
NeuralNDCG: Direct Optimisation of a Ranking Metric via
Differentiable Relaxation of Sorting

Przemysław Pobrotyn∗
ML Research at Allegro.pl

przemyslaw.pobrotyn@allegro.pl

Radosław Białobrzeski∗†
ML Research at Allegro.pl

radoslaw.bialobrzeski@allegro.pl

ABSTRACT
Learning to Rank (LTR) algorithms are usually evaluated using
Information Retrieval metrics like Normalised Discounted Cumula-
tive Gain (NDCG) or Mean Average Precision. As these metrics rely
on sorting predicted items’ scores (and thus, on items’ ranks), their
derivatives are either undefined or zero everywhere. This makes
them unsuitable for gradient-based optimisation, which is the usual
method of learning appropriate scoring functions. Commonly used
LTR loss functions are only loosely related to the evaluation met-
rics, causing a mismatch between the optimisation objective and
the evaluation criterion. In this paper, we address this mismatch
by proposing NeuralNDCG, a novel differentiable approximation
to NDCG. Since NDCG relies on the non-differentiable sorting op-
erator, we obtain NeuralNDCG by relaxing that operator using
NeuralSort, a differentiable approximation of sorting. As a result,
we obtain a new ranking loss function which is an arbitrarily ac-
curate approximation to the evaluation metric, thus closing the
gap between the training and the evaluation of LTR models. We
introduce two variants of the proposed loss function. Finally, the
empirical evaluation shows that our proposed method outperforms
ApproxNDCG, another differentiable approximation to NDCG, and
is competitive with the state-of-the-art methods.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
Learning to Rank, ranking metric optimisaton, NDCG approxima-
tion
ACM Reference Format:
Przemysław Pobrotyn and Radosław Białobrzeski. 2021. NeuralNDCG: Di-
rect Optimisation of a Ranking Metric via Differentiable Relaxation of Sort-
ing. In Proceedings of ACM SIGIR Workshop on eCommerce (SIGIR eCom’21).
ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Ranking is the problem of optimising, conditioned on some context,
the ordering of a set of items in order to maximise a given metric.
∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada
© 2021 Copyright held by the owner/author(s).

The metric is usually an Information Retrieval (IR) criterion chosen
to correlate with user satisfaction. Learning to Rank (LTR) is a ma-
chine learning approach to ranking, concerned with learning the
function which optimises the items’ order from supervised data. In
this work, without loss of generality, we assume our set of items
are search results and the context in which we want to optimise
their order is the user query.

Essentially, one would like to learn a function from search re-
sults into permutations. Since the space of all permutations grows
factorially in the size of the search results set, the task of learning
such a function directly becomes intractable. Thus, most common
LTR algorithms resort to the approach known as score & sort. That
is, instead of directly learning the correct permutation of the search
results, one learns a scoring function which predicts relevancies of
individual items, in the form of real-valued scores. Items are then
sorted in the descending order of the scores and thus produced or-
dering is evaluated using an IR metric of choice. Typically, scoring
functions are implemented as either gradient boosted trees [14] or
Multilayer Perceptrons (MLP) [25]. Recently, there has been work
in using the Transformer [28] architecture as a scoring function
[21]. In order to learn a good scoring function, one needs a tagged
dataset of query-search results pairs together with ground truth
relevancy of each search result (in the context of a given query),
as well as a loss function. There has been extensive research into
constructing appropriate loss functions for LTR (see [19] for an
overview of the field). Such loss functions fall into one of three
categories: pointwise, pairwise or listwise. Pointwise approaches
treat the problem as a simple regression or classification of the
ground truth relevancy for each individual search result, foregoing
possible interactions between items. In pairwise approaches, pairs
of items are considered as independent variables and the function
is learned to correctly indicate the preference among the pair. Ex-
amples include RankNet [5], LambdaRank [6] or LambdaMART
[7]. However, IR metrics consider entire search results lists at once,
unlike pointwise and pairwise algorithms. This mismatch has mo-
tivated listwise approaches, which compute the loss based on the
scores of the entire list of search results. Two popular listwise ap-
proaches are ListNet [8] and ListMLE [29].

What these loss functions have in common is that they are either
not connected or only loosely connected to the IR metrics used in
the evaluation. The performance of LTR models is usually assessed
using Normalised Discounted Cumulative Gain (NDCG) [16] or
Mean Average Precision (MAP) [1]. Since such metrics rely on sort-
ing the ground truth labels according to the scores predicted by
the scoring function, they are either not differentiable or flat ev-
erywhere and thus cannot be used for gradient-based optimisation
of the scoring function. As a result, there is a mismatch between

SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada P. Pobrotyn and R. Białobrzeski.

objectives optimised by the aforementioned pairwise or listwise
losses and metrics used for the evaluation, even though it can be
shown that some of such losses provide upper bounds of IR mea-
sures [31], [30]. On the other hand, as demonstrated in [23], under
certain assumptions on the class of the scoring functions, direct
optimisation of IR measures on a large training set is guaranteed
to achieve high test performance on the same IR measure. Thus,
attempts to bridge the gap between LTR optimisation objectives
and discontinuous evaluation metrics are an important research
direction.

