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ABSTRACT
In this paper, we study the problem of enabling multi-lingual prod-
uct search for a global shopping store. In particular, given an ex-
isting search system and product catalog in a primary language,
and a search query in a secondary language, transform the query
into a semantically equivalent one in the primary language in or-
der to retrieve the most relevant products. Direct application of
machine translation does not always work well in this applica-
tion due to several factors: 1) lack of consideration of the search
system’s response to a transformed search query, 2) sensitivity to
spelling/grammatical errors, 3) fragility to inputs in a language that
is different from the ones the search system is trained for, and 4)
poor handling of named entities (e.g. brand names, model numbers).
To address these challenges, we propose a Query Transformation
system that consists of 1) a language identifier to detect the lan-
guage of the input query, 2) a deep neural machine translationmodel
fine-tuned on human-curated parallel query corpus and learned,
during training, to copy entities such as model numbers, and 3) a
traffic re-ranker which selects the transformation that may help
the search system retrieve the most relevant products. Furthermore,
we show that standard machine translation evaluation metrics such
as BLEU are unsuitable for this application. Therefore, we propose
a new offline performance metric that measures how accurately
a transformed query reflects customer’s shopping intent and how
well the existing search system responds to the transformed query.
We present compelling offline and online results: 11% and 3% in
improvements in offline nDCG@8 for Spanish (ES)→ English (EN)
and French (FR) → EN, and 10% and 22% in reduction in online
product type search defects for ES→EN and FR→EN, respectively,
over a state-of-the-art statistical machine translation system for
product search.
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1 INTRODUCTION
Multi-lingual product search is an important component for global
shopping stores with customers speaking various native languages.
With multi-lingual product search, customers can search and shop
using their language of preference. Figure 1 shows that customers
in the United States (U.S.) can search and shop using Spanish on
Amazon.com.

Figure 1: Snapshot of searching and shopping on U.S. Ama-
zon.com online store using Spanish query “zapatos para
niños”.

However, enabling multi-lingual search experience on top of
an existing search system is challenging due to the huge scale
of the catalog: billions of products exist in the catalog. Due to
infrastructure constraints, it is neither feasible nor practical to re-
index the entire catalog with translated descriptions and attributes
in different languages.

Instead, as shown in Figure 2, we consider a more scalable query
transformation approach that fully utilizes the existing search sys-
tem: given a query in a secondary language, we first transform it
to a semantically equivalent query in the primary language used
in the existing system. This transformed query is then sent to the
existing search system to retrieve the results. As product matching
and ranking are all done in the primary language, we can retain the
existing indexing infrastructure that operates on the primary lan-
guage, and leverage the high quality search results from the existing
state-of-the-art search system. It is worth mentioning that this plug-
and-play query transformation approach can be easily extended to
offer secondary-language-shopping feature to multiple languages,
and would make efficient use of computing infrastructure.

At a first glance, we may think that a standard machine trans-
lation model can be applied to transform search queries to enable
multi-lingual product search. However, there are many challenges
that are specific to query transformation which make this simple
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Figure 2: Schematic of query transformation system for multi-lingual search.

approach suboptimal:

• Lack of parallel query corpus. Unlike general machine trans-
lation tasks, where there is abundance of manually created
parallel corpus from various sources (e.g. Wikipedia, novels,
video subtitles), the lack of parallel query corpus makes it
harder to train well-performing machine translation models.

• Customer search queries have unique characteristics that
distinguish them from general text used in many other nat-
ural language processing (NLP) tasks. For instance, queries
are usually shorter and formulated with more named enti-
ties and spelling/grammatical errors than general text [4].
As a result, it is hard for a pre-trained general purpose ma-
chine translator to generate accurate translations for queries.

• Lack of suitable performance metrics. The quality of trans-
formed queries should be measured by how easily customers
can find products relevant to their shopping intent. There-
fore, the quality depends on both how accurately the trans-
formed query reflects the shopping intent of the original
query, as well as how well the existing search system re-
sponds to the transformed query. However, most existing
metrics for machine translation, such as BLEU and METEOR,
are not designed to reflect this [3, 35].

