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ABSTRACT
The ubiquity of smart voice assistants has made conversational
shopping commonplace. This is especially true for low consider-
ation segments like grocery. A central problem in conversational
grocery is the automatic generation of short product titles that can
be read out fast during a conversation. Several supervised models
have been proposed in the literature that leverage manually labeled
datasets and additional product features to generate short titles
automatically. However, obtaining large amounts of labeled data is
expensive and most grocery item pages are not as feature-rich as
other categories. To address this problem we propose a pre-training
based solution that makes use of unlabeled data to learn contextual
product representations which can then be fine-tuned to obtain
better title compression even in a low resource setting. We use
a self-attentive BiLSTM encoder network with a time distributed
softmax layer for the title compression task. We overcome the vo-
cabulary mismatch problem by using a hybrid embedding layer that
combines pre-trained word embeddings with trainable character
level convolutions. We pre-train this network as a discriminator on
a replaced-token detection task over a large number of unlabeled
grocery product titles. Finally, we fine tune this network, without
any modifications, with a small labeled dataset for the title compres-
sion task. Experiments on Walmart’s online grocery catalog show
our model achieves performance comparable to state-of-the-art
models like BERT and XLNet. When fine tuned on all of the avail-
able training data our model attains an F1 score of 0.8558 which
lags the best performing model, BERT-Base, by 2.78% and XLNet
by 0.28% only, while using 55 times lesser parameters than both.
Further, when allowed to fine tune on 5% of the training data only,
our model outperforms BERT-Base by 24.3% in F1 score.

CCS CONCEPTS
• Information systems→ Summarization; •Human-centered
computing→Natural language interfaces; •Computingmethod-
ologies→ Natural language processing; Learning latent representa-
tions.
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1 INTRODUCTION
Voice commerce is a rapidly growing vertical, with an estimated
market size of $2 Billion already and forecasts for hitting $40 Bil-
lion+ by 2022 [27]. Moreover, voice is being touted as the dominant
channel for driving customer engagement in the next decade. As
such, conversational commerce, a broader term often used inter-
changeably with voice commerce, is an area of strategic priority
for most e-commerce businesses. From a user adoption and repeat
usage standpoint, the prospects for voice commerce are even more
exciting for low consideration segments like Grocery.

Figure 1: Walmart Voice Order bot for online grocery.
Though search response is fairly detailed, the add to cart re-
sponse has the maximum possible compression of the prod-
uct title.

This big potential notwithstanding, the user experience for voice
shopping, and conversational grocery in particular, is still nascent.
One such suboptimality is the reading out of long product titles
during a conversation between an artificial shopping agent and a
customer. As noted in [22], product titles in e-commerce catalogs are
made very long and informative with Search Engine Optimization
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in mind. However, this translates to a poor grocery voice shop-
ping experience where transactions are mostly repeat purchases
and users are well aware of the products that are being added to
cart. Reading out a product title like “Glad OdorShield Tall Kitchen
Drawstring Trash bags - Febreze Fresh Clean - 13 Gallon - 40 count
(Packaging May Vary)” for 7 to 10 seconds during an add-to-cart
response, for example, is an unnecessary test of user’s patience
and can lead to greater drop out rates before checkout. Instead, a
succinct summarization of the title, like “trash bags”, is more appro-
priate in this scenario. From a voice UX standpoint, any product
title with >= 5 words is considered to be long, while those with
<= 4 words are considered short and voice friendly. This necessi-
tates exploring automatic product title summarization techniques
that can take in a long product title and convert it into a short and
voice friendly title.

