided with competing business metrics that
E-commerce companies typically tackle. As far as we know, this is a
pioneering work to consider multiple different aspects of business
metrics in two-sided marketplaces to optimize a search experience.
We demonstrate that many problems are difficult or impossible to
decompose down to credit assigned scores on individual documents,
rendering standard point-wise approaches to multi-objective [30]
or standard diversity-based[26] learning to rank algorithms inade-
quate. Instead, we express market-level metrics as constraints and
discuss to what degree multiple potentially conflicting objectives
can be tuned to business needs. In addition, we propose a policy
learner in the form of Evolutionary Strategies to jointly optimize
both group-level and market-level metrics simultaneously, side-
stepping traditional cascading methods and manual interventions.

The paper is organized as follows. In §2, we discuss related work
in several different directions. We then formulate and define a wide
range of metrics including relevancy metrics, diversity metrics and
a number of newly proposed market-level metrics relevant to E-
commerce interests in Section §3. We follow up with a proposed
set of policies to optimize the above metrics in §4. Finally in §5, we
empirically evaluate the effectiveness of proposed method on Etsy
search logs data, showing how different weightings influence the
ultimately delivered rankings.

2 RELATEDWORK
There are number of different facets of work that need to be con-
sidered when ranking across a variety of soft constraints.

2.1 Diversity
Diversity in Learning to Rank has long and storied past as it re-
lates to Web Search. The simplest solution typically falls under a
heuristic based approach. Carbonell and Goldstein[5] formulated
the problem as a selection: Documents are chosen greedily based
on a linear combination of query-document relevance and maximal
margin relevance (MMR), with each step picking the document
which the highest combined score. After selection, the MMR scores
are updated to reflect the newly picked document. MMR is rooted
in the idea of novelty, the idea that maximizing the differences in
similarity between the set of already selected documents and the
remaining set results in a more diverse outcome. Subsequent work
attempts to define better heuristics for selection [26]. Dang and

Croft propose PM-2 [13], a diversification method based on pro-
portionality; they argue diversification should be biased toward
the overall subtopic proportionality of the entire query-set rather
than attempting to balance it uniformly. xQuAD [27] attempts to
understand diversity as a combination of an originating query and
derived sub-queries.

In the learning space, the closest related work comes from Xia
et al. who describe PAMM [33], a method for optimizing diversity
and relevancy via a Perceptron. Novel to the paper is the idea of
direct optimization of the evaluation metrics rather than utilizing
heuristics or optimizing surrogate functions. PAMM works gener-
ally by sampling both positively and negatively ranked lists and
attempts to maximize the margin between them.

2.2 Policy Learning
Policy optimization in LTR space has come in a few flavors over the
years, with most of its history focused in online LTR. Radlinski et al.
[22] first discussed diversity-based online optimization in the form
of using multi-armed bandits to minimize page abandonment. They
condition the expected reward on previous documents selected,
considering each remaining document an "arm", allowing for suit-
able exploration/exploitation trade-off against the expected reward.
More recent work proposes modeling user behavior as an MDP[15]
with the goal of learning how browser sessions can be utilized in
re-ranking. They proceed to describe a policy gradient method to
learn optimal ranking policies given the learned SS-MDP.

Singh et al.[28] explores incorporating both buyer and seller level
utility into learning ranking policies via policy gradient methods,
selecting candidates using the Plackett-Luce model. While similar
in concept to our work, optimization scales less well and is con-
strained to differentiable models - limitations our approach does
not suffer from. Additionally, Plackett-Luce is unable to incorporate
conditional features for selection, limiting the types of objectives it
is able to optimize.

Most applicable to our proposed method is utilizing black box
optimization in learning to rank. Salimans et al. recently showed
that Evolutionary Strategies (ES) [25] were well suited for learn-
ing reinforcement problems, applying a variation of ES known as
Natural Evolutionary Strategies[32] to Atari game learning. ES is
an optimization approach that estimates a gradient step in policy
space by perturbing a policy several times with a noise distribution,
typically a Normal distribution, evaluating them according to an
unknown fitness function, and combining them to from a direc-
tional step. While intuitively similar to Finite Differences gradient
estimation, they exhibit properties more conducive to fitness func-
tions which are non-differentiable or discontinuous[19], properties
which naturally arise in sorting problems such as ranking. They
proposed a scalable algorithm and demonstrated the optimizer’s
tolerance to stochastic environments. [9] showed competitive re-
sults to Salimans via Canonical ES - a simpler version of the (𝜆, 1)
variants of Evolutionary Strategies. Concurrently, Ibrahim et al.[16]
applied perhaps the simplest type of (1+1)-Evolutionary Strategies
to learn policies on linear models to directly optimize the average
nDCG across all query sets.
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2.3 Popularity Bias and the Matthew Effect
Measuring market level performance within search is fairly under
researched in the space of E-Commerce. Perhaps closest to our
particular use case is from Hentenryck et al. [31] who analyzed the
impacts of social influence on a trial-offer market, showing that
ranking on conditional purchase rate lead to natural monopolies
by the highest quality products. Follow up work attempts to com-
pensate for the Matthew Effect [2] by intervening with a stochastic
policy to randomize products of similar quality. They show how
segmenting products into different "worlds" and conditioning pop-
ularity on which world a user observes results in a stable market
where products of similar quality obtain equivalent market share.

