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ABSTRACT
Leveraging information across modalities can facilitate customers
throughout their journey, especially in the fashion domain where
the visual modality plays an important role. Fashion products have
a variety of visual groups of attributes such as shapes, colors, pat-
terns, etc. Every category is fine-grained, i.e., attributes within a
category may be visually very similar, e.g., v-neck vs. round-neck.
The fine-grainedness of fashion attributes makes cross-modal fash-
ion retrieval more challenging. In this paper, we address the problem
of attribute fine-grainedness in fashion cross-modal retrieval by
leveraging multi-level feature representations. In particular, we
replace the commonly used spatial segmentation approach with a
multi-level feature approach. We compare our approach with state-
of-the-art models in general and fashion cross-modal retrieval and
evaluate it on the Fashion200K and Fashion-Gen datasets.We record
a 43.4% relative increase in text-to-image retrieval and a 57.8% rela-
tive increase in image-to-text retrieval on the Fashion200K dataset
and a 48.6% relative increase in text-to-image retrieval and a 67.2%
relative increase in image-to-text retrieval on the Fashion-Gen
dataset while reducing the number of model parameters by 70%
when compared with the baselines.
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1 INTRODUCTION
Fashion represents a significant part of today’s e-commerce [8].
Many algorithms within fashion search let the user type a textual
query and retrieve the best matches. The algorithms generally take
into account various types of features and input data. However,
in many cases, the search engines do not leverage the rich visual
information available in the product image. This solution creates
a limited search experience for consumers trying to search for
their desired fashion items. Hence, leveraging visual and textual
information in a cross-modal fashion e-commerce platform can
help better grasp the consumer’s needs.
Cross-modal fashion search. In this paper, we focus on the task
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of cross-modal fashion search. To perform cross-modal retrieval,
the model has to learn a mapping between image and text to create
a shared embedding space where similar concepts from different
modalities are close. In the general domain, extensive research has
been performed within image-text retrieval [10, 14, 17, 18, 22, 26,
31].
Challenges. Despite the numerous advances in the general cross-
modal retrieval domain, cross-modal fashion search still has many
challenges [16, 33]. The first challenge is related to the fine-grained-
ness of fashion attributes, i.e., the difference between attributes can
be quite subtle, e.g., puffed sleeve vs. butterfly sleeve. The level of
granularity makes it hard to create feature representations that can
represent these differences well and hence impede the cross-modal
retrieval process. Furthermore, because of the fine-grainedness, it
is hard to ground fashion attributes to the corresponding spatial
locationwithin an image. Ground truth for the attribute annotations
is generally unavailable for e-commerce, so we only know which
attributes are expected to be shown in the image but not where.
Multi-level feature approach (MLF). A common approach to
address attribute fine-grainedness is spatial segmentation, i.e., di-
viding the image into spatial segments to extract image features.
Examples of this approach are 64-tile segmentation [11] and 6-rule
segmentation [21]. However, we argue that the spatial segmenta-
tion approach is sub-optimal due to image composition variability
and the high detail level of fashion attributes. Hence, we propose
to replace the spatial segmentation approach by creating features
from different hidden layers within a convolutional neural network
(CNN). We refer to this approach as themulti-level feature approach
(MLF). We demonstrate that MLF allows us to create more discrimi-
native features. Besides, we explore how the MLF approach works
with different feature extractors from both the general and fashion
domain, and both in end-to-end and general scenarios. We compare
MLF with a spatial segmentation approach and evaluate it on the
Fashion200K [12] and Fashion-Gen [30] datasets.

Additionally, we aim to improve model performance while us-
ing models with fewer parameters. This allows us to train lighter,
faster, and smaller models, which is important for reproducibility,
especially given limited computational resources.

In this work, we aim to answer the following research questions:

(RQ1) How can we improve upon the current state-of-the-art in
cross-modal fashion search? Is it possible to perform better
with fewer parameters? More specifically, what kind of ar-
chitecture do we need? What is the influence of the number
of parameters on the performance of the models?

(RQ2) How can we improve the image representation so that fine-
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grained fashion attributes are better represented? In particu-
lar, how can we use training to improve the image features?
What kind of image and text encoder do we need?

