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Abstract
Mapping a search query to a set of relevant categories in the product
taxonomy is a significant challenge in e-commerce search for two
reasons: 1) Training data exhibits severe class imbalance problem
due to biased click behavior, and 2) queries with little customer
feedback (e.g., tail queries) are not well-represented in the training
set, and cause difficulties for query understanding. To address these
problems, we propose a deep learning model, DeepCAT, which
learns joint word-category representations to enhance the query
understanding process. We believe learning category interactions
helps to improve the performance of category mapping on mi-
nority classes, tail and torso queries. DeepCAT contains a novel
word-category representation model that trains the category repre-
sentations based on word-category co-occurrences in the training
set. The category representation is then leveraged to introduce a
new loss function to estimate the category-category co-occurrences
for refining joint word-category embeddings. To demonstrate our
model’s effectiveness on minority categories and tail queries, we
conduct two sets of experiments. The results show that DeepCAT
reaches a 10% improvement on minority classes and a 7.1% im-
provement on tail queries over a state-of-the-art label embedding
model. Our findings suggest a promising direction for improving
e-commerce search by semantic modeling of taxonomy hierarchies.
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1 Introduction and Related Work
Query understanding is an essential step in developing advanced
retrieval systems (e.g., e-commerce search engines) [5]. In an e-
commerce setting, one aspect of query understanding is achieved
by mapping a query to a set of relevant product categories [15].
For example, for the query “ motion activated kitchen faucet”, an
e-commerce search engine should return products from relevant
categories like bath, plumbing, kitchen. These categories match the
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customer’s intent and provide signals for downstream tasks such
as retrieval and ranking. In this paper, we develop a new model
for query understanding in an e-commerce search engine, depicted
in Fig. 1. Fig. 1 shows the query understanding procedure where
a search query like “motion activated kitchen faucet" is mapped
to a set of relevant product categories in a hierarchical product
taxonomy.

Query understanding is a challenging task since: 1) queries are
often short, vague, and suffer from the lack of textual evidence [6],
2) queries with similar textual information with slight variations
such as “9 cu. ft. chest freezer in white” and “9 cu. ft. upright white
freezer” belong to different categories. However, queries with no
term overlap like “french door 32 inch. refrigerator” and “black
fridge with glass panes” are semantically similar and may belong to
related categories, 3) The severe data imbalance problem resulted
from customer bias towards some specific products in general or in
a particular time. Also, the product categories’ correlations directly
impact customer click behavior, where some of them received more
click rates than usual, and others get fewer click rates, and 4) queries
with low customer behavior feedback (e.g., tail and torso) are more
challenging to classify as they have a high signal-to-noise ratio.
Current neural models achieve a softer representation with richer
compositionality of the queries compared to conventional term-
based models [14].

There have been numerous studies in neural models for text
representation in different levels, such as characters, subwords,
words [4, 9, 12]. These models utilize distributed representation by
transferring knowledge from other resources to enrich the query
representation [2, 7]. However, they still have difficulty properly
addressing challenges (3) and (4) for query understanding. To al-
leviate these problems, inspired by work in information networks
[11], we propose a joint word-category (label) representation to
provide both word and category embeddings. Then, category rep-
resentations are leveraged to boost the model’s efficiency on both
tail queries and the minority classes.

Tang et al. [10] introduce the idea of heterogeneous text net-
work embedding to model the word and label interactions. Guoyin
et al. [13] expand the concept to extract the relative spatial in-
formation among consecutive terms with their associated labels.
Although these models leveraged the joint word-label interactions,
they still lose the knowledge in label-label correlations. Extracting
category (label) co-occurrence information is essential for query
understanding, where product categories inherent this correlation
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Figure 1: Query understanding procedure.

during taxonomy formation. Product categories are not mutually ex-
clusive and are semantically related to each other. This correlation
between product categories impacts the customer click behavior,
which utilizes as supervision signals in dataset generation. Thus,
category co-occurrences can be used to improve the quality of
minority classes and tail queries, where there is less customer feed-
back available. To this end, we consider the product categories as an
undirected homogeneous graph, where the edges represent category
correlations.

In this paper, we introduce a data-driven approach named Deep-
CAT for query understanding. Our model consists of a pipeline of
deep learning models that utilize both word-category and category-
category interactions. In summary, our contributions are: (1) propos-
ing a novel deep learning model for joint word-category representa-
tion, and (2) introducing a new loss function to incorporate pairwise
category information into the query understanding process.

2 DeepCAT: Model and Implementation
In this section, we present our DeepCAT model. First, we provide
a high-level overview of the model architecture and then describe
the model implementation’s details. Then , we describe query rep-
resentation and word-category representation, and category-category
representation models, followed by our new loss function to incor-
porate category co-occurrences.