Blake et al. [3] estimated the actual costs associated with running
searches at eBay, showing that the cost of searching was substan-
tially lower than previously measured. More relevant to this work,
Moshary et al. [21] showed how factors such as price saliency, that
is how easy it is to determine the true price of a good, can signifi-
cantly impact the cost of items purchased - highlighting how not
all buyer beneficial changes result in an improved bottom line.

2.4 Multi-Objective Optimization
A number of other works have started incorporating multiple ob-
jectives within ranking models, taking the form of either ensembles
of expert models focused on individual objectives or single models
incorporating some weighted combination of target goals. Most
related to our work is from Momma et al. Momma et al. [20] which
incorporates multiple-objectives via inclusion of Augmented La-
grangian constraints within the LambdaMART gradient computa-
tion.

Recent work from Carmel et al. [6] introduced a stochastic label
aggregation approach to transform multiple sets of ranked docu-
ments into a single objective optimization problem. They further
prove their approach is superior to deterministic, linearly interpo-
lated combinations of ranked labels.

3 METRICS FOR OPTIMIZATION
In this section, we outline metrics for optimization from a typical
two-sided marketplace. We review classic relevancy metrics in §3.1
as well as diversity metrics in §3.2, serving the foundation of metrics
for modern search ranking. We introduce a new class of market-
level metrics in §3.3. We list all notations used through out the
paper in Table 1.

3.1 Relevancy Metrics
First and foremost is the concept of relevancy, rooted originally in
the well-known Probability Ranking Principle (PRP) framework [11,
24] which states that documents should be ordered independently in
decreasing presentation of relevance. That is, the most relevant doc-
ument for a query should be placed first. To measure that principal,
industry has standardized around two core metrics for evaluating
the efficacy of their ranking systems: NDCG [18] and ERR [8]. We
now give a brief overview of their formulation.

Normalized Discounted Cumulative Gain (NDCG): NDCG is
an ordered relevance metric measuring the agreement between a
goldset list of documents and the permutation return by the ranking

Table 1: Notation

Notation Description
𝑄 = {𝑞1, ..., 𝑞𝑛} Unique query set

𝑁𝑖 Number of documents in query set 𝑞𝑖
𝐷 = {𝑑1, ..., 𝑑 𝑗 } Document set
𝐹𝑒𝑎𝑡𝑠 (𝑑𝑖 ) Feature vector for document 𝑑𝑖

𝑌 ∈ {1, 2, 3, 4, 5} Relevance grades
𝑦𝑖, 𝑗 ∈ 𝑌 Relevance score for 𝑞𝑖 and 𝑑 𝑗

𝜋 Ranking policy
𝑅(𝜋, 𝑞𝑖 ) =< 𝑑1, . . .) > Ranked documents for query 𝑞𝑖

𝑉 (𝜋, 𝑞𝑖 , 𝑑 𝑗 ) Evaluator for query-doc set
𝑆 (𝜋,𝑄, 𝐷) ∈ [0, 1] Market-level objective function

policy. It is typically evaluated to some position 𝐾 , indicating only
the first 𝐾 documents should be considered for evaluation. Usually
values for K are small, emphasizing the importance of getting the
first few documents correct.

Expected Reciprocal Rank (ERR): ERR [8] is proposed as an
adjustment to NDCG, attempting to factor in a prior to how users
actually consider documents for engagement. While graded labels
are still assigned to documents independently, ERR is grounded on
the idea of the cascade user model [12]: that previous evaluations
of documents influences the likelihood that a buyer will continue
browsing. While a full discussion on ERR is out of the scope of
this paper, we provide the following formulation used in evalua-
tion. Given some mapping 𝑅 of relevance grades to probability of
relevance, we can define ERR as:

𝑅(𝑔) = 2𝑔 − 1
2max(𝑌 )

𝑝0 = 1, 𝑝 𝑗 = 𝑝 𝑗−1 (1 − 𝑅(𝑦𝑖, 𝑗 ))

ERR0 = 0, ERR𝑗 = ERR𝑗−1 + 𝑝 𝑗−1
𝑅(𝑦𝑖, 𝑗 )
𝑗

3.2 Diversity Metrics
Evaluation of sub-topic diversity is a rich field with many contri-
butions [1, 7, 10, 34]. While there are many diversity questions
related to ordered result sets, such under-specification, we focus
on metrics revolving around the idea that there exist ambiguity
in the topicality behind a query. For example, while there is likely
a strong relationship between the query “lace bridal veil” and
the /clothing/wedding/accessory/veils taxonomy, for other
queries there is less implicit understanding. On Etsy, we serve a
large number of inspirational (cheerful, happy, beautiful), stylistic
(geometric, upcycled, animal print), and occasion (gifts for him,
bridesmaid presents, stocking stuffers) queries which have high
taxonomic (interchangeably used with topicality) diversity. In cases
where there is low certainty of strong topicality, ranking benefits
from increasing coverage of different sub topics early on in the pre-
sented result set. Indeed, empirical results have shown increasing
diversity improves user engagement metrics [23].