The principal contributions of our research are the following:
• We achieve state-of-the-art results with a 43.4% relative in-
crease in text-to-image retrieval and a 57.8% relative increase
in image-to-text retrieval on the Fashion200K dataset and a
48.6% relative increase in text-to-image retrieval and a 67.2%
relative increase in image-to-text retrieval on the Fashion-
Gen dataset, while reducing the number of model parameters
by 70% when compared with the baselines.

• We show that using a multi-level feature approach instead
of a spatial segmentation approach allows us to create more
discriminative image features for fine-grained cross-modal
search as measured by cosine similarity.

• We research the requirements for successful use of the pro-
posed multi-level feature approach and find the following:
– Overall, the MLF approach results in a relative increase in
cross-modal retrieval performance. The degree of improve-
ment depends on network the architecture and depth.

– Surprisingly, the use of models specifically fine-tuned on
fashion data does not contribute to better retrieval perfor-
mance.

– TheMLF approach in an end-to-end set-up yields a relative
improvement of 18%–38% retrieval performance compared
to the same model without end-to-end training.

2 RELATEDWORK
Cross-modal retrieval. Early approaches to image-text mapping
have focused on correlationmaximization through kernelized canon-
ical correlation analysis (kCCA) [14, 15, 31]. The problemwith these
approaches is that they do not scale well due to the costly kernel
computation. The use of a neural approach [10, 17, 18, 22] within
image-text matching became popular with the advancement of
CNNs and recurrent neural networks (RNNs). Another related line
of work concerns creating a universal vision-language encoder
[5, 23, 24, 26]. These models are inspired by cross-language models,
like BERT in the natural language processing (NLP) domain. These
models achieve SOTA results on a variety of multi-modal tasks
such as cross-modal retrieval and visual question answering. The
downside of these models is that reproducibility of the results is
difficult because of the big datasets the models are trained on and
high computational costs.

Specific image-text models for the fashion domain have been
researched on several occasions. Often the models from the general
domain are used and tweaked to perform in this more fine-grained
setting. In [32], authors have used CCA to perform cross-modal
search for dresses in the fashion domain, closely resembling the
work of Hodosh et al. [14] in the general domain. Improving on this
work, Laenen et al. [21] used an approach very similar to Karpa-
thy and Fei-Fei [17], embedding the images with a CNN and the
sentences with a skip-gram model. The method of Laenen et al.
[21] is different from Karpathy and Fei-Fei [17] in the treatment of
images. Laenen et al. [21] uses the symmetry of dresses to segment
the image in six regions with hand-made rules. These spatial seg-
mentations are used because object detectors do not work in the

fashion domain due to the fine-grainedness of the fashion attributes.
These images are segmented in a way that the segments focus on
regions that contain specific fashion attributes, for example, the
neck and arms. In this way, the authors hope that the fashion at-
tributes can be mapped to certain image segments. Another line
of work suggests that attribute fine-grainedness can be tackled by
using attention mechanisms, as attention is also often used to bring
fine-grained attributes to the forefront in item representations [20].

Recently, the FashionBERT model has been proposed [11]. In-
spired by vision-language encoders, the authors fine-tune BERT
using fashion images and descriptions in combination with an adap-
tive loss for cross-modal search. The FashionBERT model tackles
the problem of fine-grainedness similar to Laenen et al. [21], by
taking a spatial approach. The image is uniformly segmented in
64 tiles. These tiles are used as “word tokens” within the Fashion-
BERT model. The authors claim that by segmenting image in 64
tiles and feeding the tiles to the model, allows the model to learn
to focus on the small details of the images, thereby addressing the
fine-grainedness problem. Since the results of FashionBERT are
state-of-the-art, we are using this model as one of the baselines in
our work.

Most previous work in the fashion domain is focused on models
that are relatively large. Unlike previous work in this domain, we
aim to improve upon SOTA by using models with fewer parameters.
Combining features across multiple levels. Since the begin-
ning of deep neural networks, research has been performed to
understand the inner workings of CNN. Early work tried to vi-
sualize activations in different hidden layers to understand what
happens inside a CNN. In this early work, they were able to show
that early layers are activated by global structures, whereas later
layers are activated by more detailed structures [1, 36, 38]. This
raised the question of whether these hidden layers could be used for
different tasks. Multiple works showed that different nodes within
a network encode different semantic features for image classifica-
tion [2, 9, 29], edge detection [35], cross-domain matching [37], and
image segmentation [13]. Vittayakorn et al. [34] explored features
from multiple levels in the fashion domain. In particular, the au-
thors explored the correlation between different image attributes
and neural activations across hidden layers of CNN. The authors
performed experiments that suggest that global fashion attributes
correspond to early layers in a CNN and more detailed attributes to
later layers. This shows that the use of features from hidden layers
might be interesting to use to create features that represent these
fine-grained fashion attributes better.

