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ABSTRACT
Large-scale information retrieval systems store documents in dif-

ferent shards. Shard selection enables cost-effective retrieval by

searching only relevant shards for the query. Most existing shard

selection algorithms focus on web search, and rely on text similarity

between the query and shard corpora. In contrast, in e-commerce

product search, shards are defined according to product categories,

and most queries imply product category intent. Such character-

istics are yet to be leveraged for shard selection. In this work, we

formulate shard selection in product search as amulti-label query in-

tent classification problem. We show that light feed-forward neural

networks, with language-independent features, suffice to achieve

high performance for this recall-oriented task. The simple archi-

tecture allows for low-latency shard selection in the early retrieval

process. We evaluate the model in terms of cost reduction and

impact on the relevance of retrieved documents, both in offline

simulation and online A/B testing. Without degrading customer

experience, we achieve double-digit percentage of search engine

cost reduction in multiple locales, and the model has been deployed

to serve Amazon Search customers worldwide.
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1 INTRODUCTION
Online shopping has become an important part of people’s daily

life in recent years. The growth of e-commerce is accompanied with

the growing cost to host product search engines, as more products

are indexed and more queries are issued by customers. Sustainable

growth of the business calls for control of the infrastructure cost

while maintaining the same quality of service to the customer.

We consider the problem of product search cost reduction in

the context of distributed information retrieval [7], or federated
search. The documents (products) are partitioned in different shards
according to the product category. Each shard hosts an inverted

index and runs document retrieval algorithms independently. When

the customer issues a query, the shard selection algorithm chooses

the relevant shards to query. Within each shard, there are multiple

replicas, which are servers that host the same inverted index. When

each selected shard receives the request, the load balancer forwards

the request to one replica which returns a ranked list of relevant

documents. The results from different selected shards are merged

into a single, coherent ranked list and are returned to the customer

through result merging. The result merging algorithm is critical

to balance the relevance and diversity of the result, especially for

broad queries such as “harry potter”, for which movies, books, or

toys may be meaningful results for different customers.

Shard selection is critical to reduce retrieval cost in large-scale

product search systems, but there are several challenges. First,
most existing shard selection algorithms rely on corpora built from

the documents in each shard [2, 3, 10, 19, 27–29], which are appli-

cable to web search. In contrast, product catalog contains limited

length of text information (e.g. title, description) while being rich in

various attributes (e.g. category membership). Second, shard selec-

tion is part of the early retrieval process so it has a strict requirement

on the inference latency. Third, for capacity planning purposes, it

is important to quantify infrastructure cost in industrial-strength

product search systems upon software changes.
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In this paper, we explore deep learningmodels for shard selection

in large-scale product search. Instead of utilizing text information

from documents for shard selection, we propose a way to leverage

the product’s shard membership and past customer feedback of

product interaction. Since most product search queries have clear

product category intent and the association between queries and

shards is often sparse, we formulate the classical shard selection

problem in federated search as a multi-label query intent classifi-

cation problem. We experiment with different model architectures

and different textual features extracted from the query. To balance

model quality and inference latency, we conclude that light feed-

forward networks are the most appropriate for production. We

deploy the deep learning model to run CPU-based online inference

for infrequent queries, while shard selection for frequent queries

is based on memorized statistics from past customer behavior. We

evaluate cost reduction and impact on relevance of retrieved docu-

ments, both in offline simulation and online A/B testing. For online

A/B testing, we present a method to estimate infrastructure cost re-

duction based on empirical curves between server throughput and

utilization. We demonstrate that light feed-forward networks allow

us to achieve double-digit percentage reduction in infrastructure

cost across multiple Amazon locales, while maintaining the same

relevance of retrieved documents.

The rest of the paper is organized as follows. Section 2 reviews

related work. Section 3 gives a more detailed description of the

shard selection problem following which our model architecture is

presented in Section 4. Section 5 and Section 6 discuss offline and

online experiment results. We conclude in Section 7.