ERR-IA: ERR-IA [8] is an extension to ERR that incorporates the
notion of diversity. It incorporates topicality by computing the ERR
for each subtopic independently, then weighing their importance
by the ratio of each subtopic with respect to entire result set. Let
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Pr(𝑡 | 𝑞) be the probability of a topic, t, for a given query, q. We
can define ERR-IA as:

𝑅(𝑦𝑖 , 𝑡) =
{
𝑅(𝑦𝑖 ) 𝑖 ∈ 𝑡
0 𝑒𝑙𝑠𝑒

ERRIA@K =

𝐾∑
𝑗=1

1
𝑗

∑
𝑡

Pr(𝑡 | 𝑞)
𝑗−1∏
𝑖=1
(1 − 𝑅(𝑦𝑖 , 𝑡))𝑅(𝑦 𝑗 , 𝑡)

Or, using the ERR formula from before, we can define it as:
scores = [𝑦𝑖 ∗ 1[𝑖 ∈ 𝑐𝑎𝑡𝑡 ],∀𝑖 ∈ [1, 𝐾]]

ERRIA@K =
∑
𝑡

Pr(𝑡 | 𝑞) ∗ ERR@K(scores) (1)

3.3 Market-Level Metrics
Two sided marketplaces, unlike traditional web search, suffer from
multiple challenges typically framed in the form of inequality; the
realization that there exists some skew in the marketplace we wish
to correct. In this sub section we introduce a wide range of differ-
ent types of market corrections and present potential metrics for
optimization. Before we introduce the first proposed metric, we
discuss the notion of query-set dependence below.

Query-Set Dependence: Let us consider the case of balancing
between highly successful power sellers and new sellers on the site.
While majority of the sales will come from a fraction of the entire
seller base, an over saturation of a small proportion of sellers in
search has the potential to squeeze out new shops on the site. As
there is strong evidence that faster time to first sale increases a
seller’s Life Time Value (LTV), we would ideally like to improve their
exposure. Applying a diversity constraint between power sellers
and new sellers seems reasonable: for each query set, increase cov-
erage between the two distributions in the top 𝐾 spots. However,
this ignores a fundamental problem: different queries have differ-
ent amounts of traffic associated with them, preventing us from
properly balancing the market. Much like the PRP models before,
diversity metrics assume query-level independence: we only con-
sider how the impact of diversification adjusts the metrics within
each query set, not its contribution to the overall marketplace.

Below we discuss different methods for addressing marketplace
challenges.

3.3.1 Weighted Importance Ranking. Often times there are subsets
of the trafficwe deemmore critical for the ranking policy to consider.
For example, it benefits the business ensure the highest revenue
generating queries are correct, even if it is at the expense of queries
deemed less important. To account for this, we incorporate a weight
for each query; given a scoring function 𝑆𝑠𝑢𝑏 and a set of importance
weights𝑊𝑖 , we can describe our score function S as:

𝑆 (𝜋) =
∑𝑁
𝑖=1𝑊𝑖 ∗ 𝑆𝑠𝑢𝑏 (𝜋, 𝑞𝑖 , 𝑑𝑖 )∑𝑁

𝑖=1𝑊𝑖
(2)

This provides a useful feedback mechanism to the policy learner:
much like the intuition that rankers optimizing for NDCG or ERR
should focus their energy on improving the rank of documents
higher in the page, providing importance feedback provides guid-
ance to the policy on which queries it should focus time on opti-
mizing.

Figure 1: Seller Distribution of shop revenue

3.3.2 Outlier Skew. When dealing with implicit feedback data,
chronic cold starts, or otherwise uncertainty in the relevance set,
optimizing for the expected NDCG across all queries can lead to
an over-sensitivity to outliers: query sets that are either trivial or
impossible to successfully rank given the features.

To address the influence, we propose a simple change to the
optimization function to maximize the scores at given percentiles
instead of the mean. Given the set of scores,𝑀 , a set of percentiles
to evaluate (e.g. 25th, 75th, etc.), Percentiles:

𝑀 = {𝑉 (𝜋, 𝑞1, 𝑑𝑞), ...,𝑉 (𝜋, 𝑞𝑁 , 𝑑𝑁 )}

𝑆 (𝜋) =
∑
𝑝∈Percentiles𝑀(𝑝)
|Percentiles|

(3)

Empirically, we have found that optimizing quantiles can provide a
smoother distribution.