Unlike previous work in this domain, our work focuses on lever-
aging multi-level features for constructing image representations
for the cross-modal fashion retrieval task. We further explore how
our approach helps to learn fine-grained fashion attributes.

3 EXPERIMENTS
MLF pipeline. The multi-level features approach that we propose
is inspired by a line of work related to Vittayakorn et al. [34] which
suggests a correlation between visual semantic attributes and fea-
tures from different layers within a CNN. We propose an approach
that will leverage information across multiple layers of a CNN in-
stead of only using the features from the last layer. The intuition is
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that information from textual and visual modalities can be aligned
better since the multi-level features contain more semantic meaning
than the features obtained using the spatial segmentation approach.

Figure 1 gives a visual overview of our MLF pipeline. Our ap-
proach comprises three major components: (1) an image encoder
for generating multi-level features, (2) a text encoder for generating
a text representation, and (3) a text-image matching model that
learns a shared multi-modal space. To obtain multi-level image
representation, we sample features from evenly spaced layers of
the image encoder. For 3D layers, we apply 2D average pooling.
After pooling, we flatten the features to create 1D-features. We pad
the features with zeros to create features of equal shape wherever
required. As a text-image matching model, we use SCAN [22] be-
cause it achieves high recall scores while being a relatively small
model in the number of parameters.
Datasets. We run the experiments using Fashion200K and Fashion-
Gen datasets.

Fashion200K. This dataset comprises around 200,000 images col-
lected from webshops in five different categories: dresses, pants,
tops, jackets, and skirts [12]. Every item has one or multiple images
taken from different angles. Textual descriptions are filtered for
words with a low frequency.

Fashion-Gen. This dataset contains 67,666 unique fashion items,
every item has one to six images from different angles [30]. This
results in a dataset with 293,000 image-text pairs.

3.1 Experiment 1: Logistic Regression
Setup. Firstly, we evaluate the discriminative power of MLF vs. spa-
tial segmentation for detection of fine-grained attributes. For the
experiment, we sample pairs of fashion attributes. Both attributes
in every pair belong to the same category, and therefore are inter-
changeable. We collect all items within the dataset that contain one
of the two attributes in their respective description. For every pair
of attributes, we create a dataset with half of the instances contain-
ing one attribute whereas the other half of the dataset contains the
second attribute. We create two independent feature sets. The first
feature set is created using the spatial segmentation approach [21]
and the second feature set is created using our MLF approach. In
both cases, we use AlexNet as an image encoder. Afterward, we
feed the obtained features into a logistic regression model and train
and evaluate it on the task of attribute prediction. We perform this
experiment on one group of clothing items since it creates more
uniformity between the different segments. We choose the category
of dresses from the Fashion200K dataset [12] since it has the most
data available. We perform every run five times.
Results. The results of the logistic regression experiment can be
seen in Table 1. From the 𝐹1-scores we can see that more global at-
tributes, like color, have higher scores than more detailed attributes.
This can be explained by the prominence of color within a pic-
ture. Therefore, the features will be better in representing color.
The results also show that more detailed attributes, like (silk vs.
crepe) or (maxi vs. midi), are harder to discriminate. This shows
that dividing the image into spatial segments is not an optimal
solution because in this approach discriminative power varies per
attribute. Besides, we note that the maximum scoring segment is

never constant across five runs. This suggests that the model might
not always look at the “real” attribute to classify the two attributes
because the attribute is too fine-grained. Therefore, the model at-
tempts to find a discriminative feature that has nothing to do with
an actual attribute but can separate the two classes correctly. These
results can be explained by the fact that AlexNet is trained on differ-
ent data and on the task of object detection which is different from
our task. Furthermore, the 𝐹1-scores for the multi-level features
are generally higher when compared to scores obtained with the
spatial segmentation approach.