In this work, we propose a novel approach to directly optimise
NDCG by approximating the sorting operator with NeuralSort [15].
Since the sorting operator is the source of discontinuity in NDCG
(and other IR metrics), by substituting it with a differentiable ap-
proximation we obtain a smooth variant of the metric.

The main contributions of the paper are:
• We introduce NeuralNDCG, a novel smooth approximation
of NDCG based on differentiable relaxation of the sorting
operator. The variants of the proposed loss are discussed in
Section 4.

• We evaluate a Context-Aware Ranker [21] trained with Neu-
ralNDCG loss on Web30K [22] and Istella [12] datasets. We
demonstrate favourable performance of NeuralNDCG as
compared to baselines. In particular, NeuralNDCG outper-
forms ApproxNDCG [23], a competing method for direct
optimisation of NDCG.

• We provide an open-source Pytorch [20] implementation
allowing for the reproduction of our results available as part
of the open-source allRank framework1.

The rest of the paper is organised as follows. In Section 2, we
review the related literature. In Section 3 we formalise the problem
of LTR. In Section 4, we recap NeuralSort and demonstrate how
it can be used to construct a novel loss function, NeuralNDCG. In
Section 5 we discuss our experimental setup and results. In the
final Section 6 we summarise our findings and discuss the possible
future work.

2 RELATEDWORK
As already mentioned in the introduction, most LTR approaches
can be classified into one of three categories: pointwise, pairwise
or listwise. For a comprehensive overview of the field and most
common approaches, we refer the reader to [19].

In this work, we are concerned with the direct optimisation of
non-smooth IR measures. Methods for optimisation of such metrics
can be broadly grouped into two categories. The methods in the first
category try to optimise the upper bounds of IR metrics as surro-
gate loss functions. Examples include SVMmap [31] and SVMNDCG

[9] which optimise upper bounds on 1 −MAP and 1 − NDCG, re-
spectively. On the other hand, ListNet was originally designed to
minimise cross-entropy between predicted and ground truth top-
one probability distributions, and as such its relation to NDCG was
ill-understood. Only recently was it shown to bound NDCG and
Mean Reciprocal Rank (MRR) for binary labels [3]. Further, a modi-
fication to ListNet was proposed in [2] for which it can be shown
that it bounds NDCG also for the graded relevance labels. Popular
1https://github.com/allegro/allRank

methods like LambdaRank and LambdaMART forgo explicit for-
mulation of the loss function and instead heuristically formulate
the gradients based on NDCG considerations. Since the exact loss
function is unknown, its theoretical relation to NDCG is difficult to
analyse. The second category of methods aims to approximate an IR
measure with a smooth function and directly optimise resulting sur-
rogate function. Our method falls into this category. We propose to
smooth-out NDCG by approximating non-continuous sorting oper-
ator used in the computation of that measure. Recent works propos-
ing continuous approximation to sorting are already mentioned
NeuralSort, SoDeep [13] and smooth sorting as an Optimal Trans-
port problem [11]. We use NeuralSort for its firm mathematical
foundation, the possibility to control the degree of approximation
and ability to generalise beyond the maximum list length seen in
training. SoDeep uses a deep neural network (DNN) and synthetic
data to learn to approximate the sorting operator and as such lacks
the aforementioned properties. Smooth sorting as Optimal Trans-
port reports similar performance to NeuralSort at benchmark tasks
and we aim to explore the use of it in NeuralNDCG in the future. By
replacing the sorting operator with its continuous approximation,
we obtain NeuralNDCG, a differentiable approximation of the IR
measure. Other notable methods for direct optimisation of NDCG
include:

• ApproxNDCG in which authors reformulated NDCG for-
mula to involve summation over documents, not their ranks.
As a result, they introduce a non-differentiable position func-
tion, which they approximate using a sigmoid. This loss has
been recently revisited in a DNN setting in [4].

• SoftRank [27], where authors propose to smooth scores re-
turned by the scoring function with equal variance Gaussian
distributions: thus deterministic scores become means of
Gaussian score distributions. Subsequently, they derive an
𝑂 (𝑛3) algorithm to compute Rank-Binomial rank distribu-
tions using the smooth scores. Finally, NDCG is approxi-
mated by taking its expectation w.r.t. the rank distribution.