3.3.3 Incentives. Many cases of market bias boil down to minimiz-
ing arbitrage. For example, it might be observed that Buyers find
items with low list prices attractive and yet are surprised when
confronted with costly shipping. Sellers will often discover these
user behaviors can yield a higher collection of clicks, a standard
ranking signal, and will list items with artificially low prices to im-
prove their ranking in Search, benefiting themselves at the expense
of the marketplace.

To counteract this undesired behavior, we propose a simple
maximization approach across the top ranked documents for each
query. Given some user-provided query 𝑖 , document 𝑗 indicator,
𝐵𝑖, 𝑗 ∈ {0, 1}, indicating that a document for a given query exhibits
a quality we wish to incentivize, a ranking of documents for query
𝑞𝑖 , 𝑟𝑖 = 𝑅(𝜋, 𝑞𝑖 ), and the number of positions, 𝐾 , to consider:

𝑆 (𝜋) =
∑ |𝑄 |
𝑖=1

∑𝐾
𝑝=1 𝐵𝑖,𝑟𝑖,𝑝

𝐾 |𝑄 |
(4)

Combined with Weighted Importance Ranking in Equation 2, we
can influence desired behaviors conditioned on relevance and group-
level diversity.
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3.3.4 Inequality. The final class of market level metrics fall under
the guise of inequality: some imbalance in "wealth" distribution
across tiers of sellers that we wish to correct. Without interven-
tions, marketplaces often fall under the phenomena of the Matthew
Effect; wealth accumulates in a small segment of the population,
squeezing out other Sellers. Etsy is no different: Figure 1 shows
how visibility accumulates in the wealthy few: the top few% of
sellers account for the bulk of sales. Indeed, it can be shown that
models that maximizing conditional purchase rate will result in
natural monopolies [31] due to social signals present in the market-
place (reviews, best sellers, number of sales, etc.). While beneficial
to maximizing sales, it carries inherent business risk: any loss of
sellers occupying monopolistic positions for popular queries will
have outsize effect on bottom line KPIs.

While work has been done examining how different rankings can
impact a market’s health (e.g. maximizing number of purchases) [2],
there is little discussion on improving proportional representation
across tiers of sellers jointly.

Gini Index: Given we can estimate or measure the wealth dis-
tribution apriori, we propose minimizing the Gini Index[14], also
known as the Gini Coefficient, across the marketplace. Based on
the Lorenz Curve, it estimates the difference between full income
equality and the actual observed wealth distribution of different sub
populations. In a completely equal world, the wealth distribution
matches the proportion of the population. For example, if new sell-
ers comprised 10% of the total sellers on Etsy, they should account
for 10% of total sales. Conversely, as one sub population starts to
disproportionately earn more than other groups, the Gini subse-
quently measures the market as more unequal. Given a cumulative
proportion of the population, 𝑋𝑖 and a cumulative proportion of
wealth𝑊𝑖 , ordered such that𝑤𝑖/𝑥𝑖 ≤ 𝑤𝑖+1/𝑥𝑖+1 we can define the
Gini Index indicator:

Gini = 1 −
|𝑋 |∑
𝑖=2
(𝑋𝑖 − 𝑋𝑖−1) (W𝑖 +W𝑖−1)

𝑆 (𝜋) = 1 − Gini
(5)

There are a number of different ways to compute the population:
total count of different sub populations across all inventory, such
as seller country origin, the subset represented in the train dataset,
etc. Similarly, there are many ways we can measure wealth; for E-
commerce businesses, purchase count per query can be a reasonable
approximation for wealth. Given some function IsSubPop:

𝑤𝑖 =

|𝑄 |∑
𝑗=1

IsSubPop(𝜋, 𝑞 𝑗 , 𝑖) · 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠 (𝑞 𝑗 )

In the case where we are more interested in the traffic distri-
bution, W can be set to the query volume. For simplicity, in our
experiments, we compute Gini for rank=1. However, computing the
Gini over multiple rank positions is similarly straight forward when
we have access to the observation probability O of a document at
position p (such as from a click model):

𝑂 (Pos) ∈ [0, 1]
𝑆pos (𝜋) = 𝑂 (𝑝) ∗ Gini

(6)

4 ALGORITHM OVERVIEW
Learning a ranking policy requires multiple levels of information:
individual scores in the case of relevancy, group-level metrics for
diversity, and market-level measurements to account for a variety
of skews. Further difficulty arises from the large number of rank
orderings: many metrics are neither continuous or differentiable.

To optimize the policies, we compose a linear combination of
all metrics (e.g. NDCG, incentives, Gini, etc) into a final Fitness
Function, which our proposed optimizer tries to maximize.

