
“Are you sure?”: Preliminary Insights from Scaling Product
Comparisons to Multiple Shops

Patrick John Chia∗
Coveo

Montreal, Canada
pchia@coveo.com

Bingqing Yu∗
Coveo

Montreal, Canada
cyu2@coveo.com

Jacopo Tagliabue†
Coveo Labs

New York, NY
jtagliabue@coveo.com

ABSTRACT
Large eCommerce players introduced comparison tables as a new
type of recommendations. However, building comparisons at scale
without pre-existing training/taxonomy data remains an open chal-
lenge, especially within the operational constraints of shops in the
long tail. We present preliminary results from building a compari-
son pipeline designed to scale in a multi-shop scenario: we describe
our design choices and run extensive benchmarks onmultiple shops
to stress-test it. Finally, we run a small user study on property se-
lection and conclude by discussing potential improvements and
highlighting the questions that remain to be addressed.

CCS CONCEPTS
• Applied computing → E-commerce infrastructure; • Informa-
tion systems→ Nearest-neighbor search.

KEYWORDS
recommendation system, product comparison, user study

ACM Reference Format:
Patrick John Chia, Bingqing Yu, and Jacopo Tagliabue. 2021. “Are you sure?”:
Preliminary Insights from Scaling Product Comparisons to Multiple Shops.
In Proceedings of ACM SIGIRWorkshop on eCommerce (SIGIR eCom’21).ACM,
New York, NY, USA, 7 pages.

1 INTRODUCTION
Online shopping has seen tremendous growth in recent years [26],
and shoppers now face an innumerable number of possibilities,
which paradoxically may lead to decreasing satisfaction in their
purchase decisions [24]. Recommender systems (RSs) have been
playing an indispensable role in fighting information overload, and
large players [16, 22] have been mostly responsible for modelling
and product innovation [2, 34]. Comparison engines (CEs) are a
special case of RS, in which a product detail page (PDP) displays
alternative choices in a table containing informative product speci-
fications (Fig. 1). Unlike prevalent "More like this" RSs, comparison

∗Main contributor.
†Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada
© 2021 Copyright held by the owner/author(s).

tables when well-designed not only promote products that are rele-
vant, but also intentionally select products which help customers
better understand the range of available features. However – as
demonstrated by the sub-optimal alternatives in Fig. 1 – building
a CE is far from trivial even for players with full ownership of
the data chain. In this paper, we share preliminary lessons learned
when building CEs in a B2B scenario, that is, designing a scalable
pipeline that is deployed across multiple shops. As convincingly
argued in [4, 27, 29], multi-tenant deployments require models
to generalize to dozens of different retailers: a successful CE is
therefore not only hard to build, but valuable to a wide range of
practitioners – on one side, practitioners outside of humongous
websites, who want to enhance their shop in the face of rising pres-
sure from major players; on the other, multi-tenant SaaS providers
who need to provide AI-based services that scale to a large number
of clients.1 We summarize our contributions as follows:

• we are the first, to the best of our knowledge, to detail a
pipeline for building a comparison engine designed to be
scalable in a multi-tenant scenario;

• we perform extensive experiments on various data cleaning
and augmentation approaches. One of our major practical
contributions – in line with what independently reported by
Hao et al. [15] – is questioning the widely held belief that co-
occurrence patterns are a sufficient proxy for substitutable
products [19];

• we discuss the importance of diversity in the comparison
table and propose a decision process to determine relevant
attributes.

While we do acknowledge that full online testing is needed to
answer some outstanding design questions, we supplement our
pipeline tests with a user study, allowing for a preliminary compar-
ison between our results and human judgments, as well as guiding
future decisions in our roadmap. Practitioners looking to replicate
our work are encouraged to check the Appendix for details on our
tools, modelling choices and Mechanical Turk setup.

2 COMPARISON ENGINE PIPELINE
In this section, we present the pipeline architecture of our compari-
son system. The pipeline is composed of three main stages: a first
candidate fast retrieval phase, to narrow down the search space;
a candidate refinement phase, to ensure precision and produce
the final shortlist of products; lastly, a final selection phase, to

1As an indication of the relevant SaaS market size, we witnessed Coveo, Algolia,
Lucidworks and Bloomreach raising more than 100M USD each from venture funds in
the last two years for AI-powered services [30–33].

SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada Chia et al.

Figure 1: Recommendations as comparisons on Ama-
zon.com: the first product (in yellow) is the product in the
PDP, and the other three are suggestions. As clear from item
#2 and #3, finding substitutes at scale is all but a trivial task.

