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ABSTRACT
We present a novel solution to an inevitable issue faced by all

current-day e-commerce companies in developing countries like

India to a large extent. The issue concerns failed deliveries due to

incomplete or bogus shipping addresses that is a major source of

financial loss for these companies. Identifying the completeness of

an address in India is a challenging task due to (i) lack of hierarchy

in the address, (ii) names of the same places varying in different

languages and dialects, (iii) structure of the address varying based

on location, etc. We suggest a hybrid approach using a 1D ConvNet

and Extreme Gradient Boosting (XGBoost) to solve this complex

problem. The ConvNet learns character-level embeddings and cap-

tures the language semantics in the address, while the XGBoost

model leverages our hand-crafted features specifically devised for

this task using domain knowledge. We present novel methods for

Address Parsing and detection of Monkey Typed addresses which

we use to build our features. Our model learns and generalizes

well, achieving an AUC value of 0.94 on an unseen test set, and

outperforms various traditional and deep learning models. Finally,

we demonstrate the practical value of our solution by creating a

highly efficient and fast prediction service using our model, which

is already deployed to serve real-time classification queries and has

been found to be very useful by several online stores.

CCS CONCEPTS
• Information systems → Document representation; • Ap-
plied computing→ E-commerce infrastructure.
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Address Classification, Convolutional Neural Networks, XGBoost,
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1 INTRODUCTION
In India, many orders placed in online stores cannot be delivered,

and the items are sent back to the seller. This situation is known

as Return To Origin (RTO) among e-commerce companies, and in

this scenario, the company owning the store incurs corresponding

costs. For e.g., delivery partners need to be paid for the attempt,

and if the shipped goods are perishable, the cost of making them

is an added loss. This incurred loss can be heavier if the order is

a Cash on Delivery (COD) order, where the customer pays upon

delivery. RTOs present a major issue to the e-commerce ecosystem

in India, with nearly 30% [1, 2] of orders on an average resulting in

RTOs across various store sizes, industries, and locations.

While RTOs can happen because of a variety of factors such

as the fraudulent intent of the customer, rejection of impulsively

ordered items, ground-level problems while shipping, etc., one of

the prominent factors is that the shipping address provided by the

customer is incomplete. This can mean that the address does not

contain specific details that make delivery possible; for instance, a

missing street number can render the shipping address incomplete.

A shipping address can also be non-deliverable, i.e., it points to

a place where deliveries cannot happen, like a park or bus stop.

Finally, it can also be a non-existent address.

Predicting if a shipping address is incomplete is a daunting task,

given the challenges that addresses in India present us with. Some

of these are as follows:

• Customers generally don’t follow a fixed structure when

they mention the shipping address. So a given address can be

written in many different ways, even by those that live at the

address. For e.g. two addresses such as "D-12, plot-5, Sunder
Apartments, MG rd., near Jain temple, Dwarka, New Delhi"
and "D-12, plot-5, Sector - 4, Dwarka, New Delhi - 110047"
point to the same location.

• Postal Index Numbers (PIN codes) are 6-digit codes used

by the India Post and provide a way to assign addresses

to small areas with some precision. However, customers

are sometimes not aware of where one such area ends and

another starts, and as a result, two addresses with different

areas or pin codes may actually point to the same place.
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• What constitutes a deliverable address varies by location. For

e.g. in a metropolis like Mumbai, addresses would need to

be very specific to be deliverable because of the high popula-

tion density. However, in rural areas, deliveries can be made

at a relatively less specific address because of the delivery

person’s familiarity with addresses and sparse population.

• Due to the fact that India is highly diverse linguistically,

landmarks, streets, and even areas may be referred to by

different names by various groups of people. For instance,

crossroads are called chowk in the state of Maharashtra and

chouraha in various North Indian states.

• The components of the address may be written in any order.

• Shipping addresses may be written in languages other than

English.

• Common spelling mistakes just add to the complexity of the

problem.

In practice, to verify the deliverability of user-entered addresses,

e-commerce companies primarily rely on address validation (lookup

in official databases [3]) and geocoding (assigning coordinates to

address [4]) APIs. The lack of standardization in addresses of devel-

oping countries makes these tools very hard to use.

Given the complexity of the problem and the massive number of

variables, rule-based approaches generally fail at this task. Recently,

Machine Learning algorithms have been harnessed to solve various

associated problems, including address classification. However, to

the best of our knowledge, there is no model which can successfully

predict if a given shipping address is complete. In this paper, we

propose an ensemble of an XGBoost model and a Convolutional

Neural Network, for this task. Our key and novel contributions can

be summarized as follows:

• We explain why datasets that give delivery information are

not sufficient and introduce a dataset of 12,376 samples for

this task.

• We propose an ensemble model for predicting if a shipping

address is incomplete and show that it works better than

several traditional and deep classification models. It also

performs well on an unseen test set.

• We show that our approach is practically effective by build-

ing a real-time prediction service around the model and

briefly describe its implementation.

This paper is structured as follows: Section 2 describes previ-

ous efforts to study addresses and solve other related problems.