2 RELATEDWORK
2.1 Shard Selection for Federated Search
Shard selection is an important task in federated search, which is

to select a small number of the most relevant shards to retrieve

documents for a given query. There are three approaches to shard

selection in federated search: term-based approach, sample-based

approach and feature-based approach. Most early resource selection

algorithms treat each individual source as a single big document

and the problem is reformulated as a document ranking problem.

Variants of TF-IDF [8] and language models [1, 22] have been used

for such “large document ranking”. Sample-based methods estimate

the relevance of a shard by querying a small sample index of the

collection, known as the centralized sample index (CSI). The query

is run against the CSI and document ranking is returned. Given the

document ranking of the CSI, document ranking of the centralized

complete database can be approximated with different methods

[19, 27–29]. The ranking of sampled documents of each shard is

then used to quantify the relevance of each shard to the query.

Recent methods focus on utilizing different features to estimate

the relevance between a query and a shard. These methods use

training data to either train a classification model [2, 3, 10], or a

learning-to-rank model [12]. Existing shard selection classification

models are generative models. The probability for shard si given
query q is defined as

p (si |q) =
p (q |si )p (si )

p (q)
=

p (q |si )p (si )∑
j p (q |sj )p (sj )

(1)

where p (q |si ) can be estimated using a language model or TF-IDF.

Features used by traditional resource selection methods are 1)

query-dependent corpus features, which describe how well the

querymatches the corpus, such as CORI [8], GAVG [24], and ReDDE

[3], 2) query-independent features such as shard popularity which

acts as a shard prior.

2.2 Query Intent Classification
We reformulate shard selection as a multi-label query intent classi-

fication problem. Therefore, we review some prior work on query

classification in information retrieval. Due to the small size of train-

ing data, most of the early research studies how to augment the

query string input with various types of features, possibly derived

from query logs [4], click-through data [32], search sessions [9],

or documents in the target categories [20, 25]. Recent research use

larger training query dataset and deep learning methods for query

feature embedding. [14, 35, 36] propose to use convolutional neural

networks (CNN) to extract query vector representations as the fea-

tures for query classification. [17, 26] build LSTM (long short-term

memory) for query classification on top of the query embedding.

2.3 Resource-Constrained Deep Learning
Transformer-based model architectures such as BERT (Bidirectional

Encoder Representations from Transformers) [13] and XLNet [34]

achieve large improvements on different NLP tasks, and normally

they are fine-tuned for the downstream NLP tasks. However, these

large-scale pretrained NLP models often have hundreds of mil-

lions of parameters, and are considerably slower than traditional

statistical models. For production online serving with stringent

latency constraints and very high request volumes, and in resource-

constraint environments such as mobile phones, we have to balance

model quality and inference latency.

The first line of work is to compress large neural networks for

fast inference [6, 15, 23]. The other line explores small and shallow

neural networks to achieve near state-of-the-art results on NLP

tasks [5].

3 PROBLEM DEFINITION
As we have seen in Section 2, most existing work applies to web

search and utilizes text information from documents. However this

could be expensive and complex for product search systems at

large scale, due to enormous product catalog, constant document

update and different SLA (service level agreement) of various data

feeds. In this work, we investigate shard selection by modeling

product category intent in product search queries, since each shard

corresponds to one product category. We define shard relevance

given query q as

p (s |q) =

∑
d ∈s nd,q∑
d nd,q

(2)

where nd,q is the number of clicks of document d for query q.
We quantify shard relevance using document relevance and shard

membership, similar to ideas found in the literature [10]. Here the

document relevance is measured by clicks in the query log, which

can be viewed as implicit feedback from customers. Since the shard

has product category semantics, we note that our definition of shard

relevance captures product category intent implied in the query.
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In product search, one document may exist in multiple shards.