Figure 2: An overview of our CE pipeline: (1) product for the
current PDP; (2) fast retrieval of candidate substitutes, focus-
ing on recall; (3) refinement of candidate substitutes using
binary classification model; (4) selection of important prop-
erties; (5) final selection of substitutes to display in compar-
ison table.

determine the information to be displayed in the comparison ta-
ble. We will first explain the logic of each stage, then detail the
experiments performed to benchmark the pipeline.2

2.1 Fast Retrieval
Candidate retrieval aims to quickly generate potential substitutes
given a query product, with a focus on recall (step 2 in Fig. 2):
we try to get a more diverse set, knowing false positives will be
screened out in later phases. A common practice for fast retrieval
in a dense space is using k-NN over an embedding space [10, 39]:
since recent literature [3, 4, 28] provides extensive evidence on
the representational qualities of behavioral embeddings, we train a
prod2vec space [13] by adaptingword2vec [20] to eCommerce – i.e. a
prod2vec space is just a word2vec space, where words in a sentence
are replaced with products in a shopping session (Appendix B).
2Note that due to space constraints, we cite the most relevant literature inline at the
most appropriate step.

After obtaining a prod2vec space we apply k-NN (based on cosine
distance) to retrieve the closest 𝑘 = 100 products as its substitute
candidates. Analogous to words in word2vec, products which are
distributionally similar (based on historical sessions) are close in
the prod2vec space, therefore the candidates retrieved in this step
are already biased towards substitutable products.

2.2 Candidate Refinement
Candidates produced by the first stage are passed to the second
stage for fine-grained processing. The goal of this stage is to boost
precision by filtering out candidates that do not have matching
product type, and re-rank the remaining ones so the most compa-
rable ones are at the top of the list (step 3 in Fig. 2). We employ a
binary classification model (i.e. given a pair of products, are they
substitutes?) built on top of a Siamese Network [7], fed with unsu-
pervised behavioral data.

2.2.1 Unsupervised Behavioural Data. Generating training data
for substitute product detection is a well-explored topic in the
literature [9, 19, 38]. However, our inference is somewhat harder
than a general substitute classifier where products are sampled
from the entire catalog, as our model needs to be able to make
subtler distinctions among a selected group of candidates that have
been shortlisted by a coarse similarity measure (Section 2.1). To
overcome the problem of naive sampling and reduce the noise in
behavioral data, we built a three-step process generating the final
training set, with free parameters,𝑀 , 𝑁 , 𝑍 (Appendix B):

(1) We use co-view and co-purchase patterns to obtain posi-
tive and negative training examples. Positive examples are
obtained from pairs of products which are viewed consec-
utively (co-view: if I want a TV, I will check several TVs in
a row) and negative examples are obtained from products
which are purchased consecutively (co-purchase: if I just
bought a TV, I am unlikely to buy a second one). To reduce
noise, we set a minimum threshold for the number of co-view
occurrences (𝑁) and the number of co-purchase occurrences
(𝑀) for a pair to be considered a positive or negative example
respectively.

(2) We intuit that substitutable products are a priori visually
similar, and utilize this to further reduce noise in the data.
Thus, we apply a threshold on the cosine similarity of the
image embedding of pairs to further refine this set of training
examples. Given an image vector obtained through a pre-
trained VGG16 [25], we enforce that positive/negative pairs
must have a minimum/maximum cosine similarity.3 We refer
to this refinement/cleaning process as C.

(3) We remove pairs which are given both positive and nega-
tive labels, then build a graph using the remaining positive
pairs and extract disconnected subgraphs as clusters of sub-
stitutable products. We eliminate clusters of size > 𝑍 when
generating synthetic pairs, to reduce the risk of sampling
from clusters formed by noisy pairs and, at the same time,
improve the balance of product types in the training data.
By taking an existing positive/negative pair from our be-
havioural logs, we generate synthetic pairs by swapping out

3While drafting this paper, we realized a similar approach has been recommended
independently by [40].

“Are You Sure?” SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada

Shop A Shop B

Configuration P@R=0.7 P@R=0.8 P@R=0.9 P@R=0.7 P@R=0.8 P@R=0.9

Baseline 0.744 0.743 0.682 0.611 0.573 0.539
C=0; S=0 0.759 (0.0235) 0.710(0.0212) 0.645 (0.0195) 0.734 (0.0324) 0.690 (0.0333) 0.632 (0.0290)
C=0; S=1 0.766 (0.0257) 0.723 (0.0237) 0.659 (0.0189) 0.755 (0.0379) 0.706 (0.0423) 0.643 (0.0382)
C=1; S=0 0.833 (0.0162) 0.802 (0.0226) 0.740 (0.0301) 0.777 (0.0162) 0.732 (0.0131) 0.658 (0.0123)
C=1; S=1 0.842 (0.0150) 0.812 (0.0208) 0.753 (0.0280) 0.789 (0.0189) 0.743 (0.0196) 0.663 (0.0176)

Table 1: Precision@Recall = {0.7,0.8,0.9} for various configurations for Shop A and B; P@R=X denotes Precision at Recall of X.

one of the products in the original pair with any product
found in its substitute cluster, unlike [14] which samples
negative examples from a random disconnected subgraph.
We refer to this augmentation process as S.

We emphasize that only behavioral logs and product images
are necessary so far: our approach does not assume peculiar meta-
data or pre-made taxonomy, nor does our classifier require costly
labelling, making the pipeline suitable for multi-shop scaling.