Automatic generation of short product titles have been studied
in the context of voice and mobile shopping in [12, 22, 24, 27, 28].
All proposed methods are supervised learning models that leverage
labeled training data and other product features to compress titles.
Much better results can be obtained, if this labeled data is used
to fine tune state-of-the-art pre-trained models like BERT, XLNet,
ELECTRA [5] etc. However, this poses a few problems in the con-
text of conversational grocery. Firstly, labeled data is expensive to
obtain and grocery product pages and catalog are not as feature-
rich as some other segments like fashion and furniture, for example.
Secondly, heavily parameterized models like BERT and XLNet that
require more powerful GPUs to train, do not make a strong case in
favor of cost-effectiveness, which is a carefully tracked metric for
low margin segments like grocery.

We try to address these challenges in this paper by proposing
a lightweight self-attentive BiLSTM architecture that can be pre-
trained on unlabeled long product titles to obtain performance
comparable to state-of-the-art models for the title summarization
task. Since we are low on training data, we adopt the discriminative
pre-training strategy, recently introduced in [5], for our model. Pre-
training models as discriminators on a replaced token detection task
results in higher sample efficiency and has been shown to outper-
form masked language model based pre-training. Experiments on
Walmart’s online grocery catalog show that our pre-trained model
achieves performance comparable to BERT, XLNet, and ELECTRA
while using 55X and 7X lesser parameters respectively. Further,
when allowed to fine tune on less than 20% of the available training
data, our pre-trained model outperforms all three.

2 RELATEDWORK
2.1 Text Summarization
Our problem can be classified under the broad category of text
summarization. This area has evolved quite a bit with the advent
of RNNs. [1, 6, 11, 18] present comprehensive surveys of neural as
well as classical text summarization techniques. While document
level summarization [2, 3, 16] deals with the problem of generating
document level summaries of the content, our work is best described
as sentence compression [4, 8, 9, 15, 23, 25, 29] which involves
summarizing long sentences to shorter ones while preserving the
core intent.

There are 2 distinct flavors of summarization independent of the
source granularity; Abstractive and Extractive. Abstractive summa-
rization [2, 4, 17, 20] can produce summaries consisting of words not
present in the input, while Extractive summarization [8, 9, 23, 29]
aims to generate summaries using words or sentences extracted
from the original input. We will focus on neural approaches for
extractive flavor of sentence compression for the remainder of this
section.

A popular approach to extractive sentence compression is to
model the problem as a sequence-to-sequence learning problem
using an encoder-decoder based architecture [8, 9, 15]. The encoder
learns a distributed representation of the input sentence which is
then fed to the decoder which is trained to produce a binary 0/1
label for each input word denoting whether to delete or keep that
word in the output summary. Beam search can be used [9, 25, 26] to
sample from the decoder output probability distribution to generate
the most likely compression.

[23] and [29] present 2 approaches different from the encoder-
decoder based approaches. [29] uses Reinforcement Learning with
KEEP and DELETE policies. Words are kept or deleted based on the
policy while a pre trained language model provides feedback on the
generated summary. This results in the system learning the optimal
policy over time. Like all the other deletion based compression
models, [23] still tags words in the input sequence with a 0/1 label,
but treats it as a sequence labeling problem, instead of a sequence
generation problem. Hence it does away with the decoder and
employs stacked BiLSTM layers with a final CRF layer at the output
that does the 0/1 classification. Our current work closely follows
this approach with minor modifications.

Most of the techniques discussed here, with the exception of [23],
require a considerable amount of training data. While [8, 15, 29] are
trained on the Gigaword corpus, [9] is trained on 2 Million news
headline and summary pairs. Though these 2 Million examples
were synthetically generated following the method in [10], it is
based on the syntactic structure of the English language and its
parse trees. [8] also proposes an unsupervised approach involving
generation of training data by adding noise, but the results lag
behind supervised approaches. Since the distribution of the words
in the product titles, and in general the vocabulary of our problem
domain, is different from general English, data sparsity and unavail-
ability of e-commerce specific embeddings pose a challenge for
us. Interestingly, [23] reported good performance with only 10000
pairs of original and compressed sentences, which is the reason we
chose to implement a modified version of this approach to solve
our problem of product title compression.