Section 3 provides an intuitive idea of address completeness and

introduces some terminology. Section 4 explains the features we

created, the architecture of the model, and some implementation

details, while Section 5 discusses our experiments and their results.

Finally, section 6 concludes and discusses future research directions

and applications of our model.

2 RELATEDWORK
Several problems related to addresses such as detecting monkey-

typed addresses, geocoding, and various kinds of classification tasks

have been explored to some extent individually in various papers.

In [5], Gevaers et al. define the last mile problem and highlight

the challenges it poses such as increased overall cost, reduced de-

livery efficiency and environmental impact. Babu et al. [6] worked

on classifying an address into a smaller sub-region accurately us-

ing various preprocessing techniques and models. Mangalgi and

Lakshya et al. [7] further worked on the problem of address classifi-

cation into sub-regions from a language-modeling perspective and

experiment with traditional ML approaches, Bi-LSTMs [8], and the

RoBERTa [9] model (which they finally propose). However, clas-

sifying addresses into sub-regions is not scalable for larger areas

like countries without massive labeled data. Seng [10] worked on

classifying Malaysian addresses according to property type (con-

dominium, landed residential homes, and business premises). The

proposed architecture in this paper is an LSTM model with an em-

bedding layer. Kakkar and Babu [11] experimented with various

techniques for clustering addresses and propose Leader clustering

with word embeddings (add2vec), which can be used for the com-

parison of new addresses with existing ones. Kejriwal and Schekely

[12] worked on creating embeddings from names of populated

locations using DeepWalk, a network embedding algorithm.

Detecting the presence of monkey-typing in addresses is another

problem we address in our paper. Previously, Babu et. al. [13] ex-

perimented with various ML models to detect monkey-typing, by

creating two kinds of features: i. text features around which groups

of characters are common and abnormal and ii. those which lever-

age the absence of vowels in the address. There has also been some

work done on Address Parsing, another important component of

our model, which involves separating the address into meaningful

components [14–16].

We approach this problem from a text classification perspective,

for which both traditional and deep learning models have been

used extensively. Powerful and scalable traditional models such as

XGBoost [17] and LightGBM [18] can have excellent performance

on this task [19]. Deep learning models have the advantage of not

requiring any feature engineering efforts and have thus been widely

adapted for text classification, with Convolutional [20] and Recur-

rent [21] Neural Networks being the most popular architectures

adapted for this task. While word-level models seem to be more

common, character-level models have also been used [22].

To the best of our knowledge, this is the first work aiming to

classify addresses according to their completeness by consolidating

various components like Monkey Typing and Address Parsing. Our

model and prediction service provides a fast and scalable solution

for e-commerce companies to dynamically take decisions based on

the address input by the user on checkout.

3 ADDRESS COMPLETENESS
In this section, we try to provide an intuitive understanding of

address completeness and introduce terminology that we will use

throughout the paper.

E-commerce companies generally store addresses in 6 compo-

nents: Address Line 1, Address Line 2, Pin Code, City, State, and

Country, and we mostly receive our data in this format. Hence,

there may be no need to isolate components like cities from the

address. However, we don’t always expect this structure to exist.

For instance, in case the online store only provides one Address

Line, we assign the value "" to Address Line 2, and so on. We can

also combine these components to form an address string, such
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as "G-43, Rajnath Apartments, Koramangala, Bengaluru, Karnataka,
India".

We can attribute the completeness of an address to several as-

pects. For the above address, components such as "Rajnath Apart-
ments" need to exist in the given city. Another aspect is the amount

of detail in this address; if a delivery person goes to "Koraman-
gala" would be they be able to find "Rajnath Apartments" without
knowing the street number or some other landmark? Other factors

also play a role here - the sequence of characters can tell us if this

address is monkey-typed and the size of the mentioned city can

tell us how specific the address needs to be for it to be deliverable.

Broadly, we divide these aspects into three categories - (i) geograph-

ical context, (ii) word, entity, and address level information, and

(iii) character-level relations.

During our feature creation process, we have looked at addresses

as a sequential combination of the following units, and created

features capturing information at each of these levels:

• Words. Each group of characters separated by a space is

considered as a word in the address. In the above example,

the words would be "G-43", "Rajnath", "Apartments", "Kora-
mangala" and "Bengaluru".
• Tokens. Each set of words that represents a real-world en-

tity such as an area, landmark, etc. In the above example the

tokens would be "G-43", "Rajnath Apartments", "Koraman-
gala" and "Bengaluru".
• Characters. Each character in the address string.

4 MODEL
Our ensemble consists of an XGBoost model and a ConvNet, the

probability predictions of which are given as input to a linear SVM,

which gives a binary prediction (incomplete(1), complete(0)) as

shown in figure 2. Subsections 4.1-4.3, describe the various kinds

of features we created which are then used to train the XGBoost

model and subsection 4.4 discusses the training and implementation

details of the model.