Overall, the MLF approach in this relatively simple setup showed
an improvement over the spatial segmentation approach. Therefore,
we will explore the use of the MLF approach further to see if we can
use it for cross-modal fashion retrieval and under which conditions
the approach works.

3.2 Experiment 2: MLF with Different Image
and Text Encoders

Setup. In the second experiment, we want to investigate the rela-
tionship between MLF architecture and the resulting performance.
More specificially, we explore how different combinations of image
and text encoders impacts MLF performance.

3.2.1 Image encoders. Differences in training techniques and net-
works have an influence on the interpretability of different hidden
layers within a network [2]. Therefore, we experiment with a vari-
ety of SOTA image encoders trained in a supervised manner, such
as AlexNet [19], ResNeSt-50 [39]. Besides, we experiment with sim-
CLR [4], a model trained in an unsupervised way. Additionally, we
experiment with MMFashion, a model trained to detect fashion
attributes [25]. We incorporate the above-mentioned models in the
MLF pipeline in two ways. First, we use them as out-of-the-box
image encoders. Second, we fine-tune them on the fashion dataset.

3.2.2 Text encoders. For text representation, we experiment with
BERT [7], gated recurrent unit (GRU) [6] and continuous bag of
words (CBOW) [28]. We use pre-trained BERT because of its great
performance on a range of NLP tasks. Besides, we experiment with
a GRU because it has a relatively small number of parameters while
achieving good performance on a variety of tasks. Moreover, we
experiment with CBOW because the model can be easily trained
on fashion domain data. To train CBOWwe create a fashion corpus
that consists of unique text descriptions of the Fashion200K and
Fashion-Gen datasets. The complete corpus comprises 1.3 million
sentences or 5.6 million words.

We train all the models till the convergence of summation of
recall scores and run the experiment three times using a different
seed. We report the average recall scores.
Results. The results of this experiment are presented in Table 2.
Overall, there is a significant difference in scores between the com-
binations of image and text encoders for both datasets. When we
look at the image encoders, the ResNeSt-50 model is achieving the
highest score, followed by MMFashion and AlexNet. The top score
of ResNeSt-50 is not surprising since the model achieves state-of-
the-art results on a range of Computer Vision tasks. However, the
low scores of simCLR are somewhat surprising since the model
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Figure 1: Overview of the MLF pipeline. We extract image and text features and feed these features to text-image matching
model, where a shared embedding space is learnt

Table 1: Results of experiment 1: logistic regression
Spatial segmentation Multi-level features

Attributes # samples
𝐹1 Max 𝐹1 feat. Most freq. feat. 𝐹1 Max 𝐹1 feat. Most freq. feat.

black vs. white 2080 0.93 [4, 1, 1, 2, 2] 1,2 0.94 [0, 2, 6, 3, 0] 0
black vs. blue 5000 0.88 [1, 0, 1, 1, 6] 1 0.91 [1, 2, 1, 1, 3] 1
red vs. orange 234 0.87 [0, 6, 1, 5, 0] 0 0.87 [1, 0, 2, 0, 0] 0
yellow vs. black 246 0.98 [4, 4, 0, 6, 5] 4 0.94 [0, 6, 2, 0, 0] 0
multicolor vs. floral 1426 0.73 [4, 6, 3, 2, 4] 4 0.81 [2, 2, 3, 1, 3] 2,3
lace vs. jersey 862 0.81 [0, 6, 6, 2, 2] 2,6 0.84 [6, 4, 5, 6, 6] 6
silk vs. crepe 924 0.71 [5, 0, 5, 4, 6] 5 0.72 [3, 1, 2, 3, 1] 1,3
maxi vs. midi 2104 0.77 [1, 6, 5, 2, 2] 2 0.79 [5, 5, 5, 5, 5] 5
long vs. knee-length 880 0.87 [6, 6, 0, 1, 1] 1,6 0.87 [5, 1, 5, 2, 2] 2,5
embroidered vs. beaded 814 0.79 [4, 4, 5, 1, 2] 4 0.82 [2, 5, 2, 6, 0] 2

scores are comparable to those of top-performing networks on clas-
sification tasks. The reason for the simCLR performance could be
related to the fact that the model is trained in unsupervised man-
ner. MMFashion lags behind ResNeSt-50. It is interesting because
MMFashion was specifically trained to detect fashion attributes
and because ResNeSt-50 and MMFashion have comparable model
architecture. The reason why ResNeSt-50 is performing better than
AlexNet could be related to the depth of the network. Fine-tuning
models on fashion data does not seem to improve scores, for all the
models trained in supervised way. We only observe an increase in
performance with simCLR, which is the model trained in unsuper-
vised manner. Hence, we could conclude that fine-tuning models on
fashion data does not necessarily create an extra advantage while
learning the multimodal embedding space.