3 PRELIMINARIES
In this section, we formalise the problem and introduce the notation
used throughout the paper. Let (𝒙,𝒚) ∈ X𝑛 × Z𝑛≥0 be a training ex-
ample consisting of a vector 𝒙 of 𝑛 items 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, and a vector
𝒚 of corresponding non-negative integer relevance labels. Note that
each item 𝑥𝑖 is itself a 𝑑-dimensional vector of numerical features,
and should be thought of as representing a query-document pair.
The set X is the space of all such vectors 𝒙𝑖 . Thus, a pair (𝒙,𝒚) rep-
resents a list of vectorised search results for a given query together
with the corresponding ground truth relevancies. The dataset of
all such pairs is denoted Ψ. The goal of LTR is to find a scoring
function 𝑓 : X𝑛 → R𝑛 that maximises the chosen IR metric on
Ψ. The scoring function is learned by minimising the empirical
risk L(𝑓) = 1

|Ψ |
∑

(𝒙,𝒚) ∈Ψ ℓ (𝒚, 𝒔) where ℓ (·) is a loss function and
𝒔 = 𝑓 (𝒙) is the vector of predicted scores. As discussed earlier, in
most LTR approaches there is a mismatch between the loss func-
tion ℓ and the evaluation metric, causing a discrepancy between
the learning procedure and its assessment. In this work, we focus
on NDCG as our metric of choice and propose a new loss called
NeuralNDCG, which bridges the gap between the training and the

https://github.com/allegro/allRank

NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada

evaluation. Before we introduce NeuralNDCG, recall the definition
of NDCG.

Definition 3.1. Let (𝒙,𝒚) ∈ X𝑛 × Z𝑛≥0 be a training example and
assume the documents in 𝒙 have been ranked in the descending
order of the scores computed using some scoring function 𝑓 . Let 𝑟 𝑗
denote the relevance of the document ranked at 𝑗-th position, 𝑔(·)
denote a gain function and 𝑑 (·) denote a discount function. Then,
the Discounted Cumulative Gain at 𝑘-th position (𝑘 ≤ 𝑛) is defined
as

DCG@𝑘 =

𝑘∑
𝑗=1

𝑔(𝑟 𝑗)𝑑 (𝑗) (1)

and Normalised Discounted Cumulative Gain at 𝑘 is defined as

NDCG@𝑘 =
1

maxDCG@𝑘
DCG@𝑘 (2)

where maxDCG@𝑘 is the maximum possible value of DCG@𝑘 ,
computed by ordering the documents in 𝒙 by their decreasing
ground truth relevancy.

Note that, typically, the discount function 𝑑 (·) and the gain
function 𝑔(·) are given by 𝑑 (𝑗) = 1

log2 (𝑗+1)
and 𝑔(𝑟 𝑗) = 2𝑟 𝑗 − 1,

respectively.

4 LOSS FORMULATION
In this section we define NeuralNDCG, a novel differentiable ap-
proximation to NDCG. It relies on NeuralSort, a smooth relaxation
of the sorting operator. We begin by recalling NeuralSort, proceed
to define NeuralNDCG and discuss its possible variants.

4.1 Sorting relaxation
Recall that sorting a list of scores 𝒔 is equivalent to left-multiplying
a column vector of scores by the permutation matrix 𝑃sort(𝒔) in-
duced by permutation sort(𝒔) sorting the scores. Thus, in order
to approximate the sorting operator, it is enough to approximate
the induced permutation matrix. In [15], the permutation matrix
is approximated via a unimodal row stochastic matrix 𝑃sort(𝒔) (𝜏)
given by:

𝑃sort(𝒔) [𝑖, :] (𝜏) = softmax[((𝑛 + 1 − 2𝑖)𝒔 −𝐴𝒔1)/𝜏] (3)

where 𝐴𝒔 is the matrix of absolute pairwise differences of elements
of 𝒔 such that𝐴𝒔 [𝑖, 𝑗] = |𝑠𝑖 − 𝑠 𝑗 |, 1 denotes the column vector of all
ones and 𝜏 > 0 is a temperature parameter controlling the accuracy
of approximation. For brevity, for the remainder of the paper we
refer to 𝑃sort(𝒔) (𝜏) simply as 𝑃 .

Note that the temperature parameter 𝜏 allows to control the trade-
off between the accuracy of the approximation and the variance
of the gradients. Generally speaking, the lower the temperature,
the better the approximation at the cost of a larger variance in the
gradients. In fact, it is not difficult to demonstrate that:

lim
𝜏→0

𝑃sort(𝒔) (𝜏) = 𝑃sort(𝒔) (4)

(see [15] for proof). This fact will come in handy once we define
NeuralNDCG.