In order to evaluate the quality of the transformed queries to
facilitate fast exploration of various modeling innovations, we pro-
pose a new family of offline metrics that are driven by customer
engagement and are specific to the existing search system. We refer
to these metrics as behavior metrics in this paper. Guided by the
proposedmetrics, we carefully develop and validate various state-of-
the-art NLP models and techniques to address the aforementioned
challenges for real world product search queries. We are able to
build a query transformation system with complete components
as illustrated in Figure 3. We further deploy our proposed query
transformation system to run online A/B tests on the Amazon store
websites in two countries: U.S. and Canada. Both offline and on-
line metrics demonstrate that our proposed query transformation
system improves the multi-lingual search experience for Amazon’s
customers. In this paper, we will share our learnings in the process
to build the proposed query transformation system.

This paper is organized as follows. In Section 2, we discuss ex-
isting work in neural machine translation (NMT), domain adapta-
tion for low-resource applications and uses machine translation

for cross-lingual information retrieval. Section 3 presents our pro-
posed behavior metric and Section 4 describes our proposed Query
Transformation system in detail. Offline experiments and online
deployment are described in Sections 5 and 6. This is followed by
Section 7, which discusses results of ablation studies and shares
our learnings from extensive experiments. Finally, we conclude this
paper and present some directions for future work in Section 8.

2 RELATEDWORK
Recently, NMT systems have demonstrated superior performance,
surpassing traditional phrase-based translation models [5], [27],
and have become the state-of-the-art in machine translation. NMT
systems are sequence to sequence models that typically have an
encoder-decoder structure. Different neural architectures have been
proposed, including convolutional networks [17, 21, 22] and recur-
rent networks, such as Long Short-Term Memory, Gated Recurrent
Units and Recurrent Neural Networks [7, 18, 32, 39]. The latest
sequence to sequence architectures rely on attention mechanisms
[1, 36]. Moreover, attention mechanisms have been refined with
self-attention [40] and variational attention [2]. In this work, we use
a Transformer architecture [40], which relies solely on multi-head
self-attention and has achieved state-of-the-art results in many
machine translation tasks.

It is well known that to train a high quality NMT model requires
large amounts of parallel texts in the source and target languages
[43]. However, domain-specific high-quality translations are of-
ten scarce and NMT performs poorly in such scenarios. Thus, do-
main adaptation methods that leverage both out-of-domain and
in-domain parallel and monolingual datasets perform an impor-
tant role in achieving good, domain-specific machine translations.
For example, better encoders can be learned using source mono-
lingual data through multitask learning [41]. Target monolingual
data, on the other hand, can be used to strengthen the decoder,
by using it to train a target language model and fuse it with an
NMT model [13, 44]. Another popular approach is back translation,
which back translates target sentences into the source language to
create a synthetic parallel corpus and incorporate it into training
data [10, 14, 38]. Most recently, some researchers have even stud-
ied unsupervised machine translation using monolingual corpora
only [9, 30], although performances are still not on par with their
supervised counterparts. In this paper, we use fine-tuning [11, 19],
a proven domain adaptation technique that first pre-trains an NMT
model on out-of-domain parallel corpora, followed by fine-tuning
the model parameters using in-domain parallel corpora [8, 37].
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Most existing machine translation work is focused on translating
general texts [6, 23], and there is little published literature on ma-
chine translation of search queries. Some earlier works [16, 33, 42]
use statistical machine translation (SMT) for cross-lingual infor-
mation retrieval (CLIR), and more recently, Lignos et al. discuss
challenges in optimizing NMT for low-resource CLIR [31]. Our
work focuses on query transformation for product search and dif-
fers from these studies in two main aspects. First, these studies are
based on simulated information retrieval systems on public datasets.
We evaluate performance and deploy our system on Amazon.com.
Second, we train and test our models using real search queries
typed by customers, which tend to be noisier than queries from
curated datasets. This makes our problem more challenging.

3 PROPOSED BEHAVIOR METRIC
Machine translation for product search is a task where the end goal
is to use the machine translation output for a specific task rather
than to have a human read and comprehend. In this case, we wish
to find a translation that returns the most relevant products for a
search query.

Common metrics used to evaluate machine translation systems,
such as BLEU and METEOR [3, 35], are generally based on measur-
ing the degree of overlap of n-grams between a machine translation
and a human-generated reference translation. These metrics mea-
sure qualities such as accuracy, grammatical correctness and fluency
of the translation, which are important in human judgements. As a
result, they penalize nuances such as mixing up of singular and plu-
ral nouns (e.g. “man” v.s. “men”), incorrect word order (e.g. “pink
iPhone” v.s. “iPhone pink”) and translation differences (e.g. due
to synonyms such as “sneakers” v.s. “trainers”). However, these
nuances may not be so relevant in product search.