𝐹 (𝜋) =
∑ |𝑆 |
𝑖=1𝑊𝑖 · 𝑆𝑖 (𝜋)∑ |𝑆 |

𝑖=1𝑊𝑖
(7)

Below we describe a greedy, group-level policy optimizing ei-
ther a static or stochastic value function followed by a proposed
optimizer to learn the policies.

4.1 Greedy Algorithm
As has been shown through numerous previous works[26], the
assumption of independence during prediction is violated when
considering group-level diversity. Consequently, most work on
diversity utilize a heuristic, second pass algorithm to select subse-
quent documents during the ranking process. Zhai et al. showed that
a simple greedy algorithm performed well in maximizing MMR[34]
(Algorithm 1) which selects documents one at a time such that they
maximize the desired diversity function:

Algorithm 1: Greedy Algorithm
1 Input: parameters 𝜎 , value function 𝑣 , documents 𝐷
2 Output: ⟨𝑑1, 𝑑2, ..., 𝑑𝑘 ⟩
3 for i = 1, 2, 3, ..., K do
4 𝑑𝑖 = arg max

𝑑∈𝐷
𝑣 (𝜎,𝑑𝑖 , ⟨𝑑1, 𝑑2, ..., 𝑑𝑖−1⟩)

5 𝐷 = 𝐷 − {𝑑𝑖 }
6 end

4.1.1 Static Value Functions. While the greedy policy classically
focuses on a heuristic document similarity as the selection criteria
for the value function, we instead learn a parameterization over
the greedy algorithm and utilize a simple average over the features
of previously selected documents to represent aggregate state.

We define a static value function as:

𝑠1 = 0, 𝑠𝑖 =

∑𝑖−1
𝑗=1 𝐹𝑒𝑎𝑡𝑠 (𝑑𝑖 )
𝑖 − 1

𝑣 (𝜎,𝑑𝑖 , ⟨𝑑1, .., 𝑑𝑖−1⟩) = Φ(𝜎, 𝑠𝑖−1 − 𝐹𝑒𝑎𝑡𝑠 (𝑑𝑖 ))
(8)

where Φ is a fully connected neural network.
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4.1.2 Stochastic Value Functions. In this section we introduce a
stochastic value function, SVF for short. Queries are historically
assumed independent much the same way that the PRP assumes
documents can be arranged independently of each other. However,
it’s easy to see how this assumption is violated.

Revisiting the previous example of new sellers and power sellers,
we present a set of rankings from two policies 𝜋1 and 𝜋2:

𝑄1𝜋1 = {𝑃, 𝑁 , 𝑃, 𝑁 }, 𝑄2𝜋1 = {𝑃, 𝑁 , 𝑃, 𝑁 }
𝑄1𝜋2 = {𝑁, 𝑃, 𝑁 , 𝑃}, 𝑄2𝜋2 = {𝑁, 𝑃, 𝑁 , 𝑃}

It is clear that the group level diversity metrics for each policy
are optimal given these two seller categories, but also equally clear
that the diversity of sellers occupying the first position is poor. In
expectation, one can also see how blending the two policies would
result in the highest overall reward:

𝜋 = arg max
𝑝∈{𝜋1,𝜋2 }

Uniform(0, 1)

Inspired by the observation that neural networks can be viewed
as an exponential set of sub-networks [29] and the above observa-
tion, we introduce a simple stochastic feature into the network to
allow for the blending of learned sub-policies:

𝑓 ∼ Uniform(0, 1)
𝑣 (𝜎,𝑑𝑖 , ⟨𝑑1, .., 𝑑𝑖−1⟩) = Φ(𝜎, (𝑠𝑖−1 − 𝐹𝑒𝑎𝑡𝑠 (𝑑𝑖 )) ⊕ 𝑓 )

(9)

Rather than break apart 𝜃 into explicit policy sets, we rely on
feature masking in 2 to produce thinned, sub-networks for optimiza-
tion, deferring to the optimizer to learn how best to incorporate
the noise.

4.2 Evolutionary Strategies
Learning a policy that devolves into various forms of sorting is
difficult; given slight variations to the underlying parameters can
result in large swings in scores. To solve this challenge, we reach
for recent work using ES from the LTR and Reinforcement Learning
space to maximize our desired objectives. Intuitively, you can view
ES as a crowd sourcing algorithm, as we explore an area in the
weight space by looking at different gradients from the current
location, then combine those gradients based on their fitness score
to determine our next location. Below we provide a high level
description of the (1 + 𝜆) variety of ES.