An approximation of a permutation matrix by Equation 3 is a de-
terministic function of the predicted scores. Authors of NeuralSort
proposed also a stochastic version, by deriving a reparametrised

sampler for a Plackett-Luce family of distributions. Essentially, they
propose to perturb scores 𝑠 with a vector 𝑔 of i.i.d. Gumbel per-
turbations with zero mean and a fixed scale 𝛽 to obtain perturbed
scores 𝑠 = 𝛽 log 𝑠 + 𝑔. Perturbed scores are then used in place of
deterministic scores in the formula for 𝑃 .

We experimented with both deterministic and stochastic approx-
imations to sorting and found them to yield similar results. Thus,
for brevity, in this work we focus on the deterministic variant.

4.2 NeuralNDCG
If the ground truth permutation is known, one could minimise the
cross-entropy loss between the ground truth permutation matrix
and its approximation given by 𝑃 , as done in the experiments sec-
tion in [15]. However, for many applications, including ranking, the
exact ground truth permutation is not known. Relevance labels of
individual items produce many possible valid ground truth permu-
tation matrices. Thus, instead of optimising the cross-entropy loss,
we use NeuralSort to introduce NeuralNDCG, a novel loss function
appropriate for LTR.

Given a list of documents 𝒙 , its corresponding vector of scores
𝒔 = 𝑓 (𝒙) and the ground truth labels𝒚 we first find the approximate
permutation matrix 𝑃 induced by the scores 𝒔 using Equation 3. We
then apply the gain function 𝑔 to the vector of ground truths 𝒚 and
obtain a vector 𝑔(𝒚) of gains per document. We then left-multiply
the column vector 𝑔(𝒚) of gains by 𝑃 and obtain an “approximately"
sorted version of the gains, 𝑔(𝒚). Another way to think of that
approximate sorting is that the 𝑘-th row of 𝑃 gives weights of
documents 𝑥𝑖 in the computation of gain at rank 𝑘 after sorting.
Gain at rank 𝑘 is then the weighted sum of ground truth gains,
weighted by the entries in the 𝑘-th row of 𝑃 . Note that after the
approximate sorting the actual integer values of ground truth gains
become "distorted" and are not necessarily integers anymore (See
Table 1 for example). In particular, the sum of quasi-sorted gains
𝑔(𝒚) may differ from that of the original vector 𝑔(𝒚). This leads
to a peculiar behaviour of NeuralNDCG near the discontinuities
of true NDCG (Figure 1), which may be potentially harmful for
optimisation using Stochastic Gradient Descent [24]. Since 𝑃 is
obtained by applying row-wise softmax operator, the permutation
matrix 𝑃 is row-stochastic but not-necessarily column-stochastic
(i.e. each column does not necessarily sum to one), an individual
ground truth gain 𝑔(𝒚) 𝑗 may have corresponding weights in the
rows of 𝑃 that do not sum to one (and, in particular, may sum
to more than one), so it will overcontribute to the total sum of
𝑔(𝒚). To alleviate that problem, we additionally perform Sinkhorn
scaling [26] on 𝑃 (i.e. we iteratively normalize all rows and columns
until convergence2) before using it for quasi-sorting. This way, the
columns also sum to one and the approximate sorting is smoothed-
out (again, see Figure 1). The remaining steps are identical to the
computation of NDCG@𝑘 , with the exception that the gain of the
relevance function 𝑟 𝑗 is replaced with the 𝑗-th coordinate of quasi-
sorted gains 𝑔(𝒚). For the discount function 𝑑 , we use the usual
inverse logarithmic discount and for the gain function 𝑔 we used
the usual power function. For the computation of the maxDCG, we

2We stop the procedure after 30 iterations or when the maximum difference between
row or column sum and one is less than 10−6 , whatever happens first.

SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada P. Pobrotyn and R. Białobrzeski.

Table 1: Approximate sorting with NeuralSort. Given ground truth 𝒚 = [4, 2, 1, 0, 4, 3] and predicted scores
𝒔 = [0.5, 0.2, 0.1, 0.01, 0.65, 0.3], 𝒚 is sorted by 𝑃 for different values of 𝜏 . Exact sorting is shown in the first row.

Quasi-sorted ground truth Sum after sorting
lim𝜏→0 4 4 3 2 1 0 14
𝜏 = 0.01 4 4 3 2 0.99992 0.00012339 14.00004339
𝜏 = 0.1 3.9995 3.8909 2.8239 1.9730 0.9989 0.3136 13.9998
𝜏 = 1 3.3893 2.9820 2.4965 2.0191 1.6097 1.2815 10.388

use original ground truth labels 𝒚. To find NeuralNDCG at rank
𝑘 , we simply truncate quasi-sorted gains to the 𝑘-th position and
compute the maxDCG at 𝑘-th rank.