2.2.2 Binary Classifier: A Siamese Network. We utilize a binary
classifier to predict whether two input products are substitutes or
not. Products are represented by various dense representations of
product features, such as behavioural embeddings and word2vec
embeddings for product title, description and category strings (See
Appendix B). For full reproducibility, we provide architectural and
hyper-parameter details in Appendices B & C.

2.3 Product and Property Selection
2.3.1 Relevant Property Selection. At this stage, we make the only
significant meta-data assumption of the entire pipeline, that is, the
target catalog should specify product properties in some structured
way – based on our experience with dozens of deployments, this is
not a universal feature, but it is common for verticals with technical
products (DIY, electronics, etc.), for which CEs are most useful.
Given a mapping from products to their properties (say, from TV
123 to the set <resolution, screen size, ...>), this stage determines
which properties are relevant to shoppers when they are making
a purchase decision (step 4 in Fig. 2). By passing the candidates
from Section 2.1 to the classifier in 2.2, we generate a final list
of substitutable products, given an initial query product. For this
list, we rank properties 𝑃1, 𝑃2, ..., 𝑃𝑛 based on the weighted sum of
three components4, highlighted as important by previous literature
[12, 17] and domain knowledge:

(1) Query frequency: properties which are important to shoppers
tend to appear frequently in shopper-generated content [5,
21] such as queries [17].We calculate the query frequency for
each property (and their possible values) by mining search
logs, and normalize the counts to range [0, 1];

(2) PDP frequency: merchandisers are more likely to explicitly
mention important attributes in the PDP. We calculate a
normalized count for each attribute by mining product de-
scriptions in the catalog;

4Weights have been determined empirically at first, but see Section 3.2 and our con-
clusion for potential use of human-in-the-loop inference.

(3) Property entropy: it is important, for meaningful comparison,
that property values have enough variation, so that compari-
son tables can help navigate easily the possible dimensions of
a catalog. To calculate variety, we measure the entropy of the
distribution of property values across the list of substitute
products.

2.3.2 Final Display Selection. Recent literature [36] has highlighted
the importance of diversity in RSs. Thus, after determining impor-
tant product properties, we select the final𝑊 = 3 substitutes per
query item (step 5 in Fig. 2), by making two additional calculations:
price diversification and representative selection. Given the list of
substitutes, we group products into 7 bins based on their log price.5
We discard the first and the last bin, as extreme prices can signal a
potential mismatch in product category. With 5 bins remaining, we
sample one substitute from the same price bin as the query item, and
two substitutes from its higher-pricing and lower-pricing neighbor
bin. Finally, similarly to [8], we employ a greedy approach during
sampling, which maximises the information diversity among the
final products to be displayed. We represent the property values of
each product via one-hot encoding, so that products are represented
by a concatenation of their one-hot encoded property vectors. We
compute the difference in their information content by Hamming
distance, where each property is weighted by the negative expo-
nential of the entropy of the distribution of the property’s values.
The intuition is that we want to vary properties which are far from
quasi-uniform distributions to display products with meaningful
variation, thereby giving shoppers a more complete picture of what
is available.

3 EXPERIMENTS
After having discussed the pipeline design, we report our experi-
ments for the substitute model and the user study performed on
property selection.

3.1 Substitute model
We evaluate the effectiveness of training a neural model for sub-
stitute classification in an unsupervised manner, by leveraging
a manually prepared held out set for benchmarks (Section 3.1.1)6.
Since the objective of the substitute model is to refine the candidates
from the initial fast retrieval step (Section 2.1), where candidates are
a priori likely, but not guaranteed, to be substitutes, our test set also
mimics this distribution. As a baseline, we thus adopt the cosine

5The mean log-price is used to set the central bin and the standard deviation is used
to determine the bin width.
6Since in a real deployment labels will not be present, a research setting is needed to
first validate how well unsupervised training performs on golden data.

SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada Chia et al.

similarity (re-scaled to [0, 1]) between the image vectors of two
products as the confidence score for substitutability. This serves
as a simple yet realistic baseline that allows us to quantitatively
assess the precision boost afforded by the substitute model.

For our experiments, we consider all configurations of image
vectors for cleaning (C ∈ {0, 1}) and synthetic augmentation (S ∈
{0, 1}) to shed light on their contribution to performance.7 We run
experiments on 3 different seeds and with various combinations
of dense product representation (Appendix B & C) as input. For
each configuration of C and S, we report average performance
across seeds and product representations used, as well the confi-
dence intervals in plots. We run an extensive set of experiments
to acknowledge the varying quality of such representations across
catalogs, and to demonstrate robustness of certain configurations
when scaling CEs in a multi-shop scenario.

3.1.1 Dataset. For training and validation, we extract unsuper-
vised co-view and co-purchase data from shopping sessions of two
partnering shops, Shop A and Shop B. They are mid-sized shops:
Shop A is in the sport apparel industry whereas Shop B is in home
improvement. We use 80% of all products for training and the re-
maining 20% for validation. We consider this to be a strict testing
regime as none of the products used in validation and testing are
seen in training. For testing, we first obtain a golden mapping of
clusters of substitutable products by heuristic matching of cate-
gories provided in catalog data and extensive manual filtering. The
golden mapping is then used to generate positive and negative
test examples as explained in Section 2.1.8 We selected shops with
catalogs that are of high quality and contain fine-grained cate-
gory information in order to generate golden mappings which best
capture product substitutability. We emphasize that such catalog
quality is not guaranteed across shops, which motivates our use of
unsupervised data.