For example, a “running shoes” product can exist in both “Clothing,

Shoes & Jewelry” and “Sports & Outdoors” shards on the ama-

zon.com website. Therefore we are solving a multi-label classifi-

cation problem rather than a multi-class classification problem,

which means

∑
i p (si |q) does not always equal 1. We use y to de-

note the vector of relevance scores of all shards given queryq where
yi = p (si |q) corresponds to the relevance score of the i-th shard

si . Our goal is to train a model to get prediction ŷ for an arbitrary

input query. Given the predicted scores for a given query, shard

selection can be done by applying a threshold α , shown as

Sα = {si |ŷi > α }. (3)

4 MODEL ARCHITECTURE
We propose to model the shard selection classification problem in

a discriminative manner, making fewer assumptions about distri-

butions within each label and relying more on data to learn the

decision boundary for labels. The core problem of designing a dis-

criminative multi-label classification model for the input query is

to design the feature vector x and design a function f (x) (possibly
with parameters to be learned) to transform the features to some

other representation. The prediction can then be written as

ŷ = sigmoid(W · f (x) + b) (4)

where matrixW and vector b are also parameters to be learned. The

sigmoid function is applied to each value individually in the input

vector. We can learn the parameters using binary cross-entropy

(Equation 5) as the loss function.

L(y, ŷ) = −
∑
i
yi log ŷi + (1 − yi ) log(1 − ŷi ). (5)

In contrast, multi-class classification applies the softmax function

at the end so that

∑
i ŷi = 1. The choice of loss function also makes

the distinction between multi-label classification and multi-class

classification, where for the latter case categorical cross-entropy is

used, which does not contain the (1 − yi ) log(1 − ŷi ) term.

If each dimension of the input feature vector represents the

presence of a token in the query, and f is the identify function,

then the model is essentially performing logistic regression jointly

for all the labels. As deep learning has demonstrated effectiveness in

natural language processing tasks, we can have more sophistication

in the design of function f (x), which can be a recurrent neural

network (RNN) [11, 16], or a Transformer [30]. However, while

such models are better at modeling the dependency among tokens,

it achieves high performance at great computation cost. When the

input query often consists of a few tokens and does not resemble a

complete natural language sentence, we argue that we do not need

high model capacity to achieve high performance for our recall-

oriented classification task. Also, recent work has shown that small

and shallow feed-forward networks can achieve good performance

in NLP with high efficiency in training and inference [5]. Inspired

by these observations, we design a light feed-forward network for

our prediction task.

Figure 1 illustrates the feed-forward model architecture. The

feed-forward network consumes character-level and word-level

n-gram tokens. For example, for the query “red running shoes”, the

list of character trigrams is “ˆre”, “red”, “ed␣”, “d␣r”, “␣ru”, “run”,

shoes
red

running

re

oe
ho

character unigrams
character bigrams

character trigrams

word unigrams
word bigrams

eavg

e

s
d

n

running shoes
run
oes

f(x)

y

Figure 1: Feed-forward network for shard selection.

..., “oes”, “es$”, where “ˆ” and “$” mark the start and end of the

query and “␣” is the whitespace symbol.

We define fixed-size buckets for character unigrams, bigrams,

and trigrams where the position of each character n-gram is de-

termined using a hash function. We learn the vocabulary of word

unigrams and bigrams from training queries, and also define fixed-

size buckets for out-of-vocabulary (OOV) word n-grams. The index

into buckets or vocabularies are used to look up embedding vectors

in the embedding table of each n-gram type. The “hashing trick”

[31] is useful to restrict the size of the feature space, which empiri-

cally makes the model robust against misspelling. Including start,

end, and whitespace symbols in character n-grams, as well as the

addition of word bigrams enable the model to capture word context

and dependency to some extent.

The embedding vectors of the same n-gram type are averaged.

This is a simple way to summarize the entire n-gram sequence into

a single dense vector. Typically recurrent neural network (RNN)

would be used, but we observe that product search queries tend to

be short and usually few dependency need to be modeled among

tokens to capture the query semantics. As we shall see in Section 5.1,

embedding average offers similar performance as RNN models for

our use case.

Finally, the embedding averages are concatenated to form the

whole-query embedding eavg. We transform the query embedding

using a ReLU layer to get the final representation of the query

f (x) = relu(Wh · eavg + bh ) (6)

where matrix Wh and vector bh are also parameters to be learned.

5 OFFLINE EVALUATION
In this section we discuss two offline evaluation tasks. The first task

measures the model performance at the shard level. The second

task quantifies changes at the document level by simulating shard

cutoff against our production search engine.

