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ABSTRACT
The recently proposed EMDE (EfficientManifold Density Estimator)
model proved competitive in multimodal settings, achieving state-
of-the-art results in session-based and top-k recommendations. In
this workwe explore its application to Rakuten Data Challenge Task
1: Multimodal Classification. The aim of the challenge is to assign
items to classes based on their titles, descriptions and photos. We
achieve a competitive result in this task applying a new, trainable
version of EMDE to separate pretraining of single modalities and
selected combinations of modalities.
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1 INTRODUCTION
Rakuten Data Challenge Task 1: Multimodal Classification.
The aim of the challenge is to assign items to the correct class of
the Rakuten France product catalog. Each item is represented with
textual data: title, (possibly missing) description, and visual data:
item photo.

The released train set contains 84916 items. The test set is re-
leased in two stages: Stage 1 data contains 937 items. Stage 2 test
set (used for determining the final results) contains 8435 items. Test
sets are drawn from the same distribution as the train set. The
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difficulty in handling the challenge data consists in high levels of
noise, missing data, various text languages (mainly French, but also
English and German), and class imbalance.

The gold standard assignments for the test set are not public
and the models are evaluated via an online leaderboard. The metric
used for performance evaluation is macro-F1 score. The score is
understood as the arithmetic average of per product type code F1
score. It is not weighted by class size, which means that even the
smallest classes must be predicted accurately.

Our solution. Our contributions are as follows:
• We introduce a trainable version of EMDE [3].
• We achieve competitive results in this task with a system
composed of two complementary stages: modality pretrain-
ing done with trainable EMDE, and modality fusion. We do
not exploit any external data sources, relying only on the
challenge train set.

• We analyze the effectiveness and challenges of our method.
Overall challenge results. Our approach takes the 5th place in

Stage 1 out of 15 submissions, achieving 89.72%macro-F1, compared
to the leading score of 91.94% macro-F1, and surpasses baseline
performance measure of 87.05%. Our model proves to be robust
as it scores 89.78% on much bigger test sample of 8435 items. We
score a solid 4.42 pp. higher than the baseline Rakuten Institute of
Technology model on the final leaderboard.

2 RELATEDWORK
Multimodal learning involves two challenges: extracting useful
information from each modality and adequately leveraging the
knowledge derived from all modalities. The latter challenge is called
multimodal fusion and can be performed in two ways: early or late
fusion [5]. Early fusion consists in the creation of a joint multimodal
representation which is fed to a separate classification model. Late
fusion approaches use the decisions made by each per-modality
classifier and combine them with mechanisms such as averaging
[1]. [10] demonstrate that late fusion approaches can work best in
the classification setting, which we empirically confirm.

3 SYSTEM
After thorough experiments, we apply a two stage approach:

(1) Multimodal Pretraining. Multimodal pretraining is a sep-
arate training of each single modality on our classification
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Figure 1: Subsequent steps of the EMDE algorithm for each of the 3 modalities. Upstream representations depend onmodality
type and are obtained by EfficientNet (for images) , Camembert or byte-pair encodingwith CNN on top (titles and descriptions).
Input sketch depicted above serves as a representation of each modality in Multimodal Fusion stage. Figure adapted from [3]
and enriched with trainable coder introduced in this work.

Figure 2: Overview of the Multimodal Fusion part of the system. Eachmodality is pretrained with a separate model in order to
train it for the best performance. Colored blocks represent input sketches fromFigure 1. Some of the sketches are concatenated
(descriptions with images and with titles encoded by BPE), whereas titles embedded by Camembert are standalone. On top of
concatenated sketches and standalone sketches we apply linear layers with 27 output classes. The outputs of these layers are
summed, and 𝑎𝑟𝑔𝑚𝑎𝑥 operation defines the correct class. The figure is best viewed in color, as the same color of linear layer
indicates shared weights and the same color in top blocks indicate the same sketch representation.

task. Representations learned in this step are fused in a later
stage. Each modality is pretrained with recently introduced
EMDE [3], which is a multimodal density estimator based on
intuitions from Local Sensitive Hashing [4] and Count-Min
Sketch [2] algorithms. It recently achieved competitive re-
sults in recommender systems, reframing recommendations
as a density estimation problem. In this paper, we introduce
a trainable version of EMDE shown in Figure 1.