3.1.2 Results. We summarize experimental results in Table 1, and
plot in Fig. 3 the Precision-Recall (PR) curves. For Shop A, when
image vectors are not used for cleaning (𝐶 = 0), the model performs
only as good as the baseline. When 𝐶 = 1, we see a significant
increase in precision across the higher ranges of recall; on the
other hand, synthetic augmentation, 𝑆 , has minimal effect on model
performance. Similar trends are observed for Shop B, albeit the
benefit of 𝐶 = 1 is less pronounced. These results demonstrate the
effectiveness of using image vectors to clean the otherwise noisy
unsupervised co-occurrence data, and validate the effectiveness
of the preparation detailed in Section 2.2. However, as evident in
the baseline performance of Shop B, caution must still be taken
when relying on image vectors – depending on the vertical, visual
similarity may not be as strong a proxy for substitutability and/or
the pre-trained models used to generate the image embeddings
are not fine-tuned for products in certain verticals. This opens up
interesting avenues for future work such as self-supervised learning
[37] for niche verticals.

71 denotes usage/application of method whereas 0 denotes non-usage.
8Full descriptive statistics are reported in Appendix B.

Figure 3: PRCurve for various configurations of C and S, and
the Baseline for ShopA and B. Results are the average across
seeds and input features, with a confidence interval of +/- 1
SD.

3.2 Property selection
We run an Amazon Mechanical Turk (MTurk) study to get prelimi-
nary insights on how well our algorithm matches how shoppers
rank properties. Our investigation involves 4 product types that
range from known products (e.g. running shoes) to increasingly
technical (e.g. ski), each with 5-8 properties. While agreement with
human judgement varies depending on the category, the algorithm
seems to pick up at least some qualitatively relevant latent dimen-
sion.

3.2.1 Data Collection. We collect pairwise human judgements on
property preferences. For each comparison, we present workers
with the image of a product and two of its properties and ask them
to judge which is more important to them when making a purchase
decision. Each Human Intelligence Task (HIT) has 3 comparisons
(Fig. 4) in addition to a control task to filter out low quality responses.
We collected an average of 30 responses per property pair for this
experiment. To collate pairwise human responses, we estimate
the underlying ranking using the Bradley-Terry Model [6, 18]. We
compare the estimated ranked list against our algorithm using
Rank-biased Overlap [35] (RBO) as the measure of agreement.

3.2.2 Results. The results are summarized in Table 2. Agreement
between our algorithm and humans is higher for popular/common
products, lower for highly-technical ones, which may also reflect a
lack of domain-specific knowledge by general MTurk workers.9 In-
terestingly enough, the RBO for Running Shoes is by far the highest.

9Anecdotally, we also solicited feedback from active skiers in Coveo, and found that
their experience influenced the properties which they found important.

“Are You Sure?” SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada

Figure 4: Example of a HIT task.

We suspect that this is because Running Shoes lie at an intersection
of being both well-known, whereby crowded-sourced responses
are most reliable, and technical, such that there exists a stronger
ranking/ordering of its properties.

Product RBO

Shirt 0.633
Shorts 0.483
Running Shoe 0.783
Ski 0.169

Table 2: RBO for human vs our ranking (best in bold); 𝑅𝐵𝑂 =

0.6 for random permutation of length 5.

4 CONCLUSION
We shared insights from building a CE addressing large-to-mid-
shops in the market long-tail, and as such particularly suited for
multi-shop deployment. While preliminary, our multi-shop bench-
marks confirms the viability of our pipeline, and we look forward to
testing it online. Two important areas of improvements are person-
alization and human-in-the-loop inference. In the current system, all
shoppers would receive the same set of candidates, but individual
preferences and session intent [28] may be used to further shape
the final table.

Finally, of the three ways in which we could use human judge-
ments – qualitative validation, training data and active learning –
we just focused on the first. Given the scalability of MTurk, however,
we plan on extending human-in-the-loop computation in further
iterations of the project.

5 ETHICAL CONSIDERATIONS
User data has been collected in the process of providing business
services to the clients of Coveo: user data is collected and processed
in an anonymized fashion, in full compliance with existing legisla-
tion (GDPR). In particular, the target dataset uses only anonymous
uuids to label sessions and, as such, it does not contain any infor-
mation that can be linked to individuals. As explained, our MTurk
HITs include a task with pre-defined answer to control for workers
randomly answering to questions; however, we still compensate
workers for their time, even if their answers get discarded from the
analysis.

ACKNOWLEDGMENTS
We wish to thank Federico Bianchi, Mattia Pavoni and Andrea
Polonioli for comments on a previous draft of this work, and general
support with this research project.