4.1 Capturing Geographical Context
Locations in addresses have geographical relations between them.

For instance, in the fictional address we considered, "Koramangala"
is located inside of "Bengaluru", and we need to inject this informa-

tion into our model. We achieve this in two ways: (i) by creating

a tree-based data structure that contains such relations captured

from a large corpus of addresses, and (ii) by creating features that

check the structure of the address in several ways.

The Address Component Tree (ACT) is a tree-based data

structurewith each level (from top to bottom) representing state/union

territories, city/district, and locality respectively, and is used pri-

marily for validation on these 3 levels. For instance, it can be used

to validate if the given city exists in the given state or if the given

locality exists in the given city, and so on. To build this tree, we

sampled over 2 million addresses on which successful deliveries

have been completed and extracted state, city, and locality informa-

tion. The top-level consists of 36 nodes, each of which corresponds

to one of the 28 states or one of the 8 union territories in India.

Cities corresponding to each of these states and localities corre-

sponding to each of the cities were captured from the large address

Figure 1: Use of Address Component Tree for extracting
geographical information

corpus. There were several mistakes in the way the customers had

entered the city in the city field. For instance, some entries featured

more information apart from the city, others had alternate or older

names for the city (a popular example being "Bangalore", which was

renamed to "Bengaluru" in 2014 but the two names are still used

interchangeably) and yet others had common spelling mistakes (for

e.g. "Hyderbad" instead of "Hyderabad"). We thus pruned the city

nodes by using three major tools: phonetic matching, Levenshtein

Distance, and frequency. While comparison we followed a normal-

ization process, which included removing special characters and

conversion of the city string to lowercase.

Localities are not provided by the customer separately and we

need to identify tokens that correspond to the locality in Address

Lines 1 and 2. This is a challenging task since the order of tokens

can be arbitrary in the address lines and most users don’t delimit

the components in their addresses using special characters such

as commas. We thus build an Address Parser to separate localities

from Address Lines 1 and 2. While extracting localities from the

large corpus of addresses, we don’t use the ACT in the parser and

add the extracted localities to the ACT.

After the ACT is built, our Address Parser works in two steps.

Figure 1 provides more clarity on this architecture.

(1) Address Delimiter. The goal of this module is to break the

address into its constituent tokens by inserting commas in

the right places.We first join Address Line 1 andAddress Line

2 using a comma. We divide words that commonly occur

in addresses into several categories based on how likely

they are to occur: (i) just before a comma (e.g. "apartment",
"road", etc.), (ii) just after a comma, (e.g. "near", "hno."), (iii)
both before and after commas (e.g. "tower", "block", etc.), (iv)
neither before nor after a comma (e.g. "of", "no."). We then

assign two scores to each word, which denote how likely a

comma is to lie before and after the word respectively. Using

a combination of these scores and rules, we add commas in

the address and hence break it into tokens.
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Figure 2: Ensemble model for classification of addresses

(2) Token assignment. We then assign predefined labels to

these tokens; there are 12 labels which include "unit", "block",
"society", "street", "landmark", "place_of_interest", "locality",
"pin_code", "city", "state", "country" and "unassigned". While

pin code, city, and state are provided by the user separately,

these are still included in the labels since many users still

provide these in the address lines. From our large corpus

of addresses, we first isolate common words for each token.

For instance, words like "heights" and "colony" are likely to

appear at the "society" level. Using these word groups and the
ACT,we then assign probability scores that denote how likely

they are to be assigned to each of the labels and greedily

assign them to the most likely label. Multiple tokens may

be assigned to the same label. For tokens still unassigned

(because of a tie or zero scores), we adopt a hierarchical

approach and check the labels nearby tokens have been

assigned to, and assign a label accordingly. All tokens with

no labels are then labeled "unassigned".
We use the Address Parser and Address Component Tree for

creating features involving various validations and checks (see

subsection 4.2). Apart from this, we also created features such

as population density, city tier, and percentage of urban vs rural

population in the area surrounding the address on the pin code,

city, and state level.

4.2 Information on Various Levels
We create several features for capturing information on 3 levels:

words, tokens, and address.

4.2.1 Word level features. Basic word-level features such as the

mean and median length of words in the address, the total number

of words with length less than a threshold (= 3), and the number of

words with digits in them were experimentally found to work well.

Apart from these, we use the concept of a word score, based on how

many words frequently found in our larger corpus of addresses

are found in the given address. Another associated feature is the

number of frequent words occurring in the given address.

4.2.2 Token level features. Since tokens represent real entities, the
features created on this level are based on validations performed

on the assignment created by the Address Parser. A basic type of

validation is to check which labels have tokens assigned to them.

Other useful validations include checking if the various components

of the address have valid information present in them. For instance,

pin codes in India always have 6 digits with the first digit being

non-zero and any pin codes not following this format can thus be

said to be invalid. We also used features based on the likelihood of

both ordered and unordered bi-grams in our address. The likelihood

is calculated using our larger corpus of addresses.

4.2.3 Address level features. Features created on the address level

include certain properties about the address and the results of

various validations performed on it.