When we look at the text encoders, we can see that the score
of the CBOW embeddings is the lowest for all the image encoders
while the difference in performance between the GRU and BERT-
embeddings differs per image encoder. The comparable perfor-
mancewhen using the GRU and BERT-embeddings can be explained
by the fact that the problem in the fashion domain is related to the
image features and not the text features.

Overall we can conclude that the choice of image and text en-

Table 2: Results of experiment 2: MLF with different image
and text encoders, r-sum

GRU CBOW BERT
Model Fashion 200K

AlexNet 247.7 144.2 230.3
AlexNet (fine-tuned) 151.8 89.8 133.2
simCLR 141.8 94.3 136.7
simCLR (fine-tuned) 179.9 123.5 179.7
ResNeSt-50 274.1 218.8 279.1
ResNeSt-50 (fine-tuned) 239.1 172.8 254.9
MMFashion 233.3 216.1 266.9

Fashion-Gen

AlexNet 268.0 221.7 253.2
AlexNet (fine-tuned) 141.7 98.0 175.0
simCLR 205.2 169.8 202.1
simCLR (fine-tuned) 210.4 193.7 225.6
ResNeSt-50 348.9 274.5 348.6
ResNeSt-50 (fine-tuned) 261.5 230.9 276.5
MMFashion 323.1 269.4 326.9
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coders is affecting model performance. We conclude that the use of
a ResNeSt-50 with a GRU is the best combination since the number
of parameters for the GRU is much lower than BERT while the
performance is comparable. Therefore, we use this combination
of image and text encoder for further experiments on the Fash-
ion200K dataset and Fashion-Gen dataset. Additionally, we further
experiment with AlexNet image encoder since this model is used
in many baselines as an image encoder and thus allow for a more
fair comparison.

3.3 Experiment 3: MLF and End-to-end
Training

Setup. In the third experiment, we investigate the relationship
between MLF performance and end-to-end (E2E) training. End-
to-end training in this context implies that we do not only train
the text-image matching model but the image encoders as well.
We refer to this model architecture as MLF-E2E. As discussed in
Section 3.2, we only perform end-to-end training with the best-
performing combination of image and text encoders and AlexNet.
We train all the models till the convergence of summation of recall
scores and run the experiment three times using a different seed.
We report the average recall scores.
Results. Table 3 demonstrates that end-to-end training (MLF-E2E)
improves the scores compared to the models using no end-to-end
training (MLF) for both image encoders on all the datasets. For
Fashion200K dresses subset and complete dataset the relative gains
are 35.6% and 22.3% respectively, whereas for Fashion-Gen dataset
E2E training improves scores by 28.6%. Hence, we suggest that
training image encoders end-to-end is an easy way improve MLF
performance.

3.4 Experiment 4: MLF vs. Spatial
Segmentation

Setup. In the fourth experiment, we explore how our different MLF
models perform against other baseline models that are using spatial
segmentation methods. As baselines, we select several state-of-
the-art cross-modal retrieval models from the general and fashion
domain.

FashionBERT [11]. We use the original implementation of the
FashionBERT. More specifically, we divide every image into 64
equal tiles and extract features using a pre-trained ResNet-50. First,
we use the pre-trained model directly in a zero-shot setting since it
is already trained on fashion images. Later, we fine-tune the model
on the Fashion200K dataset to see the performance improvement.
However, we fine-tune the model only on the dresses subset of Fash-
ion200K dataset. This is done due to memory constraints emerging
from the fact that training FashionBERT requires that every image
has to be represented in 64 tiles.