Given a parameter set 𝜃 (henceforth known as the parent), a
fitness function 𝑓 , and shaping function 𝐻 , we sample 𝜆 search
gradients from the Normal distribution: 𝑖 ∈ {1, 2, .., 𝜆}, 𝜖𝑖 ∼ N(𝜇, 𝐼 )
where 𝜇 = 0 and 𝐼 = 1 are typical parameters for the noise dis-
tribution; while both Salimans and Chrabaszcz explored adjust-
ing 𝐼 , neither found it significantly changed the results. We fur-
ther augment the algorithm by masking parameters with proba-
bility (𝑝), reducing the effective search space per pass [16]. For
each search gradient, we compute its fitness with respect to the
parent Fitness𝑖 = 𝑓 (𝜃parent + 𝜖𝑖 ). We proceed to run all scores
through a shaping function which scales each gradient by some
rank function to smooth out the impact of outlier fitness scores:
𝜖 ′
𝑖
= 𝜖𝑖 ∗ 𝐻 (Fitness𝑖 , Fitness∗). We compute our candidate parent

as the sum of gradients scaled by 𝜎 and compare it to the previous
parent, replacing the parent if the candidate improves.

𝑃 = {𝜃parent, 𝜃parent + 𝜎 ∗
𝜆∑
𝑖=1

𝜖 ′𝑖 }

𝜃 = arg max
𝑝∈𝑃

𝐹 (𝑝)

There are a few variations which are commonly used. The first is
always updating 𝜃parent = 𝜃candidate regardless of improvement of
fitness. The second is with respect to the shaping function: Wierstra
et al. explored the impact of fitness shaping functions in Natural
Evolutionary Strategies [32] and found that so long as they were
monotonic with respect to utility rank, they improved the robust-
ness. The final one is the number of Search gradients used during
candidate construction, which also correspond to the theoretical
underpinnings: Salimans et al. used all gradients as part of its com-
putation due to assumptions made in NES whereas [9] implement
a canonical variant which only uses the best 𝜇 children.

We consolidate all of these variants into the following general-
ized (1 + 𝜆) − 𝐸𝑆 algorithm in 2.

Algorithm 2: Generalized (1 + 𝜆)-ES
1 Input: 𝜃0 - parameters, F - fitness function, H - shaping

function, (𝑝) - mask probability, update ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒},
𝜆 ∈ I+, 𝜇 ∈ I+, iters ∈ I+

2 for i = {1, 2, .., iters} do
3 for c = {1..𝜆} do
4 𝜖𝑐 ∼ N(0, 1) · Bern (𝑝)
5 𝑠𝑐 = 𝐹 (𝜃𝑖−1 + 𝜖𝑐 )
6 end
7 𝑆𝑜𝑟𝑡 (𝜖∗, 𝑠∗) in non-increasing order {𝑠1 ≥ 𝑠2 ≥ ..𝑠𝜆}
8 𝜃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝜃𝑖−1 +

∑𝜇

𝑗=1 𝜖 𝑗 · 𝐻 (𝑠 𝑗 , {𝑠1, 𝑠2, .., 𝑠𝜇 })
9 if update then
10 𝜃𝑖 ← 𝜃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

11 else
12 𝑃 = {𝜃𝑖−1, 𝜃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 }
13 𝜃𝑖 ← 𝑃arg max

𝑝∈𝑃
𝐹 (𝑝)

14 end
15 end

We add a few additions on top of the Generalized ES algorithm.
First we observe that the Greedy policy complexity is O(𝑁 2), lead-
ing to slowdown on large document sets during training. To mit-
igate this, we uniformly sub-sample the document set each pass,
for each query. While left as a hyper parameter, we found setting
it to twice the K value used to compute NDCG sufficient for con-
vergence. Secondly, we used mini-batching instead of optimizing
the entire dataset for each search gradient, significantly speeding
up the algorithm. Finally, we utilize the the masking strategy as in
ES-Rank[16] except that we sample from the Bernoulli distribution
with some probability (𝑝).
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Figure 2: Due to the inverse relationship betweenpopulation
density and average prices, optimizing toward greater equal-
ity will squeeze out higher priced sellers

5 EXPERIMENTS
In this section, we first discuss the data used in experiments in
§5.1 and then we discuss our baselines and chosen implementation
details in §5.2 and finally we analyze results in §5.3.

5.1 Data
Our training set is extracted from production search logs, con-
taining the top 5,000 queries observed over an eight day period,
with documents human annotated with 𝑅 ∈ {1, 5}. While generally
head and torso queries, they exhibit the properties we wish to test
while ensuring reasonable seller competition: large shifts in query
importance (due to pronounced power law distribution), wealth
inequality, and varied topicality (significant volume is dedicated to
occasion gifting, such as wedding gifts). We use over 200 features
from our production ranking systems which are a combination of
query relevancy, historical performance, and taxonomic informa-
tion. We further augment the dataset with a variety of metadata:

Population, Wealth, Observation: Seller population scores are
based on GMV vigintiles: Etsy, like most E-commerce sites, exhibits
a heavy power law distribution with respect to dollar shares. We
compute the observation model by summing the number of pur-
chases over a week at each rank position and dividing by the total
number of purchases observed. Wealth is calculated by summing
the total number of purchases per query over the same week as the
observation model.

Diversity: Listings taxonomy is used as the source of diversity in
queries. Overall, it has 175 different categories with a large class
imbalance.