Therefore, we propose new behavior metrics to directly evaluate
machine translation systems based on their performance on the
task of multi-lingual product search. The proposed behavior metrics
measure how easily customers can find products that are relevant to
their shopping intent using a transformed query. More specifically,
they quantify the goodness of a transformed query by comparing
the set of products retrieved using the transformed query against
the set of products purchased by customers who searched using the
original query. This assumes that the purchased products associated
with the original search query are the oracle, and a better query
transformation system is one that produces transformed queries
that return more relevant products that customers have indeed
purchased. In Section 5.1, we describe how we collect the oracle in
this work.

For each test query, we obtain a list of past purchases made
using this query and a ranked list of search results returned by a
query transformation system’s transformed query. Any standard
information retrieval evaluation metric can be used to measure the
relevance of the search results. In this paper, we use the standard
normalized Discounted Cumulative Gain (nDCG) [20]. Given a test
query𝑞 and its transformation𝑞, letP(𝑞) := {𝑝1, 𝑝2, . . . , 𝑝𝑛} denote
the list of purchased products for 𝑞, and let R(𝑞) := {𝑟1, 𝑟2, . . . , 𝑟𝑚}
denote the ranked list of search results using𝑞. We use the following

definition of nDCG@𝑘 (𝑞, 𝑞):

DCG@𝑘 (𝑞, 𝑞) :=
𝑘∑
𝑖=1

𝑟𝑒𝑙𝑖

log2 (𝑖 + 1) ,

nDCG@𝑘 (𝑞, 𝑞) := DCG@𝑘 (𝑞, 𝑞)
IDCG@𝑘 (𝑞, 𝑞) ,

(1)

where 𝑟𝑒𝑙𝑖 = 1 if there exists 𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝑟𝑖 = 𝑝 𝑗 ∈
P(𝑞), otherwise 𝑟𝑒𝑙𝑖 = 0. IDCG@𝑘 denotes the ideal discounted
cumulative gain produced by a perfect ranking algorithm.We report
nDCG@𝑥 averaged over all queries in the test set.

4 QUERY TRANSFORMATION
In this section, we introduce our proposed query transformation
system, QT, for multi-lingual product search.

4.1 Problem Setup and Notations
Let𝑋 and 𝑌 denote two languages. We assume a bilingual shopping
store that uses language 𝑌 as the primary language to interface
with customers and search the catalog. In addition, customers have
the option to explicitly select a secondary language 𝑋 and shop
using language𝑋 . For this scenario, we would like to design a query
transformation system that transforms search queries from 𝑋 to
the primary language 𝑌 in order to search the catalog and return
the most relevant search results to the customer.

Let X andY denote the collections of all sentences in languages
𝑋 and 𝑌 , and let Q𝑋 and Q𝑌 denote the collections of all search
queries in the corresponding languages. We assume that there is a
large set of out-of-domain parallel sentences Tout = {(𝑥,𝑦)}, where
𝑥 ∈ X \ Q𝑋 , 𝑦 ∈ Y \ Q𝑌 . In other words, the sentences are from
a domain other than product search queries, e.g. public parallel
corpora such as Europarl [26] and ParaCrawl [15]. In addition, we
assume that there is a small set of in-domain parallel search queries
Tq = {(𝑥,𝑦)}, where 𝑥 ∈ Q𝑋 , 𝑦 ∈ Q𝑌 , |Tout | ≫ |Tq | and |T |
denotes the size of set T . To further guide the query transforma-
tion, we also make use of two additional datasets. D𝑋 = {𝑥} and
D𝑌 = {(𝑦, 𝑛(𝑦))} are two very large datasets of search queries seen
on the shopping store in languages 𝑋 and 𝑌 , respectively. Here,
𝑛(𝑦) denotes query 𝑦’s traffic, which reflects the number of times,
aggregated over a long time period, the customers used query 𝑦
to shop in the online store, . In other words, 𝑥 ∈ Q𝑋 , 𝑦 ∈ Q𝑌 and
|D𝑋 | ≫ |Tq |, |D𝑌 | ≫ |Tq |.

4.2 System Architecture
Figure 3 shows a schematic of our proposed system’s architecture.
First, the language identifier identifies the language of the input
query: if it is in the primary language 𝑌 , then it is kept unchanged
and used directly to search for products; on the other hand, if
the input query is in the secondary language 𝑋 , then it is first
machine translated into language 𝑌 . In the latter case, the machine
translation model produces top 𝐾 candidate translations, which are
subsequently re-ranked using query traffic, in order to find the best
query transformation for product search. Next, we describe each
component in the proposed QT system in detail.