SCAN [22]. We use the original implementation of the SCAN
model. However, for a fair comparison, we replace object detection
mechanisms with the 6-rule segmentations approach. We create
MLF features using AlexNet and use a GRU as a text encoder.

Laenen et al. [21]. Following the original implementation [21], we
segment the image according to the 6-rule segmentations, extract

Table 3: Results of experiment 3: MLF and end-to-end train-
ing, and experiment 4: MLF vs. spatial segmentation

Image-to-text Text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 SumModel
Fashion 200k, dresses

Laenen (6-rule) 4.3 14.8 22.7 5.3 15.1 23.6 85.8
VilBERT (6-rule) - - - 4.0 16.7 26.3 47.0
FashionBERT (64-tile) (zero-shot) 1.3 5.6 11.0 2.1 9.3 17.4 46.7
FashionBERT (64-tile) (fine-tuned) 3.6 13.0 24.9 4.2 18.9 29.9 94.5
SCAN (6-rule) 9.0 25.9 35.5 9.1 26.1 37.8 143.4
SCAN (6-tile) 9.0 24.6 35.0 10.1 25.6 35.5 139.8
MLF (AlexNet) 12.5 30.2 39.8 13.3 31.6 40.3 167.7
MLF (ResNeSt-50) 11.0 27.7 38.9 12.5 29.8 41.2 161.1
MLF-E2E (AlexNet) 14.3 35.9 48.1 14.9 36.8 48.7 198.7
MLF-E2E (ResNeSt-50) 21.1 44.8 55.4 22.2 46.6 57.1 247.2

Fashion 200K, complete dataset

Laenen (6-rule) 6.5 24.6 35.6 9.0 26.6 38.7 141.0
VilBERT (6-rule) - - - 21.2 48.9 61.6 131.7
SCAN (6-rule) 17.8 43.9 56.3 22.5 45.2 57.7 243.4
SCAN (6-tile) 15.7 40.2 52.9 18.9 43.6 55.7 227.0
MLF (AlexNet) 18.4 44.9 57.5 21.5 45.9 59.1 247.3
MLF (ResNeSt-50) 23.6 49.5 61.1 25.0 51.1 62.8 273.1
MLF-E2E (AlexNet) 25.6 55.1 69.4 26.0 54.9 68.4 299.4
MLF-E2E (ResNeSt-50) 35.3 69.7 81.2 38.3 69.8 81.2 375.5

Fashion-Gen, complete dataset

Laenen (6-rule) 8.4 29.4 45.3 11.0 33.9 47.1 175.1
VilBERT (6-rule) - - - 22.1 53.3 66.9 142.3
FashionBERT (64-tile) (zero-shot) 1.1 4.4 9.6 1.3 5.7 11.7 33.8
SCAN (6-rule) 18.4 47.3 60.9 21.0 48.8 62.8 259.2
SCAN (6-tile) 18.2 45.5 61.0 19.9 48.1 60.8 253.5
MLF (AlexNet) 18.1 48.8 63.9 20.9 50.6 65.7 268.0
MLF (ResNeSt-50) 30.3 64.4 76.4 32.0 67.6 78.2 348.9
MLF-E2E (AlexNet) 32.4 68.7 82.7 35.7 70.9 83.3 373.7
MLF-E2E (ResNeSt-50) 41.6 77.4 89.1 42.8 79.2 89.5 419.6

the image features using a pre-trained AlexNet, and use GRU for
text representations.

ViLBERT [26]. We use the original ViLBERT implementation
while adapting it to our task. More specifically, we obtain image re-
gions by applying 6-rule segmentation instead of extracting bound-
ing boxes. We do not use the bounding boxes method because it
is not possible in the case of fashion images. However, following
the original implementation, we use a pre-trained ResNet-101 from
PyTorch torchvision model zoo to extract features. We fine-tune
the pre-trained ViLBERT 6-layer model on our fashion datasets be-
fore testing. We only evaluate the model on text-to-image retrieval,
since the model is only designed for caption-based image retrieval.

We train all the models till convergence of summation of recall
scores (r-sum) and run the experiment three times using a different
seed. We report the average recall scores.
Results. We start by comparing the performance of the two dif-
ferent spatial segmentation methods. Next, we evaluate the MLF
approach on Fashion200K and Fashion-Gen datasets against the
spatial segmentation baselines. The results of the experiments can
be found in Table 3.