Incentives: We binarize our product prices by the mean listing
value in our sampled search results, factoring in the importance of
high priced outliers such as Rolexes. Price has a sharp left skew (3)
toward lower cost items, often times washing out higher quality,
more labor intensive products. We add an incentive toward pre-
mium prices to boost high quality listings closer to the top of the
rankings.

Figure 3: Prices in the market place skew heavily left. In-
centivizing higher priced items benefits shops selling more
labor intensive, higher quality items as well as less price-
sensitive buyers.

Gini vs Price: As can be seen in figure (2), listing price and popula-
tion counts are inversely correlated, illustrating a common problem
faced by E-commerce: improving the Gini Index naturally results
in a reduction in listing price.

5.2 Algorithms

Variant Relevance Group Diversity Gini Index Incentive
-{0,0} 1.00 0.00 0.00 0.00
-{0.05,0.05} 0.85 0.05 0.05 0.05
-{0.1,0.1} 0.70 0.10 0.10 0.10
-{0.17,0.17} 0.49 0.17 0.17 0.17
-{0.25,0.25} 0.25 0.25 0.25 0.25
-{0.3,0.3} 0.10 0.30 0.30 0.30
-{0.05,0} 0.90 0.00 0.05 0.05
-{0.1,0} 0.80 0.00 0.10 0.10
-{0.25,0} 0.50 0.00 0.25 0.25
-{0.33,0} 0.33 0.00 0.33 0.33
-{0.4,0} 0.20 0.00 0.40 0.40

Table 2: Weighted fitness function weights to understand
how tradeoffs in importance lead to different outcomes

Baselines: We compare two different baselines to affirm efficacy
of our approach. We first look at the venerable Maximal Marginal
Relevance [5] where the relevance model is learned using Lamb-
daMART [4] optimized for NDCG@10. Document similarity is based
on the Jaccard of each document’s taxonomy. We tune the blend
parameter 𝜆 by maximizing the weighted sum of scores between all
indicators. The second model is optimized using the same general-
ized ES algorithm above, however we replace the greedy policy with
a standard pointwise inference policy, sorting documents based on
their learned scores.

Evolutionary Strategies: In our experiments we compare ES poli-
cies trained against a variety of different metrics:
• Relevancy scores measured as NDCG@10
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Figure 4: Stochastic greedy policies are able to shift the
Lorenz Curve towards more equality when incentivized.

• Groupwise diversity using ERR-IA@10 (1) across different
taxonomic groups
• Market indicators: Gini1 and Incentives1 (4)

We combine these into our fitness function, 𝐹 , via a weighted linear
combination in EQ 7 with weights described in Table 2. We explore
two different policies: a standard point-wise baseline and a greedy
policy (1). We use the generalized form of Canonical Evolutionary
Strategies, fixing 𝜆 = 768 and 𝜇 = 50 for all tests. We set update to
True and fix (𝑝) at 0.05. We compare three different variations of
our proposed models: Greedy with a static value function, Greedy
with a stochastic value function, and Pointwise with a stochastic
value function. For Φ, we use a small fully connected neural net
(20→ 20→ 1) utilizing the ReLU[17] non-linearity. When utilizing
stochastic value functions, we evaluate the test set 5 times with
different random seeds to determine expected performance.

5.3 Experimental Analysis
To understand how different weights impact the overall model, we
first examine how market indicator constraints impact relevancy
across the different policies. We follow it up by examining to what
degree relevancy, group-level, and indicators can jointly optimize
all metrics simultaneously. We finally compare stochastic vs static
policies and to what degree it improves the model. All results are
verified offline against a held-out test set.

Comparison to Baselines: Unsurprisingly, we see in Table 3 that
while MMR does best with respect to ERR-IA and NDCG, it is at
the expense of both Incentives and Gini Index which it is unable
to optimize. Similarly, while the Pointwise-ES baseline does well
on Gini and Incentives, it performs worse of all the policies on
group level diversity, which is not surprising due to document
independence assumptions. Importantly, forall ES policies were
able to optimize for all metrics compared to the baseline, providing
evidence of its efficacy.