(2) Multimodal Fusion. For each per-modality model, we col-
lect representations produced by EMDE encoders in the
Multimodal Pretraining step, which we simply call an in-
put sketch. We feed these sketches to separate linear layers,
which are trained jointly (see Figure 2). Obtained per-class
logits for each modality are summed and 𝑎𝑟𝑔𝑚𝑎𝑥 operation

on the vector of length 27 defines the final prediction of the
classifier.

The details about each per-modality network are provided in section
3.4.

3.1 Non-Trainable Efficient Manifold Density
Estimator

Efficient Manifold Density Estimator (EMDE) introduced in [3]
is a probability density estimator inspired by Count-Min Sketch
algorithm (CMS) and local sensitive hashing (LSH). Input data rep-
resented by vectors embedded on a manifold obtained by metric
representation learningmethods is partitioned via a data-dependent
LSH method (DLSH). A region of the partitioning corresponding
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to a region of the vector manifold is analogous to a hash-bucket
in CMS. While a single region is large (typically 64-256 regions
form a single partitioning covering the whole manifold), multiple
independent partitionings allow to obtain a high resolution map
of the manifold via intersection or ensembling. In [3] the DLSH
method is neither differentiable nor end-to-end trainable, due to
the highly discontinuous binary-unary conversion being a key op-
eration during assignment of inputs to region indices.

3.2 Trainable Efficient Manifold Density
Estimator

In this paper we introduce a trainable version of EMDE. It retains
the ability of static EMDE to model data density. However, instead
of a static assignment of inputs to specific regions of the manifold,
we propose to use trainable centroids. Our algorithm proceeds as
follows:

(1) Randomly initialize a trainable vector of ·𝑑𝑒𝑝𝑡ℎ ·𝑤𝑖𝑑𝑡ℎ cen-
troids of dimensionality 𝑖𝑛𝑛𝑒𝑟_𝑑𝑖𝑚 with N(0, 1).

(2) Feed item modality embedding (e.g. embedding vector of
image) to a simple linear layer to obtain a projected repre-
sentation 𝑥 of size 𝑑𝑒𝑝𝑡ℎ ·𝑤𝑖𝑑𝑡ℎ · 𝑖𝑛𝑛𝑒𝑟_𝑑𝑖𝑚.

(3) Apply batch normalization to vectors 𝑥 .
(4) Compute (𝑥 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠)2, then sum across 𝑖𝑛𝑛𝑒𝑟_𝑑𝑖𝑚, to

get squared euclidean distances 𝑑 (𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠)2.
(5) Apply 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (−𝑑 (𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠)2) across 𝑤𝑖𝑑𝑡ℎ to obtain

𝑑𝑒𝑝𝑡ℎ soft assignments to𝑤𝑖𝑑𝑡ℎ regions each.

The parameter inner_dim represents the dimensionality of cen-
troids and hence that of inner space in which squared centroid
distances are calculated. We empirically find that on all modalities
tested the optimal value of inner_dim is 8. The parameters depth
and width correspond to N (number of independent manifold parti-
tionings) and K (number of regions produced by each partitioning)
parameters from the original static EMDE.

We find that batch normalization of projected inputs combined
with N(0, 1) initialization of centroids is crucial in achieving good
performance, preventing an otherwise degenerate initialization
where all centroids would be very far from the inputs.

The ability to train the network in an end-to-end fashion allows
to use EMDE to learn the compressed manifold map in a gradient-
guided way, leading to significant improvements in accuracy.