2.2 Title Summarization in E-commerce
Product title summarization in the context of voice andmobile shop-
ping has been studied in [12, 22, 24, 27, 28]. Amongst them, [12]
defined title summarization as a sequence classification problem,
where a binary decision is made at each word, given a long product
title. A feature vector has been applied, comprising term frequency
(tf) and inverse document frequency (idf) for each word. However,
in this approach, large training data (500,000 samples) has been
used and the results didn’t prove to be significantly better than a
simple BiLSTM approach. Another interesting approach has been
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Table 1: Crowd Generated Short Titles

No. Long Title Short Title

1. Freshness Guaranteed Sliced Fruit Cake,
13 oz

Fruit Cake

2. OGX Hydrating + Teatree Mint Condi-
tioner Salon, 25.4oz

Conditioner

3. Child of Mine by Carter’s Places and
Spaces 3 Pocket Duffle Diaper Bag Gray

Diaper Bag

4. Mainstays Stall Size 54" x 78" Medium
Weight PEVA Shower Liner, 1 Each

Shower Liner

proposed, where the problem has been defined as multi-task learn-
ing objective [24] to compress the product title using user search
log data. The multi-task learning objective involves two networks,
one network to select the most informative words from the product
title as a compressed title and the other network to generate the
user search query from the product title. These two networks have
been constrained to share the same product title encoder and addi-
tionally, the attention distributions from these two networks were
constrained to agree with each other. However, in this approach,
the size of the training data is large (185,386 samples) and addition-
ally requires user search data. Another recent approach has been
proposed in which the product title summarization has been framed
as a Binary Named Entity Recognition problem [27]. The model
architecture involves a simple bi-directional LSTM encoder/decoder
network (2 layer LSTMs) with an attention mechanism. ANOVA
and post-hoc tests showed that with this approach, there was no
statistical difference between model outputs and human-labeled
short titles.

3 DATASET
Our main dataset consists of product titles, and their corresponding
human generated summaries for 40,445 top selling Walmart gro-
cery products during the calendar year 2018. Crowd workers were
given the product titles and asked to generate their short summaries
by choosing words to retain from the original title. Product descrip-
tion, brand name and category information were also provided to
help workers decide on the most salient tokens for unfamiliar items.
The task was intentionally vague about the target length of the
summary so as to not introduce any bias. Examples provided were
minimal identity preserving compression, with extra terms added
rarely to improve fluency. Table 1 lists some samples from this
dataset. We call this dataset the title summary dataset. Unlike
[27] our short titles do not necessarily contain additional entities
like brand, size, pack descriptors etc that can be easily obtained
from structured catalog data.

We use an additional unlabeled dataset of around 256,298 long
product titles of items published in Walmart’s online grocery cat-
alog, which is used for pre training the network. We refer to this
dataset as the product titles dataset. Table 2 lists the statistics for
both these datasets. The length distribution across the crowd gener-
ated summaries and the original product titles conforms well to the
UX requirement which considers product titles with >= 5 words as
long and those with <= 4 words as short and voice friendly.

Table 2: Dataset Statistics

Metric Value

No. of pre-training samples 256,298
Shortest/Median/Longest sample lengths 3/10/35 words
Word Vocabulary size 67,634
Character Vocabulary size 69
Words missing from embedding (UNK) 17041 (25.2%)

No. of title compression samples 40,445
Shortest/Median/Longest short titles 1/2/5 tokens
Shortest/Median/Longest long titles 4/10/35 tokens

4 MODEL
We model the problem as a binary sequence labelling problem,
where each element of the input sequence is assigned the label 0
or 1. The sequence elements labeled 1, taken in order, forms the
short title. For the sequence labelling problem we use a 3 layer
architecture consisting of an embedding layer, an encoder layer,
and a final point-wise classification layer.