4.2.1 Language Identification. Data analysis reveals that customers
use a mixture of search queries in languages 𝑋 and 𝑌 even when
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Figure 3: Proposed query transformation (QT) architecture

they choose language 𝑋 as their language of preference. Therefore
we develop a query language identifier to estimate the language of
an input query. Direct application of general language identification
models on search queries is unable to achieve the performance we
require for this application. Again, due to search queries’ unique
characteristics: short in length and often containing named entities
and spelling mistakes, a single query may contain words in multiple
languages, etc. Consequently, we built our custom search query
language identifier: a Naive-Bayes model using word frequencies
calculated from queries in D𝑋 and D𝑌 .

4.2.2 Neural Machine Translation. We train an NMT model 𝑓 :
X ↦→ Y by minimizing the negative log-likelihood:

L(𝜃 ) =
∑

(𝑥,𝑦) ∈T
− log 𝑃 (𝑦 |𝑥 ;𝜃 ), (2)

where 𝜃 represents the model parameters and T represents the
training data. We use the Transformer architecture, as they offer
state-of-the-art performance in several machine translation tasks.

To alleviate the problem of lack of query specific in-domain
training data, we use the fine-tuning approach. The model is first
pre-trained on the large out-of-domain dataset, i.e. T = Tout. We
then follow the mixed fine-tuning approach [8]: continue tuning
the pre-trained model parameters on a mix of in-domain and out-
of-domain corpora. This approach prevents overfitting the model
on the small in-domain dataset and mitigates the catastrophic for-
getting phenomenon [25]. Here, we choose to fine-tune on a mix
of the in-domain parallel query corpus Tq and an equal number
of parallel sentences randomly sampled from the out-of-domain
corpus Tout.

In contrast to general text translation, search queries often con-
sist of tokens that contain digits, which may indicate a model num-
ber, size or the year that a product is released (example queries
in Tables 1 and 2). For these queries, failure to keep these tokens
unchanged during machine translation can significantly deteriorate
their search results. We propose an approach where the machine
translation model learns, at training time, how to copy tokens that
contain digits during translation when these tokens appear in the
source query. Our approach integrate digit-copy information as
inline preprocessing to the query text, and has the advantage of
not modifying the original sequence to sequence NMT architecture.
As illustrated by examples in Tables 1 and 2, at training time, we
replace tokens that contain digits and appear in both source and
target queries with special “copy” symbols; and at inference time,
we replace all tokens containing digits at the source side prior to
passing through the NMT model. We then post-process the output
sequence from the NMT model to replace the “copy” symbols with
the original tokens.

4.2.3 Traffic Re-ranking. We observe that translation differences
that humans may not mind could affect product search performance
(e.g. “Nike shoes” v.s. “shoes from Nike”) on Amazon.com. In this re-
gard, we use traffic re-ranking to choose a query transformation that
may give the best result when used for product search. In particular,
the top 𝐾 candidate translations from the NMT, in the target lan-
guage𝑌 , are then filtered and re-ranked usingD𝑌 , the search query
traffic dataset in the target language. Given an input sequence 𝑥 , let
𝑧mt,𝑖 denote the per token likelihood of the 𝑖-th translation 𝑦𝑖 from
the NMT model. LetH𝐾 = {(𝑦1, 𝑧mt,1), (𝑦2, 𝑧mt,2), . . . , (𝑦𝐾 , 𝑧mt,𝐾 )}
denote an ordered list of the top 𝐾 translations in decreasing order
of 𝑧mt,𝑖 . We calcualte the combined score 𝑧𝑖 for each 𝑦𝑖 :

𝑧𝑖 =

{
𝑧mt,𝑖 + 𝛼 𝑛𝑖∑

𝑖 𝑛𝑖
, if 𝑛𝑖 > 0

−∞, if 𝑛𝑖 = 0
(3)

where 𝑛𝑖 is query 𝑦𝑖 ’s traffic, and 𝛼 is a tuning parameter that
adjusts the relative weights of the likelihood term and the relative
traffic term. If all translations have zero search traffic, i.e., 𝑛𝑖 =

0 for 𝑖 = 1, . . . , 𝐾 , then we don’t re-rank the translations inH𝐾 and
choose 𝑦1 as the best translation. Otherwise, the translation with
the highest score 𝑧𝑖 is the final translation from our QT system. As
shown in Section 7.1, this approach proves to be effective in our use
case. Due to differences in the underlying search engines’ matching
and ranking algorithms, different re-ranking methods may work
better for different shopping platforms.