5.1 Model Performance
5.1.1 Dataset. Weaggregate product click counts from anonymized

query logs within a certain time window in the US (amazon.com)

locale. Using the click count for all query-product pairs, we cal-

culate the score of shards for all queries, using the membership

information from products to shards according to the catalog. We

remove queries whose frequency is below a certain threshold. This

results in a dataset of 273 million unique queries. Since the dataset
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is huge, we use 98% of the data for training, and sample around

185,000 samples from the remaining 2% data for validation, and

testing respectively. A query in the training set will never appear

in the validation or test set.

We apply similar steps to obtain datasets in other locales to

evaluate model performance across languages.

5.1.2 Metrics. We use binary cross-entropy as the loss function for

training as well as model selection. At test time, we consider metrics

that are more relevant to our shard selection task. We consider

classification metrics rather than ranking metrics at the shard level,

because the relative order does not change shard selection results.

Let y and ŷ be two vectors for the true and predicted shard

relevance, where the i-th component is the probability for the i-th
category. We first consider measuring the similarity between the

two vectors. We notice that mean squared error (MSE) may not be

the best option since the vector tends to be sparse so the metric is

often of a very small value. Therefore we choose Jaccard similarity

defined as follows.

Jaccard(y, ŷ) =
∑
i min(yi ,ŷi )∑
i max(yi ,ŷi )

. (7)

We define precision and recall at threshold α in Equation 8 and

Equation 9, where I [·] is the indicator function.

Precisionα (y, ŷ) =
∑
i I [yi > α ∧ ŷi > α]∑

i I [ŷi > α]
, (8)

Recallα (y, ŷ) =
∑
i I [yi > α ∧ ŷi > α]∑

i I [yi > α]
. (9)

Note that the precision and recall metrics defined here are slightly

different than their standard definition, where the ground-truth

are binary labels and while the model may output a probability.

The definition tailored to our task lets us understand how well

the predicted shard cutoff mimics the decision made from past

behavior data, at different threshold α . However the precision-recall
curve may not be meaningful as the ground-truth also changes for

different data points on the curve.

For all metrics, we report the average across all queries in the

test set.

5.1.3 Benchmark Models. As simplicity is one of our design tenets,

our model may not be the best-performing one. To better under-

stand where our model lies in the performance spectrum, we com-

pare the feed-forward architecture with other popular architectures

found in the literature. We first consider using the LSTMmodel [16]

to replace embedding average, where for each type of n-grams, the

token embeddings are fed to an LSTM model as ordered input, and

the state vector of the last timestamp is obtained as the summary of

the corresponding n-gram type. The input vector and state vector

are of the same size.

We also consider BERT [13], which has achieved the state-of-the-

art in a variety of NLP tasks. It is built on top of the Transformer

architecture [30], which consists of a multi-head attention module

and a position-wise feed-forwardmodule. Instead of using character

or word n-grams, the BERT model takes WordPiece tokens [33]

as input that are learned via a separate procedure where the most

common co-occurrence between characters are learned and used

to form subwords. For example, the query “harry potter” might

translate into the following set of word pieces “ha r r y pot ter”

where each spaced out set of letters is a subword or WordPiece. We

evaluate two uncased English-only pre-trained models of different

sizes. BERT-Base uses 12 layers of 12-head Transformers with 768-

dimension hidden layers, while BERT-Large uses 24 layers of 16-

head Transformers with 1024-dimension hidden layers. In order to

integrate this model with the shard prediction layer, we use part

of the final hidden layer of the model as the representation for

the entire query, which is referred to as the CLS embedding in the

literature.

5.1.4 Results. The metrics of different models in the US locale are

shown in Table 1.