Embedding layer. A major problem in applying pre-trained em-
beddings to a specific domain like retail is vocabulary mismatch
where many private labels, brands, pack descriptors etc are treated
as unknown words. To overcome this we use a combination of fixed
pre-trained word embeddings and randomly initialized, trainable,
character level embeddings as described in [19]. Hence, our model
takes 2 inputs; x𝑤 ∈ Z𝑁 which is a vector containing indices of
words in the input product title, and x𝑐 ∈ Z𝑁×𝐶 which contains
the indices of the characters in each word, where N is the maxi-
mum sequence length and C is the maximum word length. We use
character level convolutions (CharCNN) [14] on x𝑐 to combine and
project the character level embeddings for each word onto R𝑒𝑐ℎ𝑎𝑟 .
We combine these two word embeddings using a highway network
[21] to obtain the final embedding x𝑒𝑚𝑏 .

x𝑖
𝑤𝑒𝑚𝑏

= word-embedding (x𝑖𝑤), ∈ R𝑒𝑤𝑜𝑟𝑑 (1)

x𝑖
𝑐𝑒𝑚𝑏

= CharCNN (x𝑖𝑐 ), ∈ R𝑒𝑐ℎ𝑎𝑟 (2)

x𝑖
𝑒𝑚𝑏

= highway ( [x𝑖
𝑐𝑒𝑚𝑏

; x𝑖
𝑤𝑒𝑚𝑏

]), ∈ R𝑒𝑐ℎ𝑎𝑟+𝑒𝑤𝑜𝑟𝑑 (3)

Instead of repeating the details of how these components work
we direct the reader to [14, 19, 21] for further details.

Encoder layer. The encoder layer uses 3 stacked layers of bidirec-
tional LSTMs to obtain contextualized representation x𝑖

𝑏
∈ R2ℎ for

the 𝑖𝑡ℎ sequence element as the concatenation of the hidden states,
each of dimension ℎ, from the forward and backward passes of the
LSTM units in the 3rd layer

x𝑖
𝑏
=

[
h(𝑖) [3]
𝑓

; h(𝑖) [3]
𝑏

]
, 𝑖 ∈ {1, 2, ...𝑁 } (4)

We further augment this contextualized representation x𝑖
𝑏
of

each sequence element by using multiplicative self attention to
jointly attend to all other sequence elements x𝑗

𝑏
, 𝑗 ∈ {1, 2, ...𝑁 }

without having to go through any gating mechanism. We thus
obtain the final encoding x𝑖𝑒𝑛𝑐 for each sequence element as follows
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e𝑖 𝑗 = x𝑖
𝑏
⊤W𝑠x

𝑗

𝑏
, e𝑖 𝑗 ∈ R (5)

𝛼𝑖 𝑗 =
exp

(
e𝑖 𝑗

)∑𝑁
𝑘=1 exp (e𝑖𝑘 )

(6)

x𝑖𝑒𝑛𝑐 =

𝑁∑
𝑗=1

𝛼𝑖 𝑗x𝑖𝑏 (7)

whereW𝑠 ∈ R2ℎ×2ℎ is a trainable parameter matrix and 𝛼𝑖 𝑗 deter-
mines the contribution of the 𝑗𝑡ℎ sequence element in computing
the representation for the 𝑖𝑡ℎ sequence element.

Classification layer. In the final layer we project the contextual-
ized embeddings for each sequence element as obtained from the
encoder layer to R2 using a point-wise fully connected layer, pa-
rameterized by the weight matrixWc ∈ R2ℎ×2 and the bias bc ∈ R2,
which when operated upon by a softmax operator yields y𝑖 , the
probability distribution across the output class labels for the 𝑖𝑡ℎ
sequence element. Succinctly,

y𝑖 = softmax
(
W𝑇

𝑐 x
𝑖
𝑒𝑛𝑐 + bc

)
, 𝑖 ∈ {1, 2, ...𝑁 } (8)