We thus obtain the following formula for NeuralNDCG:

NeuralNDCG𝑘 (𝜏) (𝒔,𝒚) = 𝑁−1
𝑘

𝑘∑
𝑗=1

(scale(𝑃) · 𝑔(𝒚)) 𝑗 · 𝑑 (𝑗) (5)

where 𝑁−1
𝑘

is the maxDCG at 𝑘-th rank, scale(·) is Sinkhorn scaling
and 𝑔(·) and 𝑑 (·) are their gain and discount functions. Note that
the summation is over the first 𝑘 ranks.

Finally, since the popular autograd libraries provide means to
minimise a given loss functions, we use (−1) × NeuralNDCG for
optimisation.

0 1 2 3 4 5
x

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ND
CG

True NDCG
With Sinkhorn scaling
Without Sinkhorn scaling

Figure 1: Given ground truth 𝑦 = [2, 1, 0, 0, 0] and a list of
scores 𝒔 = [4, 1, 0, 0, 𝑥], we vary the value of the score 𝑥 and
plot resulting NDCG induced by the scores along with Neu-
ralNDCG (𝜏 = 1.0) with and without Sinkhorn scaling of 𝑃 .

4.3 NeuralNDCG Transposed
In the above formulation of NeuralNDCG, the summation is done
over the ranks and gain at each rank is computed as a weighted sum
of all gains, with weights given by the rows of 𝑃 . We now provide
an alternative formulation of NeuralNDCG, called NeuralNDCG
Transposed (NeuralNDCG𝑇 for short), where the summation is
done over the documents, not their ranks.

As previously, let 𝒙 be a list of documents with corresponding
scores 𝒔 and ground truth relevancies 𝒚. We begin by finding the
approximate permutation matrix 𝑃 . Since we want to sum over the
documents and not their ranks, we need to find the weighted aver-
age of discounts per document, not the weighted average of gains
per rank as before. To this end, we transpose 𝑃 to obtain an approx-
imation 𝑃𝑇 of the inverse of the permutation matrix corresponding
to sorting the documents 𝒙 by their corresponding scores 𝒚. Thus,
𝑃𝑇 can be thought of as an approximate unsorting matrix - when
applied to sorted documents (ranks), it will (approximately) recover
their original ordering. Since 𝑃 is row-stochastic, 𝑃𝑇 is column-
stochastic. As we want to apply it by left-multiplication, we want it
to be row-stochastic. Thus, similarly to before, we perform Sinkhorn
scaling of 𝑃𝑇 . After Sinkhorn scaling, the 𝑘-th row of 𝑃𝑇 can be
thought of as giving the weights of different ranks when comput-
ing the discount of the 𝑘-th document. We can now find the vector
of the weighted averages of discounts per document by comput-
ing 𝑃𝑇 𝒅, where 𝒅 is the vector of logarithmic discounts per rank
(𝒅 𝑗 = 𝑑 (𝑗)). Note that since we want to perform summation over
the documents, not ranks, it is not enough to sum the first 𝑘 ele-
ments to truncate NDCG to the 𝑘-th position. Instead, the entries
of the discounts vector 𝒅 corresponding to ranks 𝑗 > 𝑘 are set to 0.
This way, the documents which would end up at ranks 𝑗 > 𝑘 after
sorting end up having weighted discounts being close to 0, and
equal to 0 in the limit of the temperature 𝜏 . Thus, even though the
summation is done over all documents, we still recover NDCG@𝑘 .

Hence, NeuralNDCG𝑇 is given by the following formula:

NeuralNDCG𝑇 𝑘 (𝜏) (𝒔,𝒚) = 𝑁−1
𝑘

𝑛∑
𝑖=1

𝑔(𝒚𝑖) · (scale(𝑃𝑇) · 𝒅)𝑖 (6)

where 𝑁−1
𝑘

is the maxDCG at 𝑘-th rank, scale(·) is Sinkhorn scaling,
𝑔(·) is the gain function, 𝒅 is the vector of logarithmic discounts
per rank set to 0 for ranks 𝑗 > 𝑘 , and the summation is done over
all 𝑛 documents.

4.4 Properties of NeuralNDCG
By Equation 4, in the limit of the temperature, the approximate
permutation matrix 𝑃 becomes the true permutation matrix 𝑃 . Thus,
as the temperature approaches zero, NeuralNDCG approaches true
NDCG in both its variants. See Figure 2 for examples of the effect
of the temperature on the accuracy of the approximation.

Comparing to ApproxNDCG, our proposed approximation to
NDCG showcases more favourable properties. We can easily com-
pute NDCG at any rank position 𝑘 , whereas in ApproxNDCG, one
needs to further approximate the truncation function using an

NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada

Table 2: Dataset statistics

Dataset Features Queries in training Queries in test Empty queries
Web30K 136 18919 6306 982
Istella 220 23219 9799 50

approximation of the position function. This approximation of an
approximation leads to a compounding of errors.We deal awaywith
that problem by using a single approximation of the permutation
matrix. Furthermore, the approximation of the position function in
ApproxNDCG is done using a sigmoid function, which may lead to
the vanishing gradient problem.