“FFN” is our proposed model based on the feed-forward architec-

ture, while “LSTM” is the recurrent neural network benchmark. The

character embeddings and of size 128, and word embeddings are of

size 256. The ReLU layer are of size 128. We experimented with dif-

ferent combinations of tokenization methods, such as “C1,2,3 W1,2”

which means the combination of character unigrams, bigrams, tri-

grams and word unigrams, bigrams. The embedding tables for

character unigrams, bigrams, and trigrams are of size 61, 1021, and

65519, respectively. Only the most frequent 100,000 word n-grams

from the training set are allowed in the vocabularies, and we ensure

the pointwise mutual information of each n-gram is greater than

0.5 when n > 1. Additionally we reserve 100,003 slots in each word

n-gram embedding tables for hashing out-of-vocabulary word n-
grams. We apply batch normalization and drop-out to the last two

layers in the LSTM and FFN models.

“BERT-B” and “BERT-L” refers to the pre-trained BERT-Base

and BERT-Large models. As mentioned before, BERT models uses

WordPiece tokenization, shown as “WP” in the table.

LSTM or FFN models are trained using one AWS (Amazon Web

Services) p3.2xlarge instance with one NVIDIA® V100 Tensor Core

GPU, while BERT models are trained using one p3dn.24xlarge in-

stance with eight GPUs. The training cost in the table is measured

by the training time multiplied by the number of GPUs being used.

For LSTM or FFN models, we allow the model to see about 2 billion

samples (i.e. repeating the training set about 7.3 times). Due to large

training cost, we feed only 500 million samples to BERT models (i.e.

repeating the training set about 1.8 times). Samples are weighted

by the logarithm of the query frequency. We select the best model

using the validation loss. The Adam optimizer [18] is used for all

model training.

The FFN model has lower performance in terms of precision,

comparedwith the LSTMmodel with the same tokenizationmethod,

but the latter can have up to 4 times the training cost as the former.

By adding more types of n-grams, the performance gap narrows.

The metrics from BERTmodels show the effectiveness of leveraging

external knowledge encoded in pre-trained models of large capacity.

We can see that if we use the BERT CLS embedding off-the-shelf, the

model perform poorly, so fine-tuning the Transformer layers helps

the embedding space adapt to the domain of product search queries.

The BERT-Large model has slightly better performance than the

BERT-Base model for our task, but it is much more costly to train.

When we stop BERT model training, we observe the validation

loss is still slowly decreasing, which suggests that we may improve

performance marginally if we run model training even longer.
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Table 1: Model Performance (US Locale)

Model LSTM FFN

BERT-B

(no fine-tune)

BERT-B BERT-L

(no fine-tune)

BERT-L

Tokenization C3 W1

C1,2,3

W1

C1,2,3

W1,2

C3 W1

C1,2,3

W1

C1,2,3

W1,2

WP WP WP WP

# Parameters (million) 9 52 61 112 8 51 60 111 109 109 334 334

Training cost (GPU hour) 12 9 37 42 9 9 9 10 88 190 489 924

Jaccard Similarity 0.654 0.697 0.708 0.717 0.600 0.657 0.674 0.698 0.423 0.736 0.400 0.746

Precisionα (α = 10
−3) 0.252 0.308 0.316 0.333 0.206 0.250 0.275 0.310 0.135 0.337 0.120 0.352

Precisionα (α = 10
−2) 0.510 0.570 0.583 0.595 0.428 0.505 0.526 0.565 0.265 0.621 0.234 0.634

Precisionα (α = 10
−1) 0.757 0.794 0.806 0.812 0.709 0.761 0.772 0.793 0.554 0.824 0.532 0.835

Recallα (α = 10
−3) 0.989 0.988 0.987 0.987 0.988 0.987 0.987 0.987 0.993 0.989 0.996 0.989

Recallα (α = 10
−2) 0.945 0.946 0.945 0.946 0.942 0.945 0.945 0.945 0.946 0.948 0.952 0.949

Recallα (α = 10
−1) 0.884 0.894 0.900 0.903 0.867 0.885 0.892 0.899 0.796 0.911 0.797 0.914