5 OFFLINE EXPERIMENTS
5.1 Datasets
We carry out offline experiments on two different query translation
tasks: ES→EN and FR→EN, where ES, FR and EN are short for
Spanish, French and English, respectively. As shown in Table 3, we
create an in-domain parallel corpus of approximately 0.2 million
pairs of human curated popular search queries for each language
pair. We collect tens of millions of out-of-domain parallel sentences
for the ES→EN translation task and several millions of out-of-
domain parallel sentences for the FR→EN task. Out-of-domain
corpora for both language pairs consist of web crawled datasets as
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Table 1: Text modification to learn digit-copy during training.

ES source quey EN target query

Original query zapatos para niños talla 6.5 kids shoes size 6.5
Preprocessed zapatos para niños talla <copy0> kids shoes size <copy0>

Table 2: Text modification for digit-copy during prediction.

FR source query EN target query

Original query batterie asus x751ld -
Preprocessed batterie asus <copy0> -
NMT output - asus <copy0> battery
Post-processed batterie asus x751ld asus x751ld battery

well as machine translated parallel texts of product information. We
randomly sample 2k pairs of search queries from each in-domain
corpora and use as holdout test sets. We use the remaining in-
domain and all of out-of-domain corpora for model training. To
evaluate the models using our proposed metrics, we record real
search queries: 10k queries from Amazon.com in the U.S. when
customers use Spanish as their language of preference, and 10k
queries from Amazon.ca in Canada when customers use French as
their language of preference.

5.2 Preprocessing
Considering the training datasets are noisy, we apply a series of
rules to normalize the texts and filter out low-quality sentences.
We remove invalid characters, sentences with too many or too few
words and pairs of source and target sentences that differ too much
in their sentence lengths. In addition to these filtering steps, which
are common in machine translation tasks, we also apply standard
text normalization steps in information retrieval applications, such
as stripping accents, lower-casing and normalizing whitespaces.
Unlike general texts, product search queries often contain words
that specify quantities such as “2 inches” and “20 pounds”. Often,
the units can be expressed in equivalent but alternative ways (e.g.
“2 inches”, “2 in” and “2" ”). Hence, we chose to standardize the
units (e.g. “2 inches” → “2 in”) and found that this improved the
translation performance, perhaps, because in this way, we can use
our vocabulary and training data more efficiently to aid the NMT
model in translating these units. To compute BLEU scores, we also
normalize texts and standardize units at the target side. Calculating
the behavior metrics requires no reference translations in the target
language.

Our in-domain dataset contains samples whose source and target
queries are identical or near identical, and are both in the target
language. It has been found that removing such samples from the
training data improves the performance of MT models for general
translation tasks [34]. Nevertheless, we chose to keep such sam-
ples for the reasons below. It is not uncommon for product search
queries to contain words from both source and target language.
For instance, the query “soulier talon woman” consists of French
words “soulier talon” and an English word “woman”. Furthermore,
our proposed language identifier is not perfect and thus, queries

deemed by the language identifier to be in source language may
be in the target language. We found that not discarding training
samples with identical or near identical source and target queries
improves the translation in these situations, as the model learns to
not translate words in the source query that are already in the target
language, such as the word “woman” in “soulier talon woman”.

For data modification with “copy” symbols, we do not modify
the out-of-domain datasets and use the following rules to replace
qualifying words in the in-domain corpus with special “copy” sym-
bols: the word contains at least 4 characters, at least one digit and
is in both the source query and the target query. During prediction,
we follow the same procedure to normalize the source queries and
replace all words containing at least 4 characters and one digit with
“copy” symbols.

Both out-of-domain and in-domain corpora are then tokenized
using mosesdecoder [27], followed by SentencePiece [28] using
joint source and target unigram [29] sub-word segmentation with
a vocabulary of 36K tokens.

5.3 Model Details
We use the base Transformer architecture described in [40], with
shared source and target embeddings, and decrease the dimension
of all inner-layers of the feedforward network sublayers to 1024.