SoftRank suffers from a high computational complexity of𝑂 (𝑛3):
in order to compute all the derivatives required by the algorithm,
a recursive computation is necessary. Authors relieve that cost by
approximating all but a few of the Rank-Binomial distributions
used, but at a cost of the accuracy of their solution. On the other
hand, computation of 𝑃 is of 𝑂 (𝑛2) complexity.

0 1 2 3 4 5
x

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ND
CG

True NDCG
=0.01
=0.1
=1.0
=10.0

Figure 2: Given ground truth 𝒚 = [1, 2, 3, 4, 5] and a list of
scores 𝒔 = [1, 2, 3, 4, 𝑥], we vary the value of the score 𝑥 and
plot resulting NDCG induced by the scores along with Neu-
ralNDCG for different temperatures 𝜏 .

5 EXPERIMENTS
This section describes the experimental setup used to empirically
verify the proposed loss functions.

5.1 Datasets
Experiments were conducted on two datasets: Web30K and Istella3.
Both datasets consists of queries and associated search results. Each
query-document pair is represented by a real-valued feature vector
and has an associated graded relevance on the scale from 0 (irrele-
vant) to 4 (highly relevant). For both datasets, we standardise the
features, log-transforming selected ones, before feeding them to the
learning algorithm. Since the lengths of search results lists in the
3There are a few variants of this dataset, we used the Istella full dataset.

datasets are unequal, we padded or subsampled to equal length for
training, but used the full list length for evaluation. Web30K comes
split into five folds. However, following the common practice in
the field, we report results obtained on Fold 1 of the data. We used
60% of the data for training, 20% for validation and hyperparameter
tuning and the remaining 20% for testing. Istella datasets come
partitioned into a training and a test fold according to a 80%-20%
schema. We additionally split the training data into training and
validation data to obtain a 60%/20%/20% split, similarly to Web30K.
We tune the hyperparameters of our models on the validation data
and report performance on the test set, having trained the best
models on the full training fold. In both datasets there are a number
of queries for which the associated search results list contains no
relevant documents (i.e. all documents have label 0). We refer to
these queries as empty queries. For such queries, the NDCG of their
list of results can be arbitrarily set to either 0 or 1. To allow for a fair
comparison with the current state of the art, we followed default
XGBoost [10] and LightGBM [17] implementation of setting NDCG
of such lists to 1 during the evaluation. Table 2 summarizes the
characteristics of the datasets used.

5.2 Scoring function
For the scoring function 𝑓 , we used the Context-Aware Ranker,
a ranking model based on the Transformer architecture. The model
can be thought of as the encoder part of the Transformer, taking
raw features of items present in the same list as input and out-
putting a real-valued score for each item. Given the ubiquity of
Transformer-based models in the literature, we refer the reader
to [21] for the details of the architecture used. Compared to the
original network described in [21], we used smaller architectures.
For both datasets, we used an architecture consisting of 2 encoder
blocks of a single attention head each, with a hidden dimension
of 384. The dimensionality of initial fully-connected layer was set
to 96 for models trained on Web30K and 128 for models trained
on Istella. We did not apply any activation on the output except
for NeuralNDCG and NeuralNDCG𝑇 . It exhibited suboptimal per-
formance without any nonlinear output activation function and,
in this case, we applied Tanh to the output. For both datasets, the
same architectures were used across all loss functions.

5.3 Training hyperparameters
In all cases, we used Adam [18] optimiser and set the learning rate
to 0.001. The batch size was set to 64 (Web30K) or 110 (Istella) and
search results lists were truncated or padded to the length of 240
when training. We trained the networks for 100 epochs, decaying
the learning rate by the factor of 0.1 after 50 epochs.

SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada P. Pobrotyn and R. Białobrzeski.

Table 3: Test NDCG on Web30K and Istella. Boldface is the best performing loss column-wise.

Loss WEB30K Istella
NDCG@5 NDCG@10 NDCG@5 NDCG@10

NeuralNDCG@5 50.32 52.01 65.32 69.97
NeuralNDCG@10 50.89 52.77 65.65 70.68
NeuralNDCG@max 51.56 53.46 65.69 70.55
NeuralNDCG𝑇@5 50.50 52.14 65.46 69.95
NeuralNDCG𝑇@10 50.85 52.70 66.02 71.02
NeuralNDCG𝑇@max 51.45 53.49 65.60 70.53
ApproxNDCG 49.07 50.90 63.14 67.94
ListNet 50.75 52.80 65.62 70.70
ListMLE 49.81 51.82 59.85 66.24
RankNet@5 49.14 50.75 64.45 68.74
RankNet@10 50.95 52.69 65.75 70.68
RankNet@max 49.84 51.82 64.57 70.37
LambdaRank@5 48.70 50.10 63.50 67.75
LambdaRank@10 49.66 51.34 65.21 69.82
LambdaRank@max 51.55 53.47 65.90 71.09
RMSE 50.51 52.46 65.62 70.76
XGBoost 46.80 49.17 61.04 65.74