As we mentioned, shard selection is a recall-oriented task. All

models achieve high recall at the threshold α = 0.01 and below,

while the precision varies. Given the same recall, higher preci-

sion implies the model can produce more sparse labels and select

fewer shards. However the reduced shard cost is counteracted by

the cost and latency to host such more precise models, especially

Transformer-based models. Moreover, low training cost enables fre-

quent model refresh to capture changes in customer behavior and

product catalog, and having up-to-date data can make up for the

limitation in model capacity. Given all these tradeoffs, we conclude

that feed-forward networks, using all five types of n-grams, are the

most suitable for production.
1

Now that we have shown the effectiveness of the feed-forward ar-

chitecture, we evaluate its performance for other languages. Table 2

shows themetrics of the following locales: UK (www.amazon.co.uk),

DE (www.amazon.de), FR (www.amazon.fr), IT (www.amazon.it),

ES (www.amazon.es), JP (www.amazon.co.jp). The model size is

kept unchanged, including the vocabulary or hashing bucket size

for the five types of n-grams. We can see that the model performs

well across languages, without customizing the features for each

language. More language-specific optimization can be done, such

as better tokenization tailored to Asian languages, but we leave

that as future work.

5.2 Shard Cutoff Evaluation
So far we have analyzed model performance using ground-truth

shard relevance scores of test queries. However we need a deeper

analysis to evaluate the overall retrieval quality considering docu-

ment ranking and result merging in the production system, using

the FFN model of our choice.

We uniformly sample 1,000 unique queries from 1-day query log.

Due to the power law distribution, the sample is more skewed to-

wards less frequent queries, where only 10% of the queries occurred

1
Although the 5 n-gram FFN model has similar number of parameters as the BERT-

Base model, the FFN parameters are mostly embedding vectors, which occupy memory

but have no impact on inference latency. The 5 n-gram FFN model also has similar

training cost and performance as the LSTM model with only word unigram feature,

but in practice character-level features can make the model robust against spelling

errors, so the FFN model is favored.

Table 2: Model Performance (Additional Locales)

Model FFN

Tokenization C1,2,3 W1,2

Locale UK DE FR IT ES JP

Jaccard Similarity 0.655 0.669 0.674 0.723 0.685 0.629

Precisionα (α = 10
−3) 0.224 0.246 0.237 0.261 0.247 0.225

Precisionα (α = 10
−2) 0.438 0.457 0.456 0.519 0.463 0.413

Precisionα (α = 10
−1) 0.722 0.729 0.747 0.800 0.754 0.715

Recallα (α = 10
−3) 0.992 0.993 0.992 0.992 0.992 0.992

Recallα (α = 10
−2) 0.969 0.970 0.968 0.968 0.968 0.966

Recallα (α = 10
−1) 0.909 0.910 0.910 0.925 0.913 0.882

more than twice per day. This is a stress test of the generalization

capability of our model as the model is less likely to memorize shard

relevance for these queries from the training data. It also aligns

with our production setting where the model is mostly useful to

handle infrequent queries.

As we shall see in the top half of Figure 2, although we do not add

any sparsity constraint during model training, the model naturally

produces sparse prediction where only less than 20% shards are

active at α = 0.01. Different thresholds can be chosen to control

the aggressiveness of shard selection.

In the bottom half of Figure 2, we analyze the impact of shard se-

lection on the search results for the sample queries. Here we use the

metric Overlap@N . It assumes the production system returns oracle

ranked lists of relevant documents. At different position cutoff N ,

we measure how many top-N products can still be found after ap-

plying shard selection. Previous work has shown that Overlap@N
is more suitable than other metrics to evaluate early-stage retrieval

[21]. We report unweighted average of Overlap@N across all the

sample queries. Overlap@N drops as shard cutoff becomes more

aggressive with higher threshold α , and this observation is consis-

tent across different position cutoff N . At α = 0.01, about 3% of the

products in the original top-16 results are no longer seen in the top-

16 results after shard selection. These products are either removed
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Figure 2: Shard cutoff evaluation. (Top) Average percentage
of shards selected by the model at different thresholds α .
(Bottom) Overlap@N of top-N results (N = 16,32,48) before
and after shard selection at different thresholds α .

or ranked lower due to interaction between shard selection and

result merging, which takes into account the relative popularity and

diversity of shards when generating the final ranked list. We zoom

into the 3% difference and found that the difference is mainly due

to a few queries. These queries have unclear intent, or the website

does not sell the product wanted. In such cases, the system tends

to return less relevant products to begin with, so applying shard

selection does not worsen search quality. In Section 6.2.2 we will

further confirm this in online A/B testing.