We train all models using label smoothing 𝜖𝑙𝑠 = 0.1, a batch size
of 4000 tokens, Adam optimization [24] with 𝛽1 = 0.9, 𝛽2 = 0.98 and
an inverted square learning rate schedule with minimum learning
rate of 10−9, learning rate warmup over the first 4,000 steps with
warmup initial learning rate of 10−7. All models are pre-trained on
the out-of-domain corpus for 25 epochs, followed by fine-tuning
on the mixed corpus for 8 epochs. For prediction, the NMT uses a
beam size of 5 and outputs top 5 translations in the target language.

5.4 Results
We compare our proposed QT system’s performance with two
models:

• A state-of-the-art SMT model for Product Search (PS-SMT).
We consider this as the baseline.

• AWS Translate, a state-of-the-art NMT model for general
translation (AWS Translate).

Table 4 shows the behavior metric and BLEU scores. We report
tokenized BLEU and calculate them using 2k human translated
parallel search queries for each language pair. We also report the
behavior metric nDCG@8 as percentage change over the baseline.
Here, the choice of 8 is made because the relevance of the top 8
products found for any search query is one metric that is contin-
uously monitored at Amazon.com. Although absolute values of
nDCG@8 are not included here, the reported BLEU scores of both
the PS-SMT and AWS Translate demonstrate their competitiveness.
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Table 3: Size of training datasets used for ES→EN and FR→EN NMT models and size of test sets used to calculate BLEU and
our proposed behavior metric.

Train Train Test Test
(out-of-domain pairs) (in-domain pairs) (human translated pairs) (queries for behavior metric)

ES→EN ∼ 107 ∼ 200𝑘 2𝑘 10k
FR→EN ∼ 106 ∼ 200𝑘 2𝑘 10k

Behavior metrics of ES→EN models are evaluated on 10k search
queries logged when customers use Spanish as their language of
preference. Similarly, FR→EN models are evaluated on 10k search
queries when French is the language of preference.

Our proposed QT model achieves the highest behavior met-
ric scores for both ES→EN and FR→EN: increasing nDCG@8 by
11.31% and 3.45%, respectively. Tables 7, 8 and 10 give example query
transformations from our QT system, and from the PS-SMT and
the AWS Translate models. These examples further demonstrate
our proposed QT system’s performance.

In addition, observe that there is a lack of correlation between
BLEU and the behavior metrics in Tables 4 and 5. For example,
the baseline ES→EN model has the highest BLEU 50.1, but lower
behavior metric scores than our proposed QT model. The FR-EN
AWS Translate model has 38.4 BLEU, higher than the baseline’s
35.3. However, the former model’s nDCG@8 is -11.65% compared
to the baseline.

6 ONLINE DEPLOYMENT
We select the best performing query transformation model based
on our offline evaluations, and run online A/B tests. While deploy-
ing the model online, we observe that the model’s inference time
latencies are excessive. To expedite our experiment, we generate
large datasets containing millions of pre-computed query trans-
formations from each model and restrict the online experiments
to these queries. We run online tests in two stores, Amazon.com
in the U.S. and Amazon.ca in Canada. Both stores’ search systems
and catalogs use English as the primary language. Our experiments
target customers who shop in a secondary language of preference,
i.e., Spanish on Amazon.com and French on Amazon.ca. In the
control group, search results are generated based on the translated
query from the baseline, a state-of-the-art SMT system for product
search. In the treatment group, search results are generated using
our proposed QT system. The search quality between control and
treatment groups are evaluated by external human auditors who
are native-speakers of Spanish and French, respectively. For each
query in the evaluation set, the human auditors label which search
results are product-type defects. Given a query, a search result is
defined as a product-type defect for this query if it is from a differ-
ent product category from the product that the query is intended
for. For example, showing a pair of shoes as a search result would
be a product-type search defect for the query "women’s hats". A
model that produces fewer product-type search defects is a better
model. Our proposed QT system reduced product-type search de-
fects by 10% and 22% in Amazon.com and Amazon.ca, respectively,
compared to the state-of-the-art SMT system for product search.

Future work will involve optimizing our QT system’s perfor-
mance to reduce latencies. We will design a system that caches the
transformations for popular queries, and only falls back to an online
query transformation system for uncommon queries. The idea is
that caching of query transformations reduces the overall latency
and CPU utilization, while falling back to the online QT system
for cache misses increases the coverage of query transformation to
uncommon queries as well. In addition, the caching layer allows
manual overrides for any truly bad translations and thus, improving
overall translation accuracy.