• Address properties. The absence of any digits in Address

Lines 1 & 2 heavily indicates that the address may not be

deliverable. The few exceptions to this include prominent

establishments or landmarks, especially in rural areas. Some

indicators of a good address were found to be a relatively

high number of words in the address and a high number of

delimiters such as commas provided by the user to differen-

tiate between tokens in the address lines. A higher number

of vowels and symbols also contributes positively towards

an address being complete. Some online stores also provide

the user with an option to mark the given address as a home

or an office address; these properties are also useful for de-

termining the completeness of the address.
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• Address validations. Based on our parsed address, we cre-

ate three different scores for each address based on how

informative, correct and complete they were respectively.

These scores, which range from 0 to 1, are based on prior

knowledge and observation of addresses from these perspec-

tives. One of the key validations we performed was based

on the hypothesis that addresses in rural (tier-3) areas need

not be too specific for a delivery to happen. We used the city

tier to check if an address is rural and the parsed address to

check what information is provided by the user.

4.3 Monkey Typing
Monkey-typed addresses are random and often repetitive sequences

of characters which the user inputs in the address fields to get to the

next screen. These kinds of addresses can be safely assumed to be

not deliverable. Overall, this feature creation module aims to detect

two patterns of Monkey Typing made from a computer keyboard:

(i) random, non-recurring characters typed with one or 2 hands

and (ii) recurring patterns as are sometimes seen in monkey-typed

text. The outputs from algorithm 1 are provided as input to our

model. Apart from these, our CNNmodel also learns character-level

relations which indicate Monkey Typing, since these are a subset

of the incomplete samples. Considering the complex structure of

this module, we don’t fully elaborate on all utility functions but

explain their function and output.

The function Has-Monkey-Typing returns two Boolean values,

ℎ, 𝑟 denoting the presence of one or two hand random monkey

typing and recurring pattern monkey typing respectively. These

are then added to the features of the respective sample.

Algorithm 1 Address has Monkey Typing

1: function Has-Monkey-Typing(𝑠) ⊲ 𝑠: sentence

2: 𝑠 ← convert all characters in 𝑠 to lowercase

3: 𝑠 ′ ← replace all characters except 𝑎 − 𝑧 with space (””)
4: 𝑇 = 𝑠 ′.𝑠𝑝𝑙𝑖𝑡 (” + ”) ⊲ T: list of all words separated by

whitespace in s

5: ℎ = 𝑓 𝑎𝑙𝑠𝑒 ⊲ h: is one or two hand MT present

6: 𝑟 = 𝑓 𝑎𝑙𝑠𝑒 ⊲ r: is recurring pattern MT present

7:

8: for 𝑖 = 0→ 𝑇 .𝑙𝑒𝑛𝑔𝑡ℎ do
9: if Has-One-Hand-Mt(𝑇 [𝑖]) or Has-Two-Hand-

Mt(𝑇 [𝑖]) then
10: ℎ = 𝑡𝑟𝑢𝑒

11: break
12:

13: 𝑟 ← Has-Recurring-Pattern-Mt(𝑠)

14:

15: return ℎ, 𝑟

4.3.1 One-Hand Monkey Typing. To detect one-hand monkey typ-

ing, we consider 3 different checks given in the following functions.

We declare an address monkey typed only if all three conditions

are satisfied.

• Is-Msd-Based: We assume that unique keystrokes with one

hand should be localized to a certain region of the key-

board, and hence the mean square distance between unique

keystrokes should not be too high. The mean squared (Eu-

clidean) distance between keystrokes, 𝐷𝑚𝑠𝑑 is calculated

using Γ, a pre-defined map between keys and "co-ordinates",

treating the keyboard as a 2D plane. The co-ordinates of the

keys are
′𝑞′ : (0.0, 0.0), ′𝑤 ′ : (1.0, 0.0), ′𝑎′ : (0.2, 1.0) and so

on.

• Has-N-Consecutive-Components: We posit that random

keystrokes seldom have coherent syllables attached together

by vowels, as is the norm in English. If words have long

blocks of consecutive consonants, there is a higher chance

of them being monkey typed.

• Is-Direction-Based: Here, we assume that the user will

typically not change "direction" much while typing. The

direction in question is captured by the change in x and y

coordinates in consecutive keystrokes.

Algorithm 2 Address has One Hand Monkey Typing

1: function Has-One-Hand-Mt(𝑤 ) ⊲ 𝑤 : word

2: if Is-Direction-Based(𝑤 ) and Is-Msd-Based(𝑤 ) and Has-

N-Consecutive-Consonants(𝑤 ) then
3: return 𝑡𝑟𝑢𝑒

4.3.2 Two-Hand Monkey Typing. We assume that the user enters

random characters through each hand. In the function Has-Two-

Hand-Mt, we try to assign each entered character to the left or right

hand, based on the direction change, the mean squared distance

between consecutive keystrokes, and the hand assigned to the last

character. This is captured in the function Get-Prev-And-Curr-

Hand, which returns the hand assigned to the previous and current

keystroke. Finally, we check if the unique keystrokes assigned to

each hand follow the random pattern by calling the procedure Has-

One-Hand-Mt. The parameter 𝜏𝑚𝑖𝑛 (= 8) indicates the minimum

number of characters needed in a word to consider it for 2-hand

monkey typing. 𝜏𝑙 (= 4) and 𝜏𝑟 (= 4) are corresponding length

thresholds on the subsequences assigned to the left and right hand.