6 ONLINE EVALUATION
In this section we evaluate shard selection in online A/B testing.

We start with a discussion how we model server cost in the product

search system. Then we present A/B testing results regarding the

impact of shard selection on infrastructure cost and document

relevance.

6.1 Infrastructure Cost Modeling
6.1.1 Overview. Large-scale search engines consist of fleets of

multi-core CPU machines responsible for matching and ranking

indexed documents within shards. Although other servers for re-

quest forwarding or result merging incur cost as well, the cost of

document retrieval servers is dominant, so it becomes our focus

during cost modeling and analysis. Let P (t ) be the required capac-

ity (queries per unit time) for a shard at time t . Let λ be the query

throughput, or the number of queries processed by a single server

per unit time. Let λ∗ be the maximum throughput, and ϵ be the

fixed cost per second associated with each server. Assuming that

all the servers are homogeneous and the load is perfectly balanced,

the infrastructure cost over a time period τ is

I =

∫ τ

0

P (t )ϵ

λ∗
dt (10)

where
P (t )
λ∗ tells us the number of servers needed at time t to meet

the demand P (t ), and the demand is the real-time traffic plus some

buffer. However, in a large scale high-availability system like our

product search system, it is difficult to perform horizontal scaling in

real-time due to availability risk of on-demand capacity in a shared

pool. Therefore we consider the required system capacity being

fixed at P∗ across the time period so we have

I =

∫ τ

0

P∗ϵ

λ∗
dt =

P∗ϵτ

λ∗
. (11)

To measure infrastructure cost I after enabling shard selection,

we need to estimate the required capacity P∗ and the maximum

throughput λ∗. P∗ can be estimated using the rate of requests that

the shard receives. λ∗ cannot be estimated directly, because we run

A/B testing for a long time period in the production system, where

the server is not stressed with the highest load. In the next section,

we describe how we use a model between throughput λ and server

utilization ρ to estimate λ∗.

6.1.2 Estimating the Maximum Throughput. Using the terminology

from queueing theory, we can model a multi-server shard as an

M/M/c queue. Queries arrive at rate cλ according to a Poisson

process, so that each of the c servers handles requests at rate λ,
assuming the system is stable and requests are distributed evenly to

the servers. Let S be the server service time (excluding the queueing

time), which follows an exponential distribution with parameter µ.
We have S = 1

µ so the server utilization ρ is defined as

ρ =
cλ

cµ
= λS . (12)

We can derive the empirical relation between S and λ using real

system data in Figure 3, where each data point is a sample of a short

time interval for a server. We find a quasi-linear correlation

S = aλ + b (a,b > 0) (13)

with different constants a and b for different shards. The correlation

may be explained by hardware resource contention (e.g. for shared

L2 cache or memory bus) for multi-core CPUs as the load increases.

By substituting S in Equation 12 with Equation 13, we can write

ρ = aλ2 + bλ (a,b > 0). (14)

Figure 4 shows the load-utilization (LU) curve between λ and

ρ that we collected for different servers for different shards. We

can see that as λ increases, ρ also increases. Correspondingly, the

round-trip time for each request (composed of the service time S
and the queueing time) and blocking rate also increases. According

to certain service level agreement (SLA) of round-trip time and

blocking rate, we can empirically define the maximum utilization

ρ∗, so by solving Equation 14 we get the maximum throughput as

λ∗ =
−b +

√
b2 + 4aρ∗

2a
> 0 (a,b > 0). (15)

6.2 Results
In this section we report the online A/B testing results in Amazon

search system. We split the federated search traffic evenly into two

groups. The control group (C) is the current production system

which has some legacy model that is only able to select shards
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Figure 4: Quasi-quadratic correlation between throughput λ
and utilization ρ.

for about 50-60% of the traffic. The treatment group (T) uses our

shard selection model. The shard selection decision for the top 65%

frequent queries is made by memorizing the training data, while

the remaining 35% comes from the deep learning model. Note that

since the query frequency follows a power law distribution, the

number of unique queries served by the model is much larger than

those served using the memorized data. Given the offline analysis

in Section 5, we apply the threshold α = 0.01 to shard scores for

the selection. We run the experiment for one week.