Training. We train our model to minimize the weighted binary
cross entropy loss 𝐿(𝜃 ) given by

𝐿(𝜃 ) = − 1
𝑁

𝑁∑
𝑖

𝛼 · ŷ𝑖 log (y𝑖 ) + 𝛽 · (1 − ŷ𝑖 ) log(1 − y𝑖 ) (9)

where 𝑁 is the sequence length, y𝑖 is the probability that the 𝑖𝑡ℎ
sequence element belongs to class 1, ŷ𝑖 is the ground truth label,
𝛼 is the weight for class 0, and 𝛽 = 1 − 𝛼 , is the weight for class 1.
We choose 𝛼 = 0.1 and hence 𝛽 = 0.9 since roughly 9

10 of all the
token labels are 0

Our model architecture is similar to [9, 23, 27] with some key
differences. Firstly, unlike our hybrid embedding layer, none of
the aforementioned solutions have any mechanism to address the
vocabulary mismatch problem between pre-trained embeddings
and the training corpus. Next, unlike [23, 27] that use encoder-
decoder based architecture, ours in an encoder-only architecture.
Further, [9] uses left to right LSTM only and hence requires feeding
the input in reverse to condition on the right context, which we
achieve using BiLSTM. Finally, unlike [9, 23, 27] we attend to the
global context while encoding each sequence position using a self
attention layer.

5 PRE-TRAINING
As in [5], we pre-train our network as a discriminator on a replaced
token detection task. We corrupt each long title in the product
titles dataset, by randomly selecting some fraction 𝑓 of its tokens
and replacing them with another token. Though experiments in [7]
show that best results are obtainedwith 15% of the tokens corrupted,
we choose 𝑓 = 0.25 since our corpus is much smaller. To ensure that
the network gets a chance to make predictions for all positions, we
repeat the token replacement process multiple times for the same
long title until the corruption procedure covers all tokens. This
results in multiple copies of the same title, with tokens replaced in
mutually disjoint positions. We generate a binary sequence label for

each corrupted line that has 1 for the positions that were replaced
and 0 everywhere else. In order to not bias the network towards
predicting at least one 1 label in each input, we also include the
original, uncorrupted copy of each product title. This procedure
applied on our dataset results in a corpus of 1.27 Million product
titles for supervised pre-training of the network. We use the same
weighted binary cross entropy loss function as in equation 9. Since
the median number of tokens per title in our corpus is around
10, with 𝑓 = 0.25 and 𝑁 = 35 we used 𝛼 =

10𝑓
𝑁

≈ 0.07 and
𝛽 = 1 − 𝛼 = 0.93. We train this network for 4 epochs which results
in accuracy of 0.9897 on the replaced token detection task.

5.1 Token Replacement
Intuitively, higher the quality of the replaced token, harder it is
for the network to guess that it is replaced, and hence better is
the latent representations learnt during the pre-training process.
Unlike [5] which samples the replacement tokens from a small
masked language model trained jointly, but not adversarially, with
the network, we obtain our replacement tokens from a skip gram
model that maximizes the log likelihood in a window centered on
the token to be replaced. This allows us to improve our compute
efficiency while obtaining reasonably good candidate replacement
tokens. If𝑤𝑖 is the token at the 𝑖𝑡ℎ position that is to be replaced,
then we choose𝑤𝑟 , the replacement token as

𝑤𝑟 = argmin
𝑤∈𝑉 ′

𝑛∑
𝑘=−𝑛

− log 𝑃𝑠 (𝑤 |𝑤𝑖+𝑘 ; 𝑙𝑤)

where 𝑉 is the vocabulary, 𝑉
′
= 𝑉 − {𝑤𝑖+𝑘 ;−𝑛 ≤ 𝑘 ≤ +𝑛}, 𝑙𝑤 =

2𝑛 + 1 is the window size, and 𝑃𝑠 (𝑤𝑖 |𝑤 𝑗 ; 𝑙𝑤) is the conditional
distribution for occurrence of𝑤𝑖 in a window of length 𝑙𝑤 centered
on𝑤 𝑗 .