4.3.3 Recurring Pattern Monkey Typing. Users commonly display

a tendency to repeat patterns of characters while monkey typing.

We detect this in the function Has-Recurring-Pattern-Mt by

extracting substrings with a window size 𝑤 , which is varied as

𝑤 ∈ {1, 2, ..., ⌊𝑠 .𝑙𝑒𝑛𝑔𝑡ℎ/2⌋}. Finally, their frequency is checked, and

if the frequency of any substring is greater than a threshold 𝑓𝑚𝑖𝑛 (=
3), we flag the address for displaying recurrent pattern monkey

typing. The threshold 𝜏 (= 4) indicates the minimum indicates the

minimum number of characters present in the sentence for it to be

considered for Recurring pattern monkey typing.

4.4 Learning and Implementation
We explain the process for training the model in this subsection.

4.4.1 Feature Selection. We had originally created over 250 fea-

tures for training the XGBoost model. To select important features,

we first remove columns that had a very high correlation with each

other (> 0.95), keeping only one of two such columns based on

domain knowledge or model importance. We iteratively train an

XGBoost model and remove features with very low or zero impor-

tance. We use 114 features for training our final XGBoost model.
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Algorithm 3 Address has Two-Hand Monkey Typing

1: function Has-Two-Hand-Mt(𝑤 , 𝜏𝑚𝑖𝑛 , 𝜏𝑙 , 𝜏𝑟 )

2: if 𝑤 < 𝜏𝑚𝑖𝑛 or𝑤 contains special characters then
3: return 𝑓 𝑎𝑙𝑠𝑒
4:

5: Initialize map𝑀ℎ𝑎𝑛𝑑 with keys 𝑙, 𝑟 and corresponding val-

ues as empty lists and initialize ℎ𝑙 as 𝑁𝑜𝑛𝑒

6: for 𝑖 = 0→ 𝑤.𝑙𝑒𝑛𝑔𝑡ℎ − 1 do
7: ℎ𝑝𝑟𝑒𝑣, ℎ𝑐𝑢𝑟𝑟 ← Get-Prev-And-Curr-Hand(𝑤 [𝑖],𝑤 [𝑖+

1], ℎ𝑙 )
8:

9: if 𝑖 = 0 then
10: Add𝑤 [𝑖] to𝑀ℎ𝑎𝑛𝑑 [ℎ𝑝𝑟𝑒𝑣]
11: Add𝑤 [𝑖 + 1] to𝑀ℎ𝑎𝑛𝑑 [ℎ𝑐𝑢𝑟𝑟 ]
12: ℎ𝑙 ← ℎ𝑐𝑢𝑟𝑟

13:

14: if 𝑀ℎ𝑎𝑛𝑑 [′𝑙 ′] .𝑙𝑒𝑛𝑔𝑡ℎ < 𝜏𝑙 or𝑀ℎ𝑎𝑛𝑑 [′𝑟 ′] .𝑙𝑒𝑛𝑔𝑡ℎ < 𝜏𝑟 then
15: return 𝑓 𝑎𝑙𝑠𝑒
16:

17: ℎ𝑙𝑒 𝑓 𝑡 ← remove all consecutive multiple occurences of

every character with a single character in𝑀ℎ𝑎𝑛𝑑 [′𝑙 ′]
18: ℎ𝑟𝑖𝑔ℎ𝑡 ← remove all consecutive multiple occurences of

every character with a single character in𝑀ℎ𝑎𝑛𝑑 [′𝑟 ′]
19:

20: if Has-One-Hand-Mt(ℎ𝑙𝑒 𝑓 𝑡 ) and Has-One-Hand-

Mt(ℎ𝑟𝑖𝑔ℎ𝑡 ) then
21: return 𝑡𝑟𝑢𝑒
22:

23: return 𝑓 𝑎𝑙𝑠𝑒

Algorithm 4 Address has Recurring Pattern Monkey Typing

1: function Has-Recurring-Pattern-Mt(𝑠 ,𝑤 , 𝑓𝑚𝑖𝑛 , 𝜏) ⊲ 𝑠:

sentence,𝑤 : window size, 𝑓𝑚𝑖𝑛 : min freq. for repeated patterns,

𝜏 : min length threshold

2: 𝑠 ′ ← convert all characters in 𝑠 to lowercase

3: 𝑠 ′′ ← remove all non alphabetical characters from 𝑠 ′

4: if 𝑠 ′′.𝑙𝑒𝑛𝑔𝑡ℎ <= 𝜏 then
5: return 𝑓 𝑎𝑙𝑠𝑒
6:

7: Let 𝜎 be an empty list

8: for 𝑖 = 1→ 𝑤 do
9: for 𝑗 = 1→ 𝑠 ′′.𝑙𝑒𝑛𝑔𝑡ℎ − 1 by𝑤 do
10: Add substring from indices𝑚𝑖𝑛(𝑖 + 𝑗, 𝑠 ′′.𝑙𝑒𝑛𝑔𝑡ℎ) to