Listing 1: Pytorch pseudocode of differentiable EMDE
class DifferentiableEMDECoder(Module ):

def __init__(self , input_dim , width , depth , inner_dim =8):

self.lin = Linear(input_dim , depth*width*inner_dim)

self.bn = BatchNorm1d(depth*width*inner_dim)

self.centroids = Parameter(torch.randn(depth*width*inner_dim ))

def forward(self , x):

x = self.bn(self.lin(x))

d = (x - self.centroids )**2

d = d.view(-1, self.depth * self.width , self.inner_dim ).sum(-1)

d = d.view(-1, self.depth , self.width)

soft_assignments = F.softmax(- d, -1)

return soft_assignments.view(-1, self.depth * self.width)

3.3 Data Preparation
In the challenge, we have two types of modalities: textual and visual.

Textual modalities. Exploratory analysis of product titles and
descriptions proves that these modalities are noisy and apart from
French, there are also other languages involved. Although we test
several preprocessing techniques including removal of HTML tags
and extra entities (eg. &amp), we observe that its impact on the
final performance depends on the embedding technique that we
choose. We decide to use features extracted by Camembert [6],
which is a powerful BERT-based language model trained for French,
for both titles and descriptions. However, apart from that, we addi-
tionally encode titles with byte-pair-encoding with vocabulary of
2000 codes. We treat these as two separate modalities and we train
per-modality classifier for each of them separately. When we embed
titles with Camembert or BPE we do not apply any preprocessing,
as we observed a substantial decrease in the performance of the
final model if we do so (by 1 pp.). It leads us to believe that the
noise introduced by HTML tags is representative for a particular
product class. However, for the embedding of the descriptions, we
remove HTML residues in order to get clean, contextual sentences.

Images. Although noisy, images are not transformed in any way
in our final solution. We experimented with background removal
[7] and cropping the white frames around items, but we have not
observed any decisive performance gains from these attempts. As
we fine-tune EfficientNet [9] for image extraction, we normalize
images in a standard way, with mean and standard deviation calcu-
lated on ImageNet dataset for each channel.

Train/Valid Split. We do not use any additional data sources
apart from the challenge train set itself. We create our own valida-
tion set by sampling out 4000 examples from the train set and we
maintain this split throughout all the fine-tuning procedures.

3.4 Multimodal Pretraining
As stated before, we train a separate classifier for each modality:
title, description and image. It allows us to learn representative
features that serve as an input to the final model, depicted in Figure
1 as input sketches. The general architecture for each pretrained
network consists of the following blocks:

(1) Input embedded by state-of-the-art feature extractor (up-
stream representation in Figure 1).

(2) Trainable layer like CNN encoder for titles and descriptions
that learns from the embedded input. In case of images we
simply extract features from EfficientNet-b2.

(3) Trainable Efficient Manifold Density Estimator, described in
3.2.

(4) Final linear layer for classification.
Input Embeddings. For textual modalities we use both Camem-

bert [6] and byte-pair encoding [8], which gives us two trained net-
works for the same modality contributing to the performance of the
overall solution (Table 3). BPE is a static representation, however
we could possibly fine-tune the whole Camembert network in the
process of training per-modality classifier. Nevertheless, because of
number of parameters within Camembert, we decide to treat it as a
pure feature extractor and to limit the length of each description to
200 characters. We do not shorten the length of the titles. Images
are encoded with pretrained EfficientNet-b2 network [9].

Trainable layer. Each extracted representation serves as an
input to a trainable layer. For both titles and descriptions, we use
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Table 1: Learning rates for each pretrained network and
final network with fusion. Decay is reported in brackets
(decay𝑒𝑝𝑜𝑐ℎ)

Image Title BPE Title Cam Description Cam Final fusion

0.0001 (0.9) 0.001 (0.9) 0.005 (0.7) 0.01 (0.7) 0.001 (0.9)

Table 2: Ablation Study displaying macro-F1 scores

3 modalities Without double title layer Final fusion

87.5% 88.8% (+1.3pp) 89.72% (+2.22pp)

Table 3: F1-macro score of each pretrained modality.

Image Title
BPE

Title
Cam

Description
Cam Final Fusion Baseline

(Static EMDE)

68.61% 82.62% 84.39% 82.58% 89.72% 86.08%

Table 4: Confusion matrix between worst predicted classes
on our validation set. X axis are predicted classes, Y axis are
the target classes.