3.4.1 6-rule segmentation vs. tile-based segmentation. First, we com-
pare performance between two spatial segmentation methods, 6-
rule segmentation vs. tile-based approach. For a fair comparison, we
evaluate the performance of the SCAN model, i.e., SCAN (6-rule)
vs SCAN (6-tile). Table 3 demonstrate that 6-rule segmentation
method achieves higher r-sum scores. More specifically, the relative
difference when evaluated on the Fashion200K dresses category is
2.6% whereas the relative difference for the full Fashion200K dataset
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is 7.2%. For the Fashion-Gen dataset, we observe a relative differ-
ence for the 6-rule segmentations of 2.2%. We find it interesting that
the performance of the full dataset is relatively better compared
to the dresses category alone, even though the segmentation rules
are specifically made for dresses. This suggests that segmenting
the dress images in certain segments adjusted to the item does
not necessarily lead to the score improvement. Overall, the results
show us that the type of spatial segmentation can influence the
performance of the model.

3.4.2 MLF vs. Spatial segmentation. Table 3 demonstrates that MLF
approach using AlexNet is performing better than the basic SCAN
model using 6-rule segmentations. The relative increase in r-sum
score for the Fashion200K dataset is 17.1% in the dresses category
vs. 1.5% in the full dataset. For the Fashion-Gen dataset, the relative
improvement of r-sum score is 3.4%. Besides, MLF with ResNeSt-
50 gives better performance than MLF-SCAN with AlexNet. In
particular, when comparing the MLF approach with a ResNeSt-50
to the MLF approach with an AlexNet, the relative improvement
in r-sum is 10.4% for the full Fashion200K dataset and 30.1% for
the Fashion-Gen dataset. Such difference in performance could be
explained by that fact that ResNeSt-50 is a deeper model.

We further analyze the discriminative power of the MLF with
ResNeSt-50 by collecting the average attention distribution of differ-
ent fashion attributes across hidden layers. Figure 2 demonstrates
that more global attributes like color are represented with early
layers, whereas the more detailed attributes like type of fabric or
dress are represented by later layers. The observations are in line
with [34].

Overall, the results suggest that multi-level features have more
discriminative power and represent the semantic fashion concepts
better than the features obtained with spatial segmentation method.

3.4.3 MLF vs. Baselines. When we compare MLF with a ResNeSt-
50 image encoder against the baselines, we observe that our model
performs better. Compared to the model of Laenen et al. [21], we
achieve a relative improvement of 97% on the two full datasets. The
relative improvement when compared to ViLBERT is 5.5% on the
full Fashion200K dataset and 24.9% on the Fashion-Gen dataset for
image retrieval. The improvement of our model is positive since
ViLBERT (252 million) is using much more parameters than our
model (8 million). Lastly, if we compare our model against Fash-
ionBERT on the Fashion200K subset, we observe that we achieve a
relative gain of 70.4%.

Overall, we achieve state-of-the-art results with the MLF-E2E-
SCAN architecture in combination with a ResNeSt-50 image en-
coder and GRU text encoder. We record 43.4% relative increase in
text-to-image retrieval and 57.8% relative increase in image-to-text
retrieval on the Fashion200K dataset and 48.6% relative increase in
text-to-image retrieval and 67.2% relative increase in image-to-text
retrieval on the Fashion-Gen dataset.

3.5 Experiment 5: MLF Performance and
Network Depth

Setup. The results of the experiments described earlier suggest
that the use of a ResNeSt-50 leads to higher performance when
compared to AlexNet. We believe that this is because ResNeSt-50

Table 4: Multi-level features experiment comparing
ResNeSt-50 and ResNeSt-101

Image-to-text Text-to-image
Model R@1 R@5 R@10 R@1 R@5 R@10

MLF-SCAN (ResNeSt-50) 23.6 49.5 61.1 25.0 51.1 62.8
MLF-SCAN (ResNeSt-101) 21.9 51.3 64.6 26.9 53.1 64.6
MLF-E2E-SCAN (ResNeSt-50) 35.3 69.7 81.2 38.3 69.8 81.2
MLF-E2E-SCAN (ResNeSt-101) 34.9 69.7 82.1 38.7 72.4 82.4