Model Overview: The DeepCAT network architecture is il-
lustrated in Figure 2. DeepCAT consists of three main compo-
nents: (a) query representation, (b) joint-word-category representa-
tion, and (c) category-category representation. Any state-of-the-art
deep network could be used to develop the query representation
(Query2Vector Network). We deploy a CNN-based model, which
consists of convolutional layers followed by highway layers [14],
to add more non-linearity to the model and improve the model ca-
pacity by allowing information flow in the network. Recurrent [3]
or transformer [12] neural models could also be used as an alterna-
tive for Query2Vector network. However, due to their high latency
time during inference compared to feed-forward neural models, we
decided to choose the convolutional neural network-based models
for query representation.

We leverage the word-category co-occurrence concepts for joint-
word-category representation, which computes using a cosine sim-
ilarity between query words and their associated categories. Then,
a multi-head self-attention deploys to generate the contribution of
each word to each specific product category. These attention scores
utilize to modify the word’s contribution in the query modeling.
Finally, category and query representations are concatenated to

create the final query representation. A sigmoid cross-entropy is de-
ployed to compute the loss values for this multi-label problem. For
category-category representation, first, we extract the experimental
category co-occurrence matrix CM from the training set. Next, it
normalized using the Cosine normalization method. In each training
step, the CM is estimated using the category representations, and
the loss values are propagated through the network using matrix
approximation [8].

QueryRepresentation (Query2VectorNetwork): Suppose there
is a search query dataset 𝐷 = {𝑄,𝐶}, where 𝑄 is a set of search
queries and𝐶 is candidate product categories. Each query consists of
a sequence of words𝑞 = [𝑤1;𝑤2; ... ;𝑤𝑛] of size𝑛 = 10, and is repre-
sented as 𝑞 |𝑛 |×𝑉𝑤 . Also,𝐶 is mapped to embedding spaces of C |𝐶 |×𝑉 .
The word and category embeddings are initialized with Word2Vec
and random embedding of size |𝑉 | = 100, respectively. For the
query representation, any complex deep learning model could be
used. Our implementation of Query2Network uses a 3-layer CNN
model, where it receives the word embeddings and produces the
query representation. 𝑐𝑛𝑛(𝑞𝑤), goes through a highway layer [14].
A highway layer combines a ReLU function for a non-linear projec-
tion, followed by a sigmoid function for smoothing the projection
of each convolutional layer, ℎ𝑖𝑔ℎ𝑤𝑎𝑦 (𝑞𝑤) = 𝑟𝑒𝑙𝑢

(
𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑐𝑛𝑛

) )
.

Word-Category Representation: To train category represen-
tation, first, in each training step, we form a word-category co-
occurrence matrix. The index (𝑖, 𝑗) of this matrix indicates the
co-occurrence of word 𝑖 and associated category 𝑗 of the query. To
estimate this matrix during the training, we need a dot-product
between word representations of query (𝑛 ×𝑉 ) with the category
representations ( |𝐶 | × 𝑉 ). The output is of size (𝑛 × |𝐶 |), where
𝑛, |𝐶 |, and |𝑉 | indicate the query length, number of categories, and
embedding size, respectively. After estimating the word-category
co-occurrence matrix, we need to extract each word’s contribution
in the query to all product categories. We deploy a self-attention
mechanism with 𝑛 = 10 different heads to compute the scores. We
use ten heads since we consider each query at most includes ten
words. Finally, an attention matrix of size (𝑛 × |𝐶 |) creates 𝐴𝑤𝑐 =
𝑆𝑒𝑙 𝑓 _𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

(
𝑙2_𝑛𝑜𝑟𝑚(𝑞𝑤) ⊙ 𝑙2_𝑛𝑜𝑟𝑚(𝐶)

)
, where the value at

(𝑖, 𝑗) represents the contribution of word 𝑖 to category 𝑗 . The output
goes through a max-pooling layer to form the attention weights.
The attention weights multiples to the word vectors to generate the
weighted word embeddings 𝑅𝑤𝑐 = 𝑞𝑤 ⊙ 𝐴𝑤𝑐 . A multi-head self-
attention mechanism applies to 𝑞𝑤 . Multi-head self-attention con-
tains several linear projections of a single scaled dot-product func-
tion that are parallelly implemented ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

(
𝑞𝑤𝐾

𝑇

√
𝑑𝑘

)
𝑉 .
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Figure 2: DeepCAT architecture, (a) query representation (b) word-category representation (c) category-category representation.

Where ⊙ indicates a dot-product. Finally, 𝑅𝑞𝑤 and 𝑅𝑤𝑐 go through a
linear layer to form 𝑅, the final joint word-category representation.