5.4 Loss functions
We compared the performance of variants of NeuralNDCG against
the following loss functions. For a pointwise baseline, we used a sim-
ple RMSE of predicted relevancy. Specifically, the output of the net-
work 𝑓 is passed through a sigmoid function and then multiplied by
the number of relevance levels. The root mean squared difference of
this score and the ground truth relevance is the loss. Pairwise losses
we compared with consist of RankNet and LambdaRank. Similarly
to NeuralNDCG, these losses support training with a specific rank
cutoff. We thus train models with these losses at ranks 5, 10 and
at the maximum rank. The two most popular listwise losses are
ListNet and ListMLE, and we, too, included them in our evaluation.
Finally, the other method of direct optimisation of NDCG which
we compared with was ApproxNDCG. We did not compare with
SoftRank, as its 𝑂 (𝑛3) complexity proved prohibitive. We tuned
ApproxNDCG and NeuralNDCG smoothness hyperparameters for
optimal performance on the test set. Both ApproxNDCG’s 𝛼 and
NeuralNDCG’s 𝜏 parameter were set to 1 as other values in the
[0.01; 100] interval did not show any improvement.

5.5 Results
For both datasets, we reportmodels performance in terms of NDCG@5
and NDCG@10. Results are collected in Table 3. Both NeuralNDCG
variants in every rank cutoff setting outperform ApproxNDCG on
both datasets in all metrics reported. Moreover, NeuralNDCG vari-
ants with specific rank cutoffs provide the best performance among
all losses in both metrics on the WEB30K dataset and NDCG@5
on the Istella dataset. For reference, we also report the results of a
GBDTmodel trainedwith XGBoost [10] and objective rank:pairwise
(as rank:ndcg is known to yield suboptimal results4).

4For details, please visit https://github.com/dmlc/xgboost/issues/6352.

6 CONCLUSIONS
In this work we introduced NeuralNDCG, a novel differentiable
approximation of NDCG. By substituting the discontinuous sorting
operator with NeuralSort, we obtain a robust, efficient and arbi-
trarily accurate approximation to NDCG. Not only does it enjoy
favourable theoretical properties, but also proves to be effective
in empirical evaluation, yielding competitive performance, on par
with LambdaRank. This work can easily be extended to other rank-
based metrics like MAP; a possibility we aim to explore in the
future. Another interesting extension of this work would be the
substitution of NeuralSort with another method of approximation
of the sorting operator, most notably the method treating sorting
as an Optimal Transport problem [11].

REFERENCES
[1] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information

Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[2] Sebastian Bruch. 2019. An Alternative Cross Entropy Loss for Learning-to-Rank.

arXiv:1911.09798 [cs.LG]
[3] Sebastian Bruch, Xuanhui Wang, Michael Bendersky, and Marc Najork. 2019. An

Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary
Relevance. In Proceedings of the 2019 ACM SIGIR International Conference on
Theory of Information Retrieval (Santa Clara, CA, USA) (ICTIR ’19). Association
for Computing Machinery, New York, NY, USA, 75–78. https://doi.org/10.1145/
3341981.3344221

[4] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork. 2019.
Revisiting ApproximateMetric Optimization in the Age of Deep Neural Networks.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (Paris, France) (SIGIR’19). Association for
Computing Machinery, New York, NY, USA, 1241–1244. https://doi.org/10.1145/
3331184.3331347

[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In Proceed-
ings of the 22Nd International Conference on Machine Learning (Bonn, Germany)
(ICML ’05). ACM, New York, NY, USA, 89–96. https://doi.org/10.1145/1102351.
1102363

[6] Christopher J. Burges, Robert Ragno, and Quoc V. Le. 2007. Learning to Rank with
Nonsmooth Cost Functions. In Advances in Neural Information Processing Systems
19, B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.). MIT Press, 193–200. https:
//papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions

https://github.com/dmlc/xgboost/issues/6352
https://arxiv.org/abs/1911.09798
https://doi.org/10.1145/3341981.3344221
https://doi.org/10.1145/3341981.3344221
https://doi.org/10.1145/3331184.3331347
https://doi.org/10.1145/3331184.3331347
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions

NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada

[7] Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report. Microsoft Research. http://research.microsoft.
com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning (Corvalis, Oregon, USA) (ICML ’07).
ACM, New York, NY, USA, 129–136. https://doi.org/10.1145/1273496.1273513