Figure 5: Gini - SG-ES vs. SP-ES

Table 3: Policy Comparison of Baselines Across All Metrics

Variant (2) Metric Validation Test Mean Test Std
MMR-LambdaMART ERR-IA 0.487 0.480 -
P-ES-{0.17,0.17} ERR-IA 0.481 0.467 -
SP-ES-{0.17,0.17} ERR-IA 0.484 0.468 0.001
G-ES-{0.17,0.17} ERR-IA 0.489 0.475 -
SG-ES-{0.17,0.17} ERR-IA 0.478 0.471 0.002
MMR-LambdaMART Gini 0.795 0.800 -
P-ES-{0.17,0.17}* Gini 0.925 0.891 -
SP-ES-{0.17,0.17}* Gini 0.894 0.888 0.029
G-ES-{0.17,0.17}* Gini 0.883 0.881 -
SG-ES-{0.17,0.17}* Gini 0.911 0.889 0.011
MMR-LambdaMART Incentive 0.396 0.403 -
P-ES-{0.17,0.17}* Incentive 0.466 0.525 -
SP-ES-{0.17,0.17}* Incentive 0.466 0.518 0.002
G-ES-{0.17,0.17}* Incentive 0.470 0.543 -
SG-ES-{0.17,0.17}* Incentive 0.466 0.543 0.009
MMR-LambdaMART NDCG 0.692 0.679 -
P-ES-{0.17,0.17} NDCG 0.655 0.637 -
SP-ES-{0.17,0.17} NDCG 0.652 0.634 0.001
G-ES-{0.17,0.17} NDCG 0.662 0.651 -
SG-ES-{0.17,0.17} NDCG 0.652 0.642 0.001

* indicates stat. sig. compared to MMR (P < 0.005).

Influence on Market Indicators: We evaluated variants by ad-
justing the importance weight for the Gini Index and Incentives in
5. Compared to the baselines, we were able to progressively and
smoothly improve both the Gini Index and Incentive indicators with
both stochastic and static Greedy variants. We find that weight does
indeed improve the overall equality of the system compared to its
unconstrained form 4.

Table 4: Gini Index: Stochastic vs. Static (Variant ES-{0.4,0})

Variant Validation Test Mean Test Std
G-ES-{0.4,0} 0.906 0.798 0.000
SG-ES-{0.4,0} 0.922 0.903 0.008

Joint Optimization of all Metrics: We found we were able to op-
timize multiple metrics simultaneously as seen in Figure 6. Despite
the conflicting nature of the metrics, ES was able to find policies
that improved the underlying metrics compared to the baselines.

Stochastic Features: We find that the additional noise had a few
benefits: first, it helped regularize the networks; we find the differ-
ence between train and test scores were narrower than the static
variants. Furthermore, the stochastic variants were smoother: they
had lower fitness variance as importance weighting increased. Table
4 exemplifies the differences when considering only market indica-
tors and relevance. Table 5 shows how the stochastic policy is more
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Figure 6: Fitness scores from each iteration - SG-ES-{0.0,0.0}
(top) and SG-ES-{0.17,0.17} (bottom). The horizontal dashed
lines display the baseline MMR-LambdaMART scores for
each metric matched by color.

reliable with generalization from validation to the test set. Unlike
the greedy variant, SVFs applied to pointwise models were unable
to stably improve market indicators. Figure 5 compares stochastic
pointwise and greedy algorithms on different importance weight-
ings - while greedy is fairly smooth, the pointwise model displays
high variance both within policy and across different weightings.

Table 5: Gini Index: Stochastic vs. Static

Variant (2) Validation Test Mean Difference
G-ES-{0,0} 0.740 0.849 -0.109
SG-ES-{0,0} 0.734 0.789 -0.065
G-ES-{0,0.05} 0.815 0.883 -0.068
SG-ES-{0,0.05} 0.854 0.853 0.001
G-ES-{0,0.1} 0.825 0.899 -0.074
SG-ES-{0,0.1} 0.881 0.861 0.020
G-ES-{0,0.17} 0.883 0.881 0.002
SG-ES-{0,0.17} 0.911 0.889 0.012
G-ES-{0,0.25} 0.924 0.861 0.063
SG-ES-{0,0.25} 0.901 0.879 0.022
G-ES-{0,0.3} 0.945 0.876 0.069
SG-ES-{0,0.3} 0.925 0.874 0.051

6 CONCLUSION
In this paper we defined types of market indicators critical for cre-
ating healthy, two-sided marketplaces and proposed strategies for
learning policies to jointly maximize those desired market char-
acteristics. We showed that we can influence these market-level
metrics via trained policies, evaluated on offline data, resulting in
a method for imposing business needs and eliminating many of
the common forms of interventions that lead to sub-par search
experiences.

We further release our production code, capable of scaling to tens
of millions of examples, on github1 to ensure both reproducible
results and provide a flexible framework for solving real-world
production ranking problems. We endeavor to also publish our
training datasets to establish more modern baselines in the difficult
E-commerce space.

While the results hold for popular head queries in an offline envi-
ronment, follow-up work is needed show the effects translate into
online systems. Future work also intends to focus on alternative
models beyond our greedy, neural network approach: as our opti-
mizer is shown capable of learning non-differentiable models, there
is opportunity to explore more efficient greedy architectures. As
it relates to the types of objectives, additional work incorporating
supply and demand signals in international markets is of significant
interest. Similarly, the findings from Moshary[21] and Blake[3] are
likely to be fertile grounds for future direction. Finally, while the
intent of this work is to understand the impact of a standalone rank-
ing policy, there is likely significant opportunities in ensembling
expert models within the framework to boost underlying metric
performance.
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