Category-Category representation: A co-occurrence matrix
creates on training data to model the category-category interac-
tions. In this matrix each element (𝑖, 𝑗) represents the co-occurrence
frequency between label-pair of (𝑐𝑖 , 𝑐 𝑗 ) in the training set. Finally,
category-category co-occurrence matrix has the size of |𝐶 | × |𝐶 |.
Then, the final matrix is calculated by applying a matrix normal-
ization. We deployed Cosine normalization to normalize the CM,
where the values on the main diagonal are one. Moreover, the
experimental category-category CM is computed using category
co-occurrences in the training set. To estimate the normalized ma-
trix, Cosine similarity is used between category representations.

Joint Word-Category Loss: A sigmoid cross-entropy loss func-
tion L𝑝𝑐 uses for final product category classification. Sigmoid
cross-entropy applies since, in sigmoid, the loss computed for ev-
ery output 𝑠𝑖 is not affected by other component values. L𝑝𝑐 =

−∑ |𝐶 |
𝑐=1 𝑡𝑐 log (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑠𝑐 )). Where 𝑠𝑐 represents the predictions

and 𝑡𝑐 indicates the targets.
Category-Category Loss: The estimation error is calculated

based on amatrix approximation loss [8],L𝐶𝑀 = 1
𝑚𝑛

∑
𝑖, 𝑗 ∈𝐶 𝑙𝑜𝑔(1+

𝑒𝑥𝑝 ( ˆ𝐶𝑀𝑖 𝑗 ⊙ 𝐶𝑀𝑖 𝑗 )).
The Overall Loss: To compute the overall loss, a weighted

average of L𝑊 and L𝐶𝑀 is computed as L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜆1L𝐶𝑀 +
𝜆2L𝑊 .

3 Experimental Evaluation
This section describes dataset overview, experimental design, pa-
rameter setting, metrics, baseline models, and evaluation.

Dataset Overview: Similar to [15], we utilize customer behavior
feedback (e.g., click rate) to obtain the category labels associated
with each search query. We collect two weeks of search log to create
both training and test sets, where the first week is used to create the
training set and the second week for the test set. The training set
contains more than 11M search queries. We used 25% of the training
data for validation. To generate the test set, we map queries into
three different buckets using a simple query frequency. Queries
with only one occurrence experimental period are considered as

tail queries; the ones between 2 and 100 impressions are counted
as torso, and the rest as head queries. Then, to fairly evaluate the
models’ performance, stratified sampling [1] is used to generate
the test set, where we randomly select 2000 different queries from
each bucket to create the test set.

DeepCAT Experimental Design: We designed two different
experiments to evaluate DeepCAT. In the first experiment, we as-
sess the DeepCAT capability in mapping an input query to the
first level in the taxonomy hierarchies, L1, with 33 different classes.
The L1 level contains the most abstract product categories (e.g.,
“appliances”, “tools”, and “flooring”). This experiment is mainly out-
lined to estimate the performance of minority classes. The minority
classes include the categories that contain a fairly small number
of samples in the training set due to customer click behavior and
category overlaps or correlations. The second experiment evaluates
DeepCAT on actual product categories in the last layer of taxonomy
Product Categories with 4115 distinct categories (e.g., “replacement
engine parts”, “wood adirondack chair”, and “window evaporative
coolers”).

Parameter Setting:We used an Adam optimizer with a learning
rate of𝜂 = 0.001, a mini-batch of size 64 for training, and embedding
of size 100 for both word and category. The dropout rate of 0.5 is
applied at the fully-connected and ReLU layers to prevent the model
from overfitting.

Evaluation Metrics: Following the conventions of the search
literature to evaluate DeepCAT, we reported the overall Macro- and
Micro- averaged F1, P@K, R@K, F1@K and MAP@K on the top-K
results. Also, query understanding is a multi-label problem; we
reported precision and recall since a practical solution must cover
broader possible correct categories while simultaneously keeping
precision as high as possible [15].

Methods Compared: We summarize themulti-label classifica-
tion methods compared in the experimental results.

• TF-IDF + SVM: One-Vs-Rest SVM with a linear kernel.
• FastText: Text classification method by Facebook [2].
• XML-CNN: Extreme multi-label text classification [9].
• LEAM:Word-label representation model [13].
• DeepCAT: The proposed word-label representation.



SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada Ali Ahmadvand, Surya Kallumadi, Faizan Javed, and Eugene Agichtein

Method Leaf Nodes (Product Categories)
P@1 R@1 F1@1 P@3 R@3 F1@3 P@5 R@5 F1@5 MAP@5

TF*IDF BOW 0.783 0.259 0.356 0.617 0.478 0.538 0.514 0.594 0.551 0.623
FastText [2] 0.856 0.2001 0.324 0.634 0.444 0.522 0.504 0.557 0.542 0.666
XML-CNN [9] 0.875 0.314 0.463 0.683 0.549 0.609 0.568 0.666 0.613 0.703
LEAM [13] 0.862 0.302 0.447 0.676 0.531 0.595 0.566 0.651 0.606 0.697
DeepCAT 0.888∗ 0.325∗ 0.475∗ 0.690 0.560∗ 0.619∗ 0.576 0.680∗ 0.624∗ 0.717∗

Table 1: Performances on Product Categories with about 4200 categories. “*” indicates statistically significant improvements p < 0.05.