6 EXPERIMENTS
We implement our model and it’s various ablations in the Tensor-
flow framework1. For our baseline models, we use their Pytorch im-
plementations available at HuggingFace2. We minimize the model
loss as given in equation 9 using the Adam optimizer. We do not
tune any hyper parameters and use the default settings for Adam
throughout with 𝑙𝑟 = 0.001, 𝛽1 = 0.9, and 𝛽2 = 0.999. We use the
same dropout probability of 0.2 between all layers. All layer weights,
with the exception of the highway layer and the character embed-
dings, use Xavier normal initialization and biases are set to 0. All
our models are trained on a single Nvidia V100 GPU for 15 epochs,
or 1 hour, or until convergence, whichever is earlier. We define
convergence as 3 consecutive epochs without any improvements
in metrics on the validation set. For fine-tuning our pre-trained
model, we use gradual unfreezing of layers in a top down manner
as in [13], but we get the best results when we keep our learning
rate fixed at 0.001 across all layers and batches. We evaluate our
model performance on a held out test set consisting of 8089 human
generated short titles. We report 2 different metrics for our mod-
els; ROUGUE-1 F1 score and Exact Match percentage, henceforth
referred to as F1 and EM respectively. EM, as the name suggests,

1https://www.tensorflow.org/
2https://huggingface.co/transformers/
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Table 3: Ablations

Model F1 EM

CB3SA 0.8465 62.24

CB3SA+PT 0.8558 63.83

CB3SA-CharCNN 0.8414 60.13

CB3SA-BLSTM1 0.8455 62.37

CB3SA-SA 0.8417 60.22

CB3SA-SA+NWSA7 0.8458 62.39

CB3SA-SA+MHSA8 0.8420 59.72

refers to the percentage of outputs that exactly match the human
generated title compression. For comparing model performances
we use the F1 score only.

6.1 Dataset Preparation
We minimally normalize our datasets by converting everything
to lower case and squeezing consecutive white space characters.
Given the nature of the Walmart catalog data, 2 additional normal-
ization steps were necessary; converting all “&” symbols to “and”
and padding commas with whitespaces so that they are treated as
separate tokens. We follow a simple tokenization scheme where
we split each product title by whitespace. We keep the maximum
sequence length at 35, truncating longer product titles and padding
shorter titles with the PAD token. The maximum token length we
use is 15, with similar padding and truncating scheme. We extract
our word and character vocabularies from the product titles dataset
instead of the title summary dataset since the former is a super
set of the later. Our corpus has a word vocabulary size of 67634
including the “UNK” and “PAD” tokens, while the character vocab-
ulary size stands at 69. We set aside 20% of the human generated
title summary dataset as our test set, 8% as validation set and the
remaining 72% as our training set.

6.2 Ablations
We perform several ablations, as well as some additions, on the
model proposed in section 4 to underscore the effect of each of the
components.We name ourmodel CB3SA, choosing to retain the first
character for each layer (CharCNN, BiLSTM(3 stacks) and self atten-
tion). Additions and ablations are denoted with a + and - operator
respectively after the model name. For example CB3SA+PT refers
to the pre-trained version of our model, while CB3SA-CharCNN
refers to the version of our model with the character level word
embedding layer removed. Table 3 lists the various combinations
we tried and the results on the test set.