7 DISCUSSION
7.1 Ablation Studies
In this section, we provide a detailed study of the effect of different
components of our proposed QT system. Table 4 shows BLEU scores
and behavior metrics for our QT system with different ablations.
For comparison, we include translations from the PS-SMT and the
AWS Translate model in all examples.

Effect of language identification. Table 6 shows that our
query language identifier identifies significant percentages of source
queries in the test datasets to be English. Removing the language
identifier reduces the improvements nDCG@8 7.79% for ES→EN,
the second largest negative impact after removing pre-training of
the NMT model. For FR→EN, the ablated model without language
identifier achieves the lowest nDCG amongst all ablations, only
0.23% better than the baseline. For example, the source query “j1772
charger” shown in Table 7 is in English and refers to electric vehicle
chargers. Our language identifier identifies it as an English query
and hence, the QT system does not translate it. However, “charger”
is also a valid French word meaning “load”. Therefore all the sys-
tems that do not have a language identifier translate it to “j1772
load”, which is a poor translation. As Figure 4 shows, “j1772 load”
only returns a single irrelevant product, whereas “j1772 charger”
returns 190 products and all top results are relevant.

Effect of traffic re-ranking. Table 8 illustrates the effect of traf-
fic re-ranking. The source query “oppo reno” refers to a cell phone
of a specific make and model. All models without traffic re-ranking
transformed it into the English query “oppo reindeer”. In the QT
system, both “oppo reno” and “oppo reindeer” are amongst the
top 5 translations from the NMT model. However, since customers
have rarely searched using the invalid query “oppo reindeer”, this
translation is ranked down, and the more popular query “oppo reno”
is selected.

Effect of digit-copy.Themodel without replacing digit-containing
words in the training data with “copy” symbols has the smallest re-
duction in BLEU and behavior metrics, compared to the best model.
Diving deeper, we observe that, most of the time, the QT model
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Table 4: Comparison of tokenized BLEU and behavior metrics of different models. Values of nDCG@8 are reported as percent-
age changes over the baseline.

Model ES→EN ES→EN FR→EN FR→EN
BLEU nDCG@8 BLEU nDCG@8

Our proposed QT system 49.6 11.31% 39.0 3.45%
AWS Translate 47.8 0.26% 38.4 -11.65%
PS-SMT (Baseline) 50.1 - 35.3 -

Table 5: Comparison of tokenized BLEU and behaviormetrics of our proposed QT system and different ablation studies. Values
of nDCG@8 are reported as percentage changes over the baseline.

Model ES→EN ES→EN FR→EN FR→EN
BLEU nDCG@8 BLEU nDCG@8

Our proposed QT system 49.6 11.31% 39.0 3.45%

QT w/o language identification 48.0 7.79% 39.0 0.23%
QT w/o traffic re-ranking 47.9 9.96% 37.6 1.18%
QT w/o digit-copy 50.6 11.03% 38.9 2.90%
QT w/o pre-training 42.1 -11.44% 37.4 0.44%
QT w/o fine-tuning 49.2 10.28% 36.4 3.03%

Table 6: Percentage of source queries in test datasets that are
identified by our language identifier to be in the target lan-
guage EN.

Model BLEU (2k) Behavior Metric (10k)

ES→EN 17.9% 32.6%
FR→EN 24.5% 15.5%

Table 7: Example FR→EN translations of theQT systemwith
and without language identifier, and comparison with PS-
SMT and AWS Translate.

Source query (FR) j1772 charger

Reference query (EN) j1772 charger

QT j1772 charger
QT w/o language identifier j1772 load
PS-SMT j1772 load
AWS Translate j1772 load

Table 8: Example ES→EN translations of the QT system
with and without traffic re-ranking, and comparison with
PS-SMT and AWS Translate.

Source query (ES) oppo reno

Reference query (EN) oppo reno

QT oppo reno
QT w/o traffic re-rank oppo reindeer
PS-SMT oppo reindeer
AWS Translate oppo reindeer

Transformed query: j1772 charger Transformed query: j1772 load

Figure 4: The transformed query with language identifica-
tion finds more and relevant products.

without digit-copy also keeps digits unchanged during translation.
It only fails occasionally, as illustrated in Table 9. Including digit-
copy only remedies these occasional failure cases. In particular,
observe that the model without digit-copy drops the letter “d” in
the model number “x751ld” during transformation, whereas the
proposed QT system does not.