6.2.1 Cost Reduction. We discuss the results obtained from one

Amazon locale as an example. Given the even allocation of customer

queries, we find that the treatment group only receives 29% of the

requests at the shard level, compared with the control group. The

rate of traffic drop is different in different product categories, such

as Grocery (14%), Lawn & Garden (14%), Toys (30%), Office Products

(28%), and Luggage (17%). This shows different categories fulfill a

shopping intent to different degrees, and our shard selection model

captures such fact. The traffic difference lets us know P∗
T
/P∗

C
, the

drop in required system capacity.

However queries processed in shards are more expensive in T

than C, as we shall see in the load-utilization curves between λ and

ρ for C and T in Figure 5. On average the CPU service time in T has

increased by 37% compared to C. This is actually a good sign since

it shows that we pruned requests to shards which are less likely to

contain relevant products for the query, so more product matching
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Figure 5: Sample load-utilization curves for one shard in the
A/B Testing.

and ranking (which is CPU-intensive) needs to be done per request

in T. It was confirmed by the facts that on average T returns 95%

more products per shard than C for a single request.

The load-utilization curves for C and T fitted using the A/B

testing data are

ρC = aCλ
2

C
+ bCλC, (16)

ρT = aTλ
2

T
+ bTλT. (17)

In order to meet the service level agreement, if we define ρ∗, we
can solve for λ∗

C
and λ∗

T
using Equation 15, from which we can get

λ∗
T
/λ∗

C
. Therefore, the overall infrastructure cost saving is

1 −
IT
IC
= 1 −

P ∗
T
ϵτ
λ∗
T

P ∗
C
ϵτ
λ∗
C

= 1 −
P∗
T
/P∗

C

λ∗
T
/λ∗

C

(18)

where P∗
T
/P∗

C
has been measured directly as discussed.

Using our internal value for ρ∗ and following the calculation, we
find double-digit percentage of cost reduction aggregated across

shards in multiple locales.

6.2.2 Relevance. We need to evaluate whether the shard selection

is too aggressive as this may cause issues with product discovery

and loss of customer trust. This is done by measuring business

metrics during A/B testing. No statistically significant changes

are detected worldwide in metrics used to measure customer pur-

chase behavior. Interestingly, we find shard selection even improves

search result relevance in some cases, aligning with the observation

in Section 5.2. Using an internal human judgment process, we find

our shard selection decreases the rate of wrong product category

results by 0.05% to 0.35% in a few locales (p < 0.05). This shows that

shard selection helps coping with anomaly in the product catalog.

6.2.3 Model Hosting. The deep learning model for shard selection

resides in a service hosting various query intent classification mod-

els, which is an upstream dependency of the product search engine.

The model runs in Docker containers on CPU machines. Load tests

show that the 50-percentile latency is a few milliseconds while the

99-percentile latency is also within our budget. The cost of hosting

the deep learning shard selection model is only 1.4% of the search

engine infrastructure cost savings that we achieve, so the additional

cost is negligible.



SIGIR eCom’20, July 30, 2020, Virtual Event, China Lin, Xiong, and Zhang, et al.

7 CONCLUSION & FUTUREWORK
In this paper, we formulated the shard selection problem in prod-

uct search as a multi-label query intent classification problem. We

explained the way to measure shard relevance for queries given

the product’s shard membership and product clicks. We proposed

simple but effective deep learning model architecture for low-cost

training and inference. Both offline and online evaluation showed

feed-forward networks are sufficient for search engine cost reduc-

tion while maintaining the same relevance of retrieved documents.

As a next step, we can consider incorporating the threshold as part

of the model to achieve dynamic, query-specific shard selection to

further reduce search engine cost.
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