REFERENCES
[1] David Berg, Ravi Kiran Chirravuri, Romain Cledat, Savin Goyal, Ferras Hamad,

and Ville Tuulos. 2019. Open-Sourcing Metaflow, a Human-Centric Framework for
Data Science. https://netflixtechblog.com/open-sourcing-metaflow-a-human-
centric-framework-for-data-science-fa72e04a5d9

[2] Rahul Bhagat, Srevatsan Muralidharan, Alex Lobzhanidze, and Shankar Vish-
wanath. 2018. Buy It Again: Modeling Repeat Purchase Recommendations. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (London, United Kingdom) (KDD ’18). Association for Computing
Machinery, New York, NY, USA, 62–70. https://doi.org/10.1145/3219819.3219891

[3] Federico Bianchi, Jacopo Tagliabue, and Bingqing Yu. 2021. Query2Prod2Vec:
Grounded Word Embeddings for eCommerce. In NAACL-HLT. Association for
Computational Linguistics.

[4] Federico Bianchi, J. Tagliabue, Bingqing Yu, Luca Bigon, and Ciro Greco. 2020.
Fantastic Embeddings and How to Align Them: Zero-Shot Inference in a Multi-
Shop Scenario. ArXiv abs/2007.14906 (2020).

[5] Lidong Bing, Tak-Lam Wong, and Wai Lam. 2016. Unsupervised Extraction
of Popular Product Attributes from E-Commerce Web Sites by Considering
Customer Reviews. ACM Trans. Internet Technol. 16, 2, Article 12 (April 2016),
17 pages. https://doi.org/10.1145/2857054

[6] Ralph Allan Bradley and Milton E. Terry. 1952. Rank Analysis of Incomplete
Block Designs: I. The Method of Paired Comparisons. Biometrika 39, 3/4 (1952),
324–345. http://www.jstor.org/stable/2334029

[7] Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Säckinger, and Roopak Shah. 1993. Signature Verification Using
A "Siamese" Time Delay Neural Network. IJPRAI 7, 4 (1993), 669–688. http:
//dblp.uni-trier.de/db/journals/ijprai/ijprai7.html#BromleyBBGLMSS93

[8] Harr Chen and David R. Karger. 2006. Less is More: Probabilistic Models for
Retrieving Fewer Relevant Documents. In Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(Seattle, Washington, USA) (SIGIR ’06). Association for Computing Machinery,
New York, NY, USA, 429–436. https://doi.org/10.1145/1148170.1148245

[9] Tong Chen, H. Yin, Guanhua Ye, Zi Huang, Yang Wang, and Ming-Chieh Wang.
2020. Try This Instead: Personalized and Interpretable Substitute Recommenda-
tion. Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (2020).

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[11] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[12] X. Dong, Xiang He, A. Kan, Xian Li, Yan Liang, Jun Ma, Y. Xu, Chenwei Zhang,
Tong Zhao, Gabriel Blanco Saldana, S. Deshpande, A. M. Manduca, Jay Ren, S. P.
Singh, F. Xiao, Haw-Shiuan Chang, Giannis Karamanolakis, Yuning Mao, Yaqing
Wang, Christos Faloutsos, A. McCallum, and J. Han. 2020. AutoKnow: Self-
Driving Knowledge Collection for Products of Thousands of Types. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2020).

[13] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in Your Inbox:
Product Recommendations at Scale. In Proceedings of KDD ’15. https://doi.org/
10.1145/2783258.2788627

[14] Mingming Guo, Nian Yan, Xiquan Cui, San He Wu, Unaiza Ahsan, Rebecca West,
and Khalifeh Al Jadda. 2020. Deep Learning-based Online Alternative Product
Recommendations at Scale. In Proceedings of The 3rd Workshop on e-Commerce
and NLP. Association for Computational Linguistics, Seattle, WA, USA, 19–23.
https://doi.org/10.18653/v1/2020.ecnlp-1.3

[15] Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou
Sun, and Wei Wang. 2020. P-Companion: A Principled Framework for Diversified
Complementary Product Recommendation. Association for Computing Machinery,
New York, NY, USA, 2517–2524. https://doi.org/10.1145/3340531.3412732

[16] Kartik Hosanagar, Daniel Fleder, Dokyun Lee, and Andreas Buja. 2014. Will the
Global Village Fracture Into Tribes? Recommender Systems and Their Effects
on Consumer Fragmentation. Management Science 60 (04 2014), 805–823. https:

https://netflixtechblog.com/open-sourcing-metaflow-a-human-centric-framework-for-data-science-fa72e04a5d9
https://netflixtechblog.com/open-sourcing-metaflow-a-human-centric-framework-for-data-science-fa72e04a5d9
https://doi.org/10.1145/3219819.3219891
https://doi.org/10.1145/2857054
http://www.jstor.org/stable/2334029
http://dblp.uni-trier.de/db/journals/ijprai/ijprai7.html#BromleyBBGLMSS93
http://dblp.uni-trier.de/db/journals/ijprai/ijprai7.html#BromleyBBGLMSS93
https://doi.org/10.1145/1148170.1148245
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2783258.2788627
https://doi.org/10.1145/2783258.2788627
https://doi.org/10.18653/v1/2020.ecnlp-1.3
https://doi.org/10.1145/3340531.3412732
https://doi.org/10.1287/mnsc.2013.1808
https://doi.org/10.1287/mnsc.2013.1808

SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada Chia et al.