𝑚𝑖𝑛(𝑖 + 𝑗 +𝑤, 𝑠 ′′.𝑙𝑒𝑛𝑔𝑡ℎ) to 𝜎
11:

12: 𝜎𝑓 ← select substrings 𝜆 from 𝜎 such that 𝜆.𝑙𝑒𝑛𝑔𝑡ℎ = 𝑤

13: Let𝑀𝑓 𝑟𝑒𝑞 be a map with keys as substrings and values as

their frequencies in 𝜎𝑓
14:

15: if 𝑀𝑓 𝑟𝑒𝑞 [𝜆] > 𝑓𝑚𝑖𝑛 for any 𝜆 in𝑀𝑓 𝑟𝑒𝑞 .𝑘𝑒𝑦𝑠 then
16: return 𝑡𝑟𝑢𝑒
17:

18: return 𝑓 𝑎𝑙𝑠𝑒

4.4.2 XGBoost optimization. We use XGBoost in the supervised

setting to learn from all features created from the addresses in sub-

sections 4.1-4.3. Let 𝐷 = {(x𝑖 , 𝑦𝑖 )}, x𝑖 ∈ R𝑚, 𝑦𝑖 ∈ {0, 1} represent
the training set with 𝑛 samples, each of which contains features x𝑖
and binary labels 𝑦𝑖 denoting complete/not complete. Once trained,

the XGBoost algorithm predicts the output for new data samples

by aggregating the output from each of the 𝐾 tree structures. Let

𝑓𝑘 (𝑥) be the function represented by the 𝑘𝑡ℎ tree structure and F
be the space of regression trees, CART. Then,

𝑦𝑖 = 𝜙 (x𝑖 ) =
𝐾∑
𝑘=1

𝑓𝑘 (x𝑖 ), 𝑓𝑘 ∈ F (1)

The gradient tree boosting algorithm behind XGBoost minimizes

a regularized objective function:

L =
∑
𝑖

𝑙 (𝑦𝑖 , 𝑦𝑖 ) +
∑
𝑘

Ω(𝑓𝑘 ) (2)

where Ω(𝑓 ) = 𝛾𝑇 + 1

2

𝜆∥𝑤 ∥2

Tree structures are chosen in a greedy manner. Let𝑦
(𝑡 )
𝑖

represent

the prediction of the 𝑖-th instance at the 𝑡-th iteration. We choose

the tree structure 𝑓𝑡 which best minimizes the loss mentioned in

Eq. 2.

L (𝑡 ) =
𝑛∑
𝑖=1

𝑙 (𝑦𝑖 , 𝑦 (𝑡−1)𝑖
+ 𝑓𝑡 (x𝑖 )) + Ω(𝑓𝑡 ) (3)

The native Python package of XGBoost mentioned in [17] also

allows parallel tree training and is highly scalable, which is useful

for our purposes. We use the H2O AutoML platform [23] for hy-

perparameter search for our XGBoost model. Our final XGBoost

model is trained for 124 rounds with the learning objective as "bi-
nary:logistic". The learning rate ("eta") is set to 0.3, the maximum

depth for each tree ("max_depth") is set to 20. Except for parame-

ters "subsample" = 0.6, "min_child_weight" = 10, "colsample_bytree"
= 0.8, and "colsample_bylevel" = 0.8, all other parameters are set to

default.

4.4.3 ConvNet optimization. We use a character-level CNN instead

of a word-level model. The primary motivation behind this is that

several "words" such as those representing last-mile information

(e.g. "a-703") are likely to be extremely infrequent across addresses.

The character-level model also performed better experimentally.

Characters in addresses have temporal relations with each other

given the inherent hierarchy of tokens we expect in the address. For

instance, house numbers usually occur at the start of the address,

and the city name should likely occur towards the end.

The input string to the ConvNet is a concatenation of Address

Lines 1 and 2, padded to 225 characters with trailing 0s where ad-

dress length is less than 225 characters. We use an embedding layer

to learn character representations. In terms of notation and function,

we closely follow [20] and use Tensorflow [24] for implementation.

We present the working of our 1D convolution and global max-

pooling layers. Let x𝑖 ∈ R𝑘 be a k-dimensional vector correspond-

ing to a character in an address of length 𝑛. The address can be

represented as a matrix with concatenated ([]) character vectors.
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Model Validation Test Training Time
Precision AUC Precision AUC (secs)

Logistic Regression 0.482 ± 0.0405 0.737 ± 0.0152 0.447 ± 0.0158 0.733 ± 0.0136 1.65

Bi-LSTM 0.741 ± 0.0290 0.921 ± 0.0041 0.734 ± 0.0207 0.919 ± 0.0042 1074.20

CNN 0.784 ± 0.0275 0.928 ± 0.0044 0.804 ± 0.0202 0.928 ± 0.0046 40.75

XGBoost 0.836 ± 0.0162 0.939 ± 0.0053 0.804 ± 0.0150 0.931 ± 0.0033 11.35

CNN + XGBoost Ens. 0.841 ± 0.0293 0.944 ± 0.0039 0.833 ± 0.0274 0.942 ± 0.0048 298.89
Table 1: Performance with 95% confidence intervals of baselines and proposed model; cutoff fixed where recall = 0.6.