Table 5: Number of trainable parameters per model

Model Trainable parameters
ViLBERT [26] 252,100,000
FashionBERT [11] 110,000,000
MLF-E2E (AlexNet) 65,300,000
MLF-E2E (ResNeSt-50) 33,700,000
SCAN [22] 8,300,000
Laenen et al. [21] 8,300,000

is a deeper network and therefore the features underwent more
transformations, which creates more diversity. To investigate this
further, we experiment with ResNeSt-50 and ResNeSt-101. We aim
to explore how using a deeper network leads to improvement. We
train all the models till convergence of summation of recall scores
and run the experiment three times using a different seed.We report
the average recall scores.
Results. Table 4 demonstrates the results of the experiment. If we
compare the multi-level features, the use of ResNeSt-101 features
achieves a better relative r-sum perforce performance of 3.4%. For
the MLF-E2E-SCAN, the same relative improvement of r-sum is
1.3%. In general, the results further support our intuition that the
using deeper networks for creating multi-level features leads to
better performance.

4 ANALYSIS
Number of trainable parameters. In section 3.4.2, we showed
that the number of parameters impacts the performance of the
models. Therefore, we think it is important to not only look at
evaluation metrics but also at how many parameters are these
models using. The trend these days is to create models with more
and more parameters, e.g., GPT-3 [3] and Turing-NLG [27]. While
the results of these models are impressive, they are often difficult to
reproduce due to the limited resources. Therefore, in this work, we
focus on presenting a solution with fewer parameters that would
facilitate reproducibility and be faster and cheaper when it comes
to computational costs.

In Table 5 the number of trainable parameters for the different
models can be seen. The best performingmodel in both datasets was
the MLF-E2E-SCAN using a ResNeSt-50. The recall scores achieved
by this model are more impressive when we compare the num-
ber of parameters. The MLF-E2E architecture is making efficient
use of the parameters and that the MLF approach with end-to-end
training is working. The fine-grainedness of fashion images can
not be solved by creating bigger models with more parameters.
There is a need to extract features in a smart way to capture the
semantics of the attributes. In this work, we showed that we took a
step in the right direction with the MLF approach. Furthermore, it
is interesting to see that the MLF-E2E with an AlexNet backbone is
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Figure 2: Experiment 4: MLF vs. spatial segmentation. The average attention distribution for different fashion attributes using
the MLF with ResNeSt-50.

achieving lower recall scores, even though the number of parame-
ters is higher. This shows again that deeper networks create better
features because the difference between the features is probably
bigger due to more filters. Overall, we can conclude that we created
an efficient architecture that achieves state-of-the-art performance
while reducing the number of parameters used by 70% compared
to other high-performing models like ViLBERT and FashionBERT.

5 DISCUSSION & CONCLUSION
In this work, we addressed the challenge of fine-grainedness in
fashion images for cross-modal fashion search. We proposed to
use the MLF approach instead of a spatial segmentation approach
to creating more discriminative features. Our architecture MLF-
E2E (ResNeSt-50) achieved state-of-the-art results for cross-modal
fashion search,. In particular, we gained a 43.4% relative increase in
text-to-image retrieval and a 57.8% relative increase in image-to-text
retrieval on the Fashion200K dataset, and a 48.6% relative increase
in text-to-image retrieval and a 67.2% relative increase in image-to-
text retrieval on the Fashion-Gen dataset. Additionally, we reduced
the number of parameters by 70% compared to other baselines.
Furthermore, we showed that the MLF approach allows us to create
more discriminative image features. Besides, we researched the
requirements for the MLF approach and found that end-to-end
training is beneficial, the use of deeper networks improves score
and that in general fine-tuning on domain data does not improve
model performance.

In this paper, wemainly focused on the fashion domain. However,
product retrieval shares many similarities with fashion retrieval.
Therefore, it would be interesting to explore how the MLF approach
impacts the general cross-modal product retrieval with the MLF
approach. Furthermore, in this work, we focused on the limited set
of image and text encoders as well as text-image matching models.
Therefore, it would be interesting to see how the MLF approach
works with different text encoders, image encoders, and text-image
matching models.

6 REPRODUCIBILITY
All code for the experiments can be found on our Git repository:
https://github.com/jantje676/cross-modal.
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