//doi.org/10.1287/mnsc.2013.1808
[17] Jayasimha Katukuri, Tolga Könik, Rajyashree Mukherjee, and Santanu Kolay.

2014. Recommending Similar Items in Large-scale On line Marketplaces. https:
//doi.org/10.13140/2.1.3259.2646

[18] Lucas Maystre. 2015. choix. (2015). https://github.com/lucasmaystre/choix
[19] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring Networks

of Substitutable and Complementary Products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (Syd-
ney, NSW, Australia) (KDD ’15). Association for Computing Machinery, New
York, NY, USA, 785–794. https://doi.org/10.1145/2783258.2783381

[20] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).

[21] Felipe Moraes, Jie Yang, Rongting Zhang, and Vanessa Murdock. 2020. The Role of
Attributes in Product Quality Comparisons. In Proceedings of the 2020 Conference
on Human Information Interaction and Retrieval (Vancouver BC, Canada) (CHIIR
’20). Association for Computing Machinery, New York, NY, USA, 253–262. https:
//doi.org/10.1145/3343413.3377956

[22] Ann Pichestapong. 2019. Website Personalization: Improving Conversion with
Personalized Shopping Experiences. Retrieved November 29, 2020 from https:
//www.shopify.ca/partners/blog/website-personalization

[23] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. arXiv:1908.10084 [cs.CL]

[24] Benjamin Scheibehenne, Rainer Greifeneder, and Peter M. Todd. 2010. Can There
Ever Be TooMany Options? AMeta-Analytic Review of Choice Overload. Journal
of Consumer Research 37, 3 (02 2010), 409–425. https://doi.org/10.1086/651235
arXiv:https://academic.oup.com/jcr/article-pdf/37/3/409/5173186/37-3-409.pdf

[25] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations.

[26] Statista Research Department. 2020. Global retail e-commerce sales 2014-2023.
Retrieved November 29, 2020 from https://www.statista.com/statistics/379046/
worldwide-retail-e-commerce-sales/

[27] Jacopo Tagliabue, Ciro Greco, Jean-Francis Roy, Federico Bianchi, Giovanni
Cassani, Bingqing Yu, and Patrick John Chia. 2021. SIGIR 2021 E-Commerce
Workshop Data Challenge. In SIGIR eCom 2021.

[28] Jacopo Tagliabue, Bingqing Yu, and Marie Beaulieu. 2020. How to Grow a
(Product) Tree. Personalized Category Suggestions for eCommerce Type-Ahead.
In Companion Proceedings of ACL (Seattle, USA). Association for Computing
Machinery, New York, NY, USA.

[29] Jacopo Tagliabue, Bingqing Yu, and Federico Bianchi. 2020. The Embeddings
That Came in From the Cold: Improving Vectors for New and Rare Products with
Content-Based Inference. In Fourteenth ACM Conference on Recommender Systems
(Virtual Event, Brazil) (RecSys ’20). Association for Computing Machinery, New
York, NY, USA, 577–578. https://doi.org/10.1145/3383313.3411477

[30] Techcrunch. [n.d.]. coveo-raises-227m-at-1b-valuation. https://techcrunch.
com/2019/11/06/coveo-raises-227m-at-1b-valuation-for-ai-based-enterprise-
search-and-personalization/

[31] Techcrunch. 2019. Algolia finds $110M from Accel and Salesforce.
https://techcrunch.com/2019/10/15/algolia-finds-110m-from-accel-and-
salesforce-for-its-search-as-a-service-used-by-slack-twitch-and-8k-others/

[32] Techcrunch. 2019. Lucidworks raises $100M to expand in AI finds.
https://techcrunch.com/2019/08/12/lucidworks-raises-100m-to-expand-
in-ai-powered-search-as-a-service-for-organizations/

[33] Techcrunch. 2021. Bloomreach raises $150M on $900M valuation and acquires
Exponea. https://techcrunch.com/2021/01/26/bloomreach-raises-150m-on-900m-
valuation-and-acquires-exponea/

[34] Manos Tsagkias, Tracy Holloway King, Surya Kallumadi, Vanessa Murdock, and
Maarten de Rijke. 2020. Challenges and Research Opportunities in eCommerce
Search and Recommendations. In SIGIR Forum, Vol. 54.