Effect of pre-training. Pre-training the NMTmodel on the out-
of-domain data provides the single largest gain in all metrics for
the ES-EN QT system: removing it decreases BLEU by 7.5 points
and nDCG@8 by 22.75%, compared to the proposed QT system.
Similarly, for the FR→EN QT system, removing the NMT model’s
pre-training stage decreasing nDCG@8 by 3.01% compared to the
full QT system. On the other hand, we observe a smaller reduction
of 1.6 points in BLEU. Perhaps, due to the out-of-domain corpus
used to train the FR→EN NMT model being an order of magnitude
smaller than that used for the ES→EN NMT model, qualities of
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Table 9: Example FR→EN translations of theQT systemwith
and without digit-copy, and comparison with PS-SMT and
AWS Translate.

Source query (FR) batterie asus x751ld

Reference query (EN) asus x751ld battery

QT asus x751ld battery
QT w/o digit-copy asus x751l battery
PS-SMT asus x751ld battery
AWS Translate asus x751ld battery

Table 10: Example FR→EN translations of the QT system
with and without fine-tuning, and comparison with PS-SMT
and AWS Translate.

Source query (FR) couche pampers

Reference query (EN) pampers diaper

QT pampers diaper
QT w/o fine-tune pampers layer
PS-SMT diaper pampers
AWS Translate pampers layer

the out-of-domain and in-domain datasets, and/or hyperparameter
values.

Effect of fine-tuning. On the other hand, removing the fine-
tuning stage did not have such a detrimental effect on overall per-
formance. Compared to the baseline, a QT system whose NMT
model is not fine-tuned on the query corpus can still achieve 10.28%
and 3.03% improvements in nDCG@8 for the ES→EN and FR→EN
systems, respectively. Table 10 shows that fine-tuning on the query
dataset helps the QT system choose more appropriate translations
for polysemic words. In this example, the French word “couche”
could mean “layer” and “diaper” depending on the context. Since
“pampers” is a brand of baby and toddler products, the two models
adapted for product search (our proposed QT system and PS-SMT)
correctly translate “couche” to “diaper”, whereas the two pre-trained
models (QT without fine-tuning and the AWS Translate) translate
it less appropriately to “layer”.

7.2 Other Attempts and Learnings
We experimented with replacing brand names in the source query
with “copy” symbols to prevent brand names from being incorrectly
translated by the NMT model. However, brand names can also be
common words, such as the fashion brand “bebe”, which also means
“baby” in Spanish. Therefore, it is uncertain whether the query “t-
shirt bebe” means baby t-shirt or a t-shirt from the brand “bebe”.
Furthermore, spelling errors can make common words appear to be
a brand name, e.g. the Spanish queries “perfume dulce” v.s. “perfume
dolce”. The former means sweet-scented perfumes, while the latter
specifically refers to perfumes from the fashion brand Dolce &
Gabbana. Mistakenly replacing a common word with the “copy”
symbol hence, results in poor query translation. Thus, without

the ability to reliably detect brand names in search queries, this
approach did not improve the product search performance.

For the NMT component, we also tried the big Transformer ar-
chitecture in [40], and observed nearly identical results to the base
architecture. We hypothesize that this may be due to the short
lengths of product search queries, thus making the base Trans-
former architecture sufficient for our application.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed our query transformation system
for multi-lingual product search for a global shopping store with
significant improvements in both offline and online performance
metrics. The proposed system is designed to work in synergy with
an existing search system and consists of separate modules, each
tackling a specific challenge of this problem. We point out that
standard machine translation evaluation metrics such as BLEU are
unsuitable for this application, and hence, propose a new offline
behavior metric that measures how accurately a transformed query
reflects customer’s shopping intent and howwell the existing search
system responds to the transformed query. In addition, we discuss
our online deployment design and practical trade-offs.

In the future, we hope to incorporate spelling error correction
and brand name detection modules, as well as incorporating the
use of back-translation [38] to improve the query translation sys-
tem. We will also continue exploring approaches to speed up the
inference of the NMT model.

An interesting area to explore is few-shot adaptation to a new
marketplace with a new language. In this scenario, there may not
be existing search queries to create a parallel query corpus and no
existing customer engagement data to design the traffic re-ranker.
What is the best approach to pre-train our query transformation
system and then quickly re-train it in order to adapt it for a new
language pair?

We also want to experiment with using our query transformation
model for other applications. One idea is to use the query transfor-
mation model to transform query specific features associated with
products. A query transformation model will allow us to generate
synthetic queries in a given language from naturally occurring
search queries in a different language. These synthetic queries can
improve coverage of query specific features. Another
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