Class 10 1140 1280 1281 2403 2705

10 124 0 1 1 6 10
1140 1 113 4 2 0 1
1280 0 17 198 10 1 0
1281 2 4 27 70 0 1
2403 16 0 0 0 197 1
2705 2 0 0 0 0 124

a stack of convolutional layers with varying kernel sizes, which
are treated as ngrams. For descriptions, we use kernel sizes of 2 to
5, and effectively 4 CNN layers. For encoding titles with BPE we
train 5 layers with kernel sizes of 1 to 5, and for titles with features
extracted with Camembert, we find out that the best performance
is obtained with 4 layers, with increasing kernel sizes of 1 to 5. For
images, on top of the encoded representation there is an average
pooling layer and batch normalization layer.

Training. We train each modality with Adam optimizer with
varying learning rates decreasing exponentially with every epoch.
Details of our configuration are presented in Table 1. The best
accuracy of each pretrained model is presented in Table 3.

3.5 Multimodal fusion and results
Our final results are presented in Table 3. The trainable EMDE
achieves 89.72% F1-macro score and surpasses the baseline static
EMDE (86.08%) by a significant margin. For multimodal fusion,
we remove the last linear layer and feed representation obtained
with EMDE (input sketches) to the linear layer in the final fusion
classifier. We observe that joint training of linear layers as shown
in Figure 2 with input obtained by EMDE (in multimodal pretrain-
ing step) gives us better performance than simple ensembling of
probabilites from all per-modality networks.

Interestingly, we observe that not all combinations of modalities
are worthwhile to be fused. Most importantly, we see that descrip-
tions bring most success when concatenated together with images
and titles and fed into linear layers with output of 27 neurons, one
for each class (see Figure 2). This probably allows to gracefully
handle the cases where descriptions are missing. What is also inter-
esting is that combining features from titles obtained by Camembert
with other modalities (descriptions or images) decreases the perfor-
mance of the system, whereas combining features from the network
where BPE served as an input increases the overall performance.
That is why we decide to concatenate descriptions with titles (BPE),
but at the same time we collect input sketch from the classifier with
titles embedded by Camembert. In the second stage of multimodal
fusion we treat it as a standalone feature. We also notice that this
modality itself is so powerful that we can increase the performance
of the final classifier by doubling it in the late fusion phase (see
Figure 2). This hardly straightforward way of fusing pretrained
modalities gave us the best performance on our valid set, which
was very close to macro-F1 score calculated by the leaderboard.
As shown in Table 2, simple joint training of concatenated titles,
descriptions and images features is significantly worse (2.22 pp.)
than such a sophisticated multimodal fusion.

Error analysis. To discover possible sources of errors, we ana-
lyzed the confusion matrix between target and predicted classes.
Confusions between worst predicted classes are shown in Table
4. Most often confusions arise between classes belonging to Child
(1280, 1281) and Entertainment (1140) meta-class. The wrongly clas-
sified examples are indeed not easy to handle as manual analysis
proves that they do not exhibit any abnormal characteristics in
any of the modalities. Bad performance of these classes is probably
caused by the fact that all of them contain toys and games varied
by a child’s age and the mode of play (party games vs educational
games, etc.), where the line separating these types can be very thin.
Another triple with a lot of confusion are classes 10, 2403, and
2705 (Books). Books are hard to classify because their titles can
be abstract and not so characteristic of the content. In this case,
a possible solution would be to have a more specialized classifier
putting larger weight on the image modality, as the style of the
cover is often decisive.

4 SUMMARY
In this paper we present a 2-stage system which achieves competi-
tive results in SIGIR Rakuten Data Challenge Task 1: Multimodal
Classification. The system uses an improved, trainable EMDE ver-
sion to create informative multimodal features for later fusion.
Non-obvious interactions between various modalities contributed
to the increase in the overall performance of the classifier. Thanks
to the performance on the leaderboard, we prove that our solution
is robust and competitive.
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