[35] WilliamWebber, Alistair Moffat, and Justin Zobel. 2010. A Similarity Measure for
Indefinite Rankings. ACM Trans. Inf. Syst. 28, 4, Article 20 (Nov. 2010), 38 pages.
https://doi.org/10.1145/1852102.1852106

[36] Qiong Wu, Yong Liu, Chunyan Miao, Yin Zhao, Lu Guan, and Haihong Tang.
2019. Recent Advances in Diversified Recommendation. arXiv:1905.06589 [cs.IR]

[37] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. 2021. Barlow
Twins: Self-Supervised Learning via Redundancy Reduction. CoRR abs/2103.03230
(2021). arXiv:2103.03230 https://arxiv.org/abs/2103.03230

[38] Shijie Zhang, Hongzhi Yin, Qinyong Wang, Tong Chen, Hongxu Chen, and Quoc
Viet Hung Nguyen. 2019. Inferring Substitutable Products with Deep Network
Embedding. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 4306–4312. https://doi.org/10.24963/ijcai.2019/598

[39] Xiaoting Zhao, Raphael Louca, D. Hu, and L. Hong. 2018. Learning Item-
Interaction Embeddings for User Recommendations. ArXiv abs/1812.04407 (2018).

[40] Zhen Zuo, Lixi Wang, Michinari Momma, Wenbo Wang, Yikai Ni, Jianfeng Lin,
and Yi Sun. 2020. A flexible large-scale similar product identification system
in e-commerce. KDD 1st International Workshop on Industrial Recommendation
(2020).

A IMPLEMENTATION DETAILS
We implement our pipeline leveraging Metaflow [1], which allows
us to programmatically define our pipeline as a DAG. We develop
our pipeline with three core phases (spread across several steps):

• we dedicate initial steps in the DAG to pull data (such as
user sessions, pre-cached embeddings) from various sources
like Snowflake and S3, and perform various transformations
on the data. Note that many of these steps run in parallel;

• we launch in parallel our model training (which may in itself
contain several steps as outlined in Section 2) with various
configurations (e.g. input features). In addition, we are able
to dedicate steps which have high resource demands (e.g.
GPU) to AWS Batch;

• we collate the results (e.g. metrics, trained model, model
predictions) from each parallel run, and store them as Data
Artifacts on S3 for further analysis.

The adoption of Metaflow on top of our cloud provider (AWS)
speeds up development time (since it is the same code running
locally and remotely), reduces training time (thanks to parallelism
and GPU provisioning) and increases confidence in our experiments
(thanks to versioning and full pipeline replayability). The setup we
adopt fully decouples writing code from the underlying infrastruc-
ture, including data retrieval thanks to the “PaaS-like feeling” of
Snowflake [11]. Fig. 5 shows the comparison table for a pair of
mountain shoes (yellow), as produced by our Metaflow pipeline.

Figure 5: Example of a comparison table formountain shoes,
as prepared by our pipeline.

B UNSUPERVISED DATA AND PRODUCT
REPRESENTATIONS

In this section, we provide details and hyper-parameters used in
the generation of training data and of dense unsupervised repre-
sentations for products.

B.1 Data Preparation
• Co-view and Co-purchase Data: For Shop A, we obtain shop-
ping sessions over a period of 3 months and for Shop B we
obtain shopping sessions over a period of 1 month. For co-
view pairs, we enforce a minimum count, 𝑁 = 10, and for
co-purchase pairs we enforce a minimum count𝑀 = 1.

• Cleaning with Image Vectors: For both Shop A and Shop B,
we enforce that positive pairs have a cosine similarity ≥ 0.8
and that negative pairs have a cosine similarity ≤ 0.5.

• Synthetic Augmentation: Maximum cluster size, 𝑍 , is set to
40.

https://doi.org/10.1287/mnsc.2013.1808
https://doi.org/10.13140/2.1.3259.2646
https://doi.org/10.13140/2.1.3259.2646
https://github.com/lucasmaystre/choix
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/3343413.3377956
https://doi.org/10.1145/3343413.3377956
https://www.shopify.ca/partners/blog/website-personalization
https://www.shopify.ca/partners/blog/website-personalization
https://arxiv.org/abs/1908.10084
https://doi.org/10.1086/651235
https://arxiv.org/abs/https://academic.oup.com/jcr/article-pdf/37/3/409/5173186/37-3-409.pdf
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://doi.org/10.1145/3383313.3411477
https://techcrunch.com/2019/11/06/coveo-raises-227m-at-1b-valuation-for-ai-based-enterprise-search-and-personalization/
https://techcrunch.com/2019/11/06/coveo-raises-227m-at-1b-valuation-for-ai-based-enterprise-search-and-personalization/
https://techcrunch.com/2019/11/06/coveo-raises-227m-at-1b-valuation-for-ai-based-enterprise-search-and-personalization/
https://techcrunch.com/2019/10/15/algolia-finds-110m-from-accel-and-salesforce-for-its-search-as-a-service-used-by-slack-twitch-and-8k-others/
https://techcrunch.com/2019/10/15/algolia-finds-110m-from-accel-and-salesforce-for-its-search-as-a-service-used-by-slack-twitch-and-8k-others/
https://techcrunch.com/2019/08/12/lucidworks-raises-100m-to-expand-in-ai-powered-search-as-a-service-for-organizations/
https://techcrunch.com/2019/08/12/lucidworks-raises-100m-to-expand-in-ai-powered-search-as-a-service-for-organizations/
https://techcrunch.com/2021/01/26/bloomreach-raises-150m-on-900m-valuation-and-acquires-exponea/
https://techcrunch.com/2021/01/26/bloomreach-raises-150m-on-900m-valuation-and-acquires-exponea/
https://doi.org/10.1145/1852102.1852106
https://arxiv.org/abs/1905.06589
https://arxiv.org/abs/2103.03230
https://arxiv.org/abs/2103.03230
https://doi.org/10.24963/ijcai.2019/598

“Are You Sure?” SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada

Refer to Tables 3 & 4 for descriptive statistics of session and
training data.