Method First Layer (L1)
Macro-F1 Micro-F1 MAP@3

TF*IDF BOW 0.466 0.669 0.669
FastText [2] 0.496 0.686 0.653
XML-CNN [9] 0.511 0.706 0.694
LEAM [13] 0.521 0.709 0.701
DeepCAT 0.540∗ 0.720∗ 0.710∗

Table 2: Performances on L1with 33 categories. “*” indicates statis-
tically significant improvements p < 0.05.

3.1 Results and Discussion
Table. 2 and 1 summarizes the performance of different state-of-
the-art models on curated datasets described in section 3. The re-
sults show that DeepCAT significantly improves Macro- and Micro-
average F1, and MAP@3 by (3.6%, 1.5%, and 1.2%) over LEAM, as
the best model among deep networks, on L1 level. As a results, an
average improvements of (6%, 2.8%, and 4%) on Macro- and Micro-
averaged F1, andMAP@3 over state-of-the-art deep learningmodels.
For product categories, DeepCAT outperforms LEAM by (6.2%, 4%,
3%, and 3%) on F1@1, F1@3, F1@5, and MAP@5, respectively.

Results on Minority Classes: Table. 2 indicates that Macro-
averaged F1 improves by 2% over Micro-averaged F1, which shows
a higher impact on the minority classes. This impact is more no-
ticeable on 8-button minority classes, where the Macro-averaged
F1 for the for XML-CNN and LEAM are 0.41.01%, 42.90%. At the
same time, this number jumps to 47.16% for DeepCAT, which shows
more than 12% and 10% relative improvements, respectively.

Results on Traffic Buckets: Table. 3 shows the performance of
the models described in section. 3 across three main buckets of tail,
torso, and head.

Method FastText LEAM XML-CNN DeepCAT
Head 0.508 0.563 0.560 0.565 (+0.0%)
Torso 0.584 0.646 0.648 0.682 (+5.3%)
Tail 0.381 0.337 0.373 0.401 (+7.1%)

Table 3: F1@3 results on head, torso, and tail buckets.

The results show that DeepCAT significantly outperforms the
other models on both tail and torso buckets, while it reaches compet-
itive results to XML-CNN and LEAM on “head” bucket. According
to higher traffic on both tail and torso queries, the overall perfor-
mance of DeepCAT is significantly higher compared to the other
models. The F1@3 is lower on head compared to torso queries due

to a significantly higher number of correct (relevant) categories,
which causes a higher P@3 and a significantly lower R@3.

Ablation Analysis: DeepCAT is a complex model that consists
of several components. We performed a comprehensive ablation
study to evaluate each component’s impact on the overall per-
formance of DeepCAT. Table. 4 reports the contribution of each
component on performance. The results illustrate that utilizing
the category representation describe in section. 2 provides a (5.1%,
3.2%) improvement on Macro- and Micro-averaged F1, respectively.
Moreover, using L𝐶𝑀 improves Macro-averaged F1 by (2.8%, 1.3%),
respectively.

Method Macro-F1 Micro-F1
Word Rep. 0.500 0.689
Joint Word-Category Rep. 0.526 (+5.0%) 0.711 (+3.1%)
Joint Word-Category Rep. + L𝐶𝑀 0.540 (+2.9%) 0.720 (+1.3%)

Table 4: Ablation analysis results.

Summary: Our experimental results show the robust perfor-
mance of DeepCAT compared to state-of-the-art models. For mi-
nority classes, tail, and torso queries, we observed 10%, 7%, and
5.3% relative improvements, respectively. We also report the perfor-
mance on the last layer (leaf nodes) of product taxonomy consisting
of 4115 categories. The results show that DeepCAT achieves (6.2%,
4%, 3%, and 3%) increase on F1@1, F1@3, F1@5, andMAP@5, respec-
tively. In ablation analysis, we show that the improvements come
from all three components of DeepCAT. The joint word-category
representation improves the query representation by 5%, and the
loss function can further improve it by 2.9%.

4 Conclusions
We introduced a deep learning model, DeepCAT, for query under-
standing in e-commerce search. DeepCAT contains a new joint
word-category representation component in which category repre-
sentations are learned using word-category co-occurrences. Then,
we proposed a novel loss function utilizing category representations
to model category-category co-occurrences. Our comprehensive
experiments showed that using category representation signifi-
cantly improved the results, particularly on minority classes and
tail queries. DeepCAT achieved a 10% improvement on minority
classes and a 7.1% increase on tail queries over a state-of-the-art
label embedding model.
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