x1:𝑛 = [x1, x2, ..., x𝑛] (4)

Let x𝑖:𝑖+𝑗 denote the concatenation of characters [x𝑖 , ..., x𝑖+𝑗 ].
The convolution operation is performed by applying the ( 𝑗 th) filter

w𝑗 ∈ Rℎ𝑘 to a window of ℎ words:

𝑐𝑖, 𝑗 = 𝜎 (w𝑗 · x𝑖:𝑖+ℎ−1 + 𝑏) (5)

where 𝑏 ∈ R is the bias term and 𝜎 is a non-linear activation

function; in our case the Rectified Linear Unit [25], 𝑅𝑒𝐿𝑈 .

𝑅𝑒𝐿𝑈 (𝑥) = 𝑥 if 𝑥 > 0 else 0 (6)

Applying𝑚 filterswill produce𝑚 featuremaps z = [𝑐1, 𝑐2, ..., 𝑐𝑚],
where 𝑐𝑖, 𝑗 is the 𝑗th element of the 𝑖th vector 𝑐𝑖 . The global max

pooling layer will select the maximum element from each of these

feature maps, thus resulting in a single vector of size𝑚. Our 1D-

Conv layer contains 128 filters of size 5. This is followed by a Dense

layer with a dropout rate of 0.5 and 8 neurons, each with a 𝑅𝑒𝐿𝑈 (.)
activation function. The final Dense layer with only 1 neuron has a

sigmoid activation function given the binary classification task.

We use the Adam Optimizer [26] and binary cross-entropy loss

function to optimize our model. The weights are initialized using

the GlorotUniform initializer [27]. We train the model for 15 epochs

with an Early Stopping mechanism by monitoring the validation

loss with a patience of 2 epochs. The samples themselves are divided

into mini-batches of 15 while training the model. The values for all

parameters have been finalized after rigorous experimentation.

4.4.4 Ensembling. We train both our XGBoost model and ConvNet

on our training set with binary labels (complete/not complete).

We perform k-fold cross validation to evaluate their performance

as well as form the inputs for the combining model, Linear SVM

[28]. Let 𝛼 be an address from the training set, x𝑓 𝑒𝑎𝑡 be its fea-

turized representation and x𝑒𝑚𝑏 be its input to the ConvNet. Let,

𝑥𝑥𝑔𝑏 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 (x𝑓 𝑒𝑎𝑡 ) and 𝑥𝑐𝑛𝑛 = 𝐶𝑜𝑛𝑣𝑁𝑒𝑡 (x𝑒𝑚𝑏 ), then the in-

put feature vector to the linear SVM is

x𝑠𝑣𝑚 = [𝑥𝑥𝑔𝑏 , 𝑥𝑐𝑛𝑛] (7)

where 𝑥𝑥𝑔𝑏 and 𝑥𝑐𝑛𝑛 are the out-of-fold cross validation pre-

dictions (probability values) of the XGBoost and ConvNet models

respectively. The linear SVM model is trained on such pairs of

probability values to predict labels 𝑦 ∈ {0, 1}.

4.4.5 Implementation. We build a real-time prediction service us-

ing our model, which is now used in our product, Thirdwatch [29].

We use Apache Flink [30, 31] as our execution engine since it pro-

vides stream processing, high parallelization, and fault-tolerant

dataflows. Features and character-level representations for a new

address are calculated in parallel at run-time. We observed a low

average latency of 202 ms and Apache Flink’s parallelization and

Asynchronous I/O also allow us to process multiple requests to the

API at the same time. We also wish to highlight that we chose a

rule-based approach for certain components like Monkey Typing

and Address Parsing to avoid sequential model calls which may

reduce the latency of the prediction service.

5 EXPERIMENTS
5.1 Dataset
Several client companies shared their data with us for training

our models. This data consists of order details including shipping

address and the final delivery status of individual items in the order

such as "rto", "in_transit", "canceled", "fulfilled", "lost", and so on.

We initially experimented with this data for predicting address

completeness but this was incorrect because there can be other

reasons for an order to result in an RTO than an incomplete address,

and an incomplete address does not necessarily result in an RTO.

To overcome this problem, we sampled a dataset of 12,376 shipping

addresses from this data and manually labeled each address as

complete (0) or incomplete (1). These addresses were sampled over

three different periods of time, in a stratified way such that the

total number of addresses selected for each tier (1, 2, and 3) is the

same. We split this dataset by assigning 80% of the addresses to the

training set and 20% to the testing set. The ratio of addresses in each

tier is kept constant in each of the training, validation (wherever

used), and test datasets.