Shop #Products # Browse Session # Purchase Session

Shop A 20k 1.5M 27k
Shop B 50k 3M 12K

Table 3: Descriptive statistics of session data.

Shop Config Train (Pos/Neg) Validation (Pos/Neg)

Shop A

C=0; S=0 19k/18k 1.5k/1k
C=0; S=1 27k/75k 2.8k/3.7k
C=1; S=0 8k/6k 0.5k/0.5k
C=1; S=1 17k/33k 1.5k/1.5k

Shop B

C=0; S=0 50k/20k 3k/1k
C=0; S=1 60k/40k 6k/5k
C=1; S=0 40k/10k 2.5k/1k
C=1; S=1 70k/120k 7k/7k

Table 4: Descriptive statistics of training data.

B.2 Unsupervised Product Representations
• Prod2Vec Embeddings: We train behavioural product embed-
dings using CBOW with negative sampling [20], swapping
the concept of words in a sentence with products in a brows-
ing session. Following best practices of [4] we adopt the
hyper-parameters: window = 5 , iterations = 30, ns_exponent
= 0.75, dimensions = 48, with the exception of a smaller win-
dow size, so that more emphasis is placed on co-viewed, and
hence more likely substitutable products.

• Textual Embeddings: We train Textual Embeddings using
CBOW with negative sampling and using product descrip-
tions as our text corpus. We adopt the hyper-parameters:
window = 10, iterations = 30, ns_exponent = 0.75, dimensions
= 48. We then take the name, description and categories of
each product and obtain a dense representation for each
meta-data by applying average-pooling over their word rep-
resentations.

• Image Embeddings: We prepare Image Embeddings by util-
ising a pre-trained VGG16 [25] network, and apply 7x7 2D-
MaxPooling to the final MaxPool layer of VGG16 to obtain a
512-dim representation.

C MODEL ARCHITECTURE AND TRAINING
C.1 Model Architecture
In this section we provide architectural details on the binary com-
parison model. At a high level, the model takes in two products as
inputs and provides a confidence score indicating of whether the
two products are substitutes.

First, each product 𝑝𝑖 is represented by 𝑘 embeddings [𝑓 0
𝑖
, ..., 𝑓 𝑘

𝑖
],

each of dimension 𝐷 representing a different type of information
or modality. Details on how these embeddings are obtained can be
found in Appendix B.

Secondly, the embeddings of a product are fused into a single
dense representation by a neural network 𝐹𝑈𝑆𝐸 (𝑓 0, ..., 𝑓 𝑘), which
is re-used across all products. We define 𝐹𝑈𝑆𝐸 (𝑓 0, ..., 𝑓 𝑘) as:

𝐹𝑈𝑆𝐸 (𝑓 0, ..., 𝑓 𝑘) = 𝑁 (𝜌 (𝐶 ([𝜙0 (𝑓 0), ..., 𝜙𝑘 (𝑓 𝑘)])))
where𝜙𝑘 is a dense re-projection layer (48-dim, ReLU activation),

𝐶 is the concatenation operation, 𝜌 is a dense fusion layer (128-dim,
ReLU activation) and 𝑁 refers to L2-Normalization operator.

Lastly, the fused representations of two products, ℎ1, ℎ2 are
passed into a neural network 𝐵𝐼𝑁 (ℎ1, ℎ2), which produces the
confidence score. We define 𝐵𝐼𝑁 (ℎ1, ℎ2) as:

𝐵𝐼𝑁 (ℎ1, ℎ2) = 𝜎 (𝜓 (|ℎ1 − ℎ2 |))
That is, we take the element-wise absolute difference [23] be-

tween the two inputs and pass it into a dense classification layer𝜓
(1-dim) followed by the sigmoid function 𝜎 to produce the binary
classification score.

C.2 Model Training
For all experiments, we use Adam optimizer with learning rate of
0.001, early stopping with patience of 20 epochs and a batch size
of 32. For all experiments we tested the follow configurations of
product representations:

• description, name, prod2vec;
• categories, description, name;
• categories, description, name, prod2vec.

The feature set that yielded best results is [categories, description,
name, prod2vec].

	Abstract
	1 Introduction
	2 Comparison Engine Pipeline
	2.1 Fast Retrieval
	2.2 Candidate Refinement
	2.3 Product and Property Selection

	3 Experiments
	3.1 Substitute model
	3.2 Property selection

	4 Conclusion
	5 Ethical Considerations
	Acknowledgments
	References
	A Implementation Details
	B Unsupervised Data and Product Representations
	B.1 Data Preparation
	B.2 Unsupervised Product Representations

	C Model Architecture and Training
	C.1 Model Architecture
	C.2 Model Training