[9] Soumen Chakrabarti, Rajiv Khanna, Uma Sawant, and Chiru Bhattacharyya. 2008.
Structured Learning for Non-Smooth Ranking Losses. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Las Vegas, Nevada, USA) (KDD ’08). Association for Computing Machinery, New
York, NY, USA, 88–96. https://doi.org/10.1145/1401890.1401906

[10] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
ACM, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[11] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. 2019. Differentiable
Ranking and Sorting using Optimal Transport. In Advances in Neural In-
formation Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alche-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 6858–
6868. http://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-
using-optimal-transport.pdf

[12] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast Ranking
with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees. ACM
Trans. Inf. Syst. 35, 2, Article 15 (Dec. 2016), 31 pages. https://doi.org/10.1145/
2987380

[13] Martin Engilberge, Louis Chevallier, Patrick Perez, and Matthieu Cord. 2019.
SoDeep: A Sorting Deep Net to Learn Ranking Loss Surrogates. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[14] Jerome H. Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2000), 1189–1232.

[15] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochas-
tic Optimization of Sorting Networks via Continuous Relaxations. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
H1eSS3CcKX

[16] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446. https://doi.
org/10.1145/582415.582418

[17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 3146–3154. http://papers.nips.cc/paper/6907-
lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[18] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Op-
timization. http://arxiv.org/abs/1412.6980 cite arxiv:1412.6980Comment: Pub-
lished as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[19] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (March 2009), 225–331. https://doi.org/10.1561/1500000016

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. In NIPS Autodiff Workshop.

[21] Przemysław Pobrotyn, Tomasz Bartczak, Mikołaj Synowiec, Radosław Biało-
brzeski, and Jarosław Bojar. 2020. Context-Aware Learning to Rank with Self-
Attention. In SIGIR eCom ’20. Virtual Event, China.

[22] Tao Qin and T. M. Liu. 2013. Introducing LETOR 4.0 Datasets. ArXiv abs/1306.2597
(2013).

[23] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Inf. Retr. 13 (08 2010),
375–397. https://doi.org/10.1007/s10791-009-9124-x

[24] H. Robbins and S. Monro. 1951. A stochastic approximation method. Annals of
Mathematical Statistics 22 (1951), 400–407.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

[26] Richard Sinkhorn. 1964. A Relationship Between Arbitrary Positive Matrices
and Doubly Stochastic Matrices. Ann. Math. Statist. 35, 2 (06 1964), 876–879.
https://doi.org/10.1214/aoms/1177703591

[27] Michael Taylor, John Guiver, Stephen Robertson, and TomMinka. 2008. SoftRank:
optimizing non-smooth rank metrics. 77–86. https://doi.org/10.1145/1341531.
1341544

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.).
Curran Associates, Inc., 5998–6008. http://papers.nips.cc/paper/7181-attention-

is-all-you-need.pdf
[29] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise

Approach to Learning to Rank: Theory and Algorithm. In Proceedings of the
25th International Conference on Machine Learning (Helsinki, Finland) (ICML ’08).
ACM, New York, NY, USA, 1192–1199. https://doi.org/10.1145/1390156.1390306

[30] Jun Xu and Hang Li. 2007. AdaRank: a boosting algorithm for information re-
trieval. In Proceedings of the 30th annual ACM SIGIR conference. ACM, Amsterdam,
The Netherlands, 391–398. https://doi.org/10.1145/1277741.1277809

[31] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. 2007. A
Support Vector Method for Optimizing Average Precision. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (Amsterdam, The Netherlands) (SIGIR ’07). Association for
Computing Machinery, New York, NY, USA, 271–278. https://doi.org/10.1145/
1277741.1277790

http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
http://research.microsoft.com/en-us/um/people/cburges/tech_reports/MSR-TR-2010-82.pdf
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1401890.1401906
https://doi.org/10.1145/2939672.2939785
http://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf
http://papers.nips.cc/paper/8910-differentiable-ranking-and-sorting-using-optimal-transport.pdf
https://doi.org/10.1145/2987380
https://doi.org/10.1145/2987380
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://arxiv.org/abs/1412.6980
https://doi.org/10.1561/1500000016
https://doi.org/10.1007/s10791-009-9124-x
https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1145/1341531.1341544
https://doi.org/10.1145/1341531.1341544
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277790
https://doi.org/10.1145/1277741.1277790

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Loss formulation
	4.1 Sorting relaxation
	4.2 NeuralNDCG
	4.3 NeuralNDCG Transposed
	4.4 Properties of NeuralNDCG

	5 Experiments
	5.1 Datasets
	5.2 Scoring function
	5.3 Training hyperparameters
	5.4 Loss functions
	5.5 Results

	6 Conclusions
	References