The labeling was carried out in two phases. First, three indi-

viduals (not the authors) were asked to label the addresses. The

process involves finding a match on Google Maps [32] as close as

possible to the current address. The individuals then try to check if

enough information is present to take someone from the matched

address to the shipping location. In certain difficult cases, they take

a majority vote and rely on domain knowledge. Second, the authors

review the labels in random order. To avoid biasing the data, the

authors do not change the labels unilaterally but ask for a review

in case they feel a particular label is erroneous.

5.2 Setup
We use classification models such as Logistic Regression (LR), Naive

Bayes (NB), Multi-Layer Perceptron (MLP), XGBoost, ConvNet, and

Bidirectional LSTM as baselines for comparison. The ConvNet and

Bi-LSTM are trained with an embedding layer and all other models

utilize our hand-crafted features. For all models except the proposed



SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada Waradpande, et al.

Tier Precision Recall AUC Sample Addresses Marked Incomplete (1) & Complete (0) by Model

tier-1 0.79 0.60 0.94

Incomplete
1. Bamnoli, Delhi - 110077

2. elcot sez sholinganallur, 600119, chennai

Complete
1. flat 211, prem’s sai brindavan apartments, annapurna enclave, hyderabad - 500050

2. 159 Othaivadai street Kodambakkam, Chennai - 600024

tier-2 0.88 0.60 0.94

Incomplete
1. 121, thrissur - 680601

2. Visram Sadan, Rajkot - 360001

Complete
1. Kalyani, Ponnurunni road vyttila, Ernakulam,Cochin - 682019

2. vaatsalya school, near head post off., vishwakarma colony, ajmer-305624

tier-3 0.89 0.60 0.91

Incomplete
1. rasra Kotwari ballia, Kotwari-221712

2. holenarasipura hassan, holenarasipura - 573211

Complete
1. cell city mobile elambulasserri,mannarkkad-678582

2. hno 267 laxette varca salcete goa varca Church, Varca - 403721

Table 2: Tier-wise performance of ensemble model on test data

model, we train the model on the full training set containing 80% of

all addresses, validate using 5-fold cross-validation, and test on the

testing set. Hyperparameter optimization is achieved using Grid

Search for LR and NB and the H2O AutoML interface for XGBoost.

5.3 Results
We present our top-performing models (and LR as a baseline) in

table 1. We used the metrics precision, recall, and area under the

receiver operating characteristic (AUC) for evaluating each of the

models. The learning capability and translation to unseen datasets

are evaluated using AUC. We don’t use accuracy since there is a

class imbalance in the data we use, with only 15.5% of addresses

in both the train and test set being non-deliverable. Our model

outperforms all other classifiers with an AUC value of 0.94 in both

validation and testing phases. It should be noted that the XGBoost

model performance comaparable to our model on the validation set

with a far lesser training time. However, in production, we train

our models at an interval of a few days and so we choose the model

which translates better to the test set.

The consumption of the prediction from our service is subject to

manual review and decision from the online store, with each review

costing them some amount of money. Low false positives, and

hence, high precision while maintaining good recall is important.

To compare precision for these models, we fix the cutoff such that

the recall is set to 0.6 for each of the classifiers. For all models, we

report the mean precision, recall, AUC and training time for 100

trials with various weight initializations and random folds for cross-

validation and training, as well as their 95% confidence intervals,

calculated using the bootstrap method [33] (also over 100 trials).

Given that the level of detail in addresses required for delivery

changes drastically between city tiers, we also report the metrics

for each of the tiers in table 2. This provides us with one level of

filter for checking the quality of predictions given by the model.

We further provide random examples of addresses that have been

marked incomplete by the model for each city tier. It is clear that

the model performs better for city tier 2 and 3 as compared to tier

1. This may be due to the fact that tier 1 addresses require more

detail to be deliverable as opposed to tiers 2 and 3, which constitute

a majority of the data.

6 CONCLUSIONS AND FUTUREWORK
We introduce a novel XGBoost + CNN ensemble approach for pre-

dicting if an Indian shipping address is complete enough for delivery.

A linear SVM combines the probability scores from the CNN and

XGBoost models to provide the final prediction. We sample and

label a dataset of 12,376 addresses with equal addresses across city

tiers for our experiments, which show that our model outperforms

several classification models and generalizes well to an unseen test

set. We further implement and test a scalable real-time prediction

service which proves that our approach is practically sound.

One of the limitations of this approach is the small size of the

dataset. This approach also combines novel solutions to several re-

search problems such as Address Parsing and detection of Monkey

Typing.With advancements in these, our approach can be improved.

Another simple improvement can be replacing the Address Com-

ponent Tree with a knowledge graph and find related tokens by

graph search. A further change can be providing confidence scores

for each address being incomplete.

Even with these limitations, however, our model can serve sev-

eral use-cases. For instance, with our prediction service, action

can be taken even before the shipping process for the product has

begun, such as: i. Decide dynamically whether to display the cash-

on-delivery option to the user based on the address they input,

ii. Schedule messages or automated call systems to confirm (and

update) the address of users, etc. Further research of unstructured

addresses in developing countries like India can help build more ro-

bust systems which reduce the chances of problems such as Return

to Origin.
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