Clearly, the pre-training process (model CB3SA+PT) contributed
a significant boost in performance over the non pretrained model
(CB3SA) while removing the charCNN layer (CB3SA-CharCNN)
causes the most significant drop in performance. Apart from these,
there are a few interesting observations. Firstly, removing a BiL-
STM layer (model CB3SA-BLSTM1) has one of the least negative

Table 4: Comparison against SOTA models

Model Params F1 EM

CB3SA+PT 2M 0.8558 63.83

XLNet 110M (55X) 0.8582 (-0.28%) 74.25

BERT-Base 110M (55X) 0.8803 (-2.78%) 69.17

RoBERTa 125M (62X) 0.7644 (+11.96%) 58.17

ELECTRA 14M (7X) 0.8689 (-1.50%) 66.48

Distill BERT 66M (33X) 0.8707 (-1.71%) 67.18

impacts together with reduced training and inference times. Sec-
ondly, removing the vanilla self attention layer and adding a multi-
headed self attention layer with 8 attention heads (model CB3SA-
SA+MHSA8) proves to be as detrimental as removing the self at-
tention layer altogether (model CB3SA-SA). Finally, using a narrow
width attention with window length of 7 instead of our global
self attention (model CB3SA-SA+NWSA7) causes the least drop in
performance.

6.3 Baselines
We fine tune our pre-trained model (CB3SA+PT) on the entire train-
ing dataset and compare it’s performance against several strong
baselines; XLNet, BERT, RoBERTa, DistillBERT, and ELECTRA -
all fine tuned on the same training set. Table 4 lists the results.
Additionally, the F1 column shows the percentage by which our
F1 lags the respective models and the Params column shows the
factor by which our parameter set is smaller.

Ourmodel is able to use 55X lesser parameters than BERT
andyet obtain a comparable performance, laggingBERTBase
by 2.78% of F1 score on the test set. Among the SOTA models,
ELECTRA-Small seems to provide the best parameter efficiency by
uisng 7.8X lesser parameters than BERT-Base while lagging by only
1.3% on F1 score on the test set. Interestingly, RoBERTa, the biggest
model that we tried with 125M parameters, under performed by a
huge margin, lagging our F1 score by 11.96%.

6.4 Low Resource Setting
We experiment in a low resource setting by allowing all the mod-
els to be fine tuned only on a small fraction of the training data
and then evaluating their performance on the same test dataset
as was used in Section 6.3. Figure 2 compares the performance
of our pre trained model with that of the SOTA models which
shows our model’s performance deteriorates much lesser compared
to others. When allowed to be fine tuned only on 5% of the
training data (around 1600 parallel examples) ourmodel out-
performs the best performing SOTA model, BERT-Base, by
24.3%. In fact, our model continues outperforming all SOTAmodels
for a large part of the low data regime, till 20%, after which others
catch up.

7 CONCLUSION
We propose a self-attentive recurrent neural network architecture
for product title compression.We successfully pre train our network
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Figure 2: F1 score on test set when allowed to fine tune only
on a small fraction of training data. Parameter heavy state-
of-the-art models rapidly deteriorate as amount of training
data is reduced while our pre trained model is resilient in
the low data regime.

Table 5: Sample title compression by CB3SA+PT

Long Title Short Title

Glad OdorShield Tall Kitchen Drawstring
Trash bags - Febreze Fresh Clean - 13 Gallon
- 40 count (Packaging May Vary)

trash bags

Great Value Strawberry Nonfat Greek Yo-
gurt, 6 oz, 4 ct

nonfat greek
yogurt

Del Monte Fresh Cut Cut Green Beans &
Potatoes With Ham Style Flavor, 29 Oz

green beans
and potatoes

Suave Professionals Moisturizing Shampoo
and Conditioner Almond + Shea Butter 28
oz, 2 count

shampoo and
conditioner

as a discriminator on a replaced token detection task on unlabeled
dataset of long product titles. We also fine tune several large state
of the art pre trained NLP models for the title summarization task.
Our experiments with human generated short titles on the Walmart
grocery catalog show that our pre trained model with 2 Million
parameters achieves performance comparable to to state of the
art models like BERT and XLNet that use in excess of 100 Million
parameters. Further, in a low resource setting when very small
amount of training data is available, our model outperforms all
SOTA models by a large margin.
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