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ABSTRACT
Typical e-commerce platforms contain millions of products in the
catalog. Users visit these platforms and enter search queries to
retrieve their desired products. Therefore, showing the relevant
products at the top is essential for the success of e-commerce plat-
forms. We approach this problem by learning low dimension repre-
sentations for queries and product descriptions by leveraging user
click-stream data as our main source of signal for product relevance.
Starting from GRU-based architectures as our baseline model, we
move towards a more advanced transformer-based architecture.
This helps the model to learn contextual representations of queries
and products to serve better search results and understand the user
intent in an efficient manner. We perform experiments related to
pre-training of the Transformer based RoBERTa model using a fash-
ion corpus and fine-tuning it over the triplet loss. Our experiments
on the product ranking task show that the RoBERTa model is able to
give an improvement of 7.8% in Mean Reciprocal Rank(MRR),
15.8% in Mean Average Precision(MAP) and 8.8% in Normal-
ized Discounted Cumulative Gain(NDCG), thus outperforming
our GRU based baselines. For the product retrieval task, RoBERTa
model is able to outperform other two models with an improvement
of 164.7% in Precision@50 and 145.3% in Recall@50. In order
to highlight the importance of pre-training RoBERTa for fashion
domain, we qualitatively compare already pre-trained RoBERTa
on standard datasets with our custom pre-trained RoBERTa over
a fashion corpus for the query token prediction task. Finally, we
also show a qualitative comparison between GRU and RoBERTa
results for product retrieval task for some test queries. RoBERTa
model can be utilized for improving the product search task and act
as a good baseline that can be fine-tuned for various information
retrieval tasks like query recommendations, query re-formulation,
etc.

KEYWORDS
LanguageModel, Transformers, BERT, RoBERTa, Transfer Learning,
Product Ranking and Retrieval, E-commerce Products, pre-training
and fine-tuning, metric learning

*Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR eCom’21, July 15, 2021, Virtual Event, Montreal, Canada
© 2021 Copyright held by the owner/author(s).

ACM Reference Format:
Sagnik Sarkar* and Lakshya Kumar*. 2021. Neural Search: Learning Query
and Product Representations in Fashion E-commerce. In Proceedings of ACM
SIGIR Workshop on eCommerce (SIGIR eCom’21). ACM, New York, NY, USA,
10 pages.

1 INTRODUCTION & MOTIVATION
Efficient product search in Fashion e-commerce is pivotal for its
success. Customers come to the platform with various intents of
searching for different fashion products and poor results may cause
bad customer experience. Understanding user intent in the form
of queries is essential to serve customers with better results. Clas-
sic methods of representation learning like LDA[1] and LSA[7]
use unsupervised objectives to map the user query and product in
the same vector space for semantic matching. Since the advent of
the Word2Vec [24] model, researchers started exploring shallow
neural methods for representing queries and products. With sev-
eral advancements in Natural Language Processing, researchers
started experimenting with deeper neural models like LSTM[13],
GRU[4], Transformers[37] and BERT[6] along with its variants like
RoBERTa[21]. For a better understanding of queries and products
these deeper models are used to model long-range context and
learning better context dependent embeddings. In fact, the Trans-
former based models have shown to outperform other models for
understanding Natural Language by showing significant improve-
ments over standard data sets like GLUE[38]. When we compare
Myntra Fashion E-commerce search with web search engines, the
queries that come to our platform are also based on natural lan-
guage but, they majorly focus on particular products or product
categories. Most of the queries are shorter in length which creates
a challenge in terms of correctly understanding the user intent and
serving relevant results. Some of the example queries are shown
below:

• ‘hrx by hrithik roshan jeans men’
• ‘nike tracksuit men’
• ‘w legging’
• ‘red lehenga choli’

In this paper, we propose different neural architectures for under-
standing queries and products by learning their representation in a
low-dimension space. These different models are trained on data
that is generated by creating a Query-Product graph and Product-
Product co-occurrence graph from Myntra’s click-stream data. Our
experiments show the comparison of these different models with
respect to different ranking metrics on the product ranking task.
The performance of these models with respect to the product re-
trieval task is also discussed. Among the proposed architectures,
the transformer-based RoBERTa[21] model is able to achieve the
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best performance. We show how we have pre-trained an in-house
RoBERTa model over a Fashion Corpus that we created using vari-
ous product descriptions, reviews, and search queries. We also show
how this model is fine-tuned for triplet loss optimization. The main
contributions of the paper are:

• Propose RoBERTa in the task of learning latent query and
product representations.

• Show a quantitative comparison of RoBERTa and GRU based
models on product ranking and retrieval tasks.

• Highlight the need for pre-training the RoBERTa model over
Fashion Domain.

• Report findings of augmenting Product-Product data with
Query-Product data while training different neural models.

The rest of the paper is organized as follows: In Section 2, we review
previous works that deal with representing queries/products for
tasks like query rewriting, query attribute extraction and product
retrieval. In Section 3, we first present a brief overview of data
preparation and then present different neural models to learn low-
dimensional embeddings of query and product. In Section 4, we
outline the experimental setup and define different model training
strategies. In Section 5, we present the results and visualizations of
our experiments by reporting the performance of proposed models
over different tasks. Finally, we conclude the paper and discuss
future work in Section 6.

2 RELATEDWORK
Representing queries and products in the same space is useful for
tasks like product retrieval, ranking, etc. These tasks are solved in
various ways in the e-commerce setting. Traditionally Information
Retrieval(IR) in the domain of e-commerce search has been based
on exact keyword matching between search queries and product
descriptions/titles like BM25[31]. But this suffers from the problem
of “vocabulary gap”. With reference to semantic product search in
e-commerce, three types of approaches have gained prominence
in the recent years, namely, a) Query rewriting, b) Query attribute
extraction and c) Embedding-based retrieval.

2.1 Query rewriting
The problem of vocabulary gap is pronounced in the e-commerce
setting where queries are in informal language whereas the product
titles/descriptions are written in formal language. One approach
of mitigating this is by re-writing the original query into a query
which is semantically similar but has less “lexical chasm”[12]. The
problem can be viewed as a translation task trained on clicked
query-document pairs. [8] A recent deep learning approach is the
“Learning to Rewrite”[12] framework which leverages the query-
product bipartite graph built from click-stream data, to build a
candidate query generation phase and a ranking phase to re-write a
poorly performing query to a well performing query. Some practical
applications of query re-writing in the e-commerce domain include
[23], [35].

2.2 Query attribute extraction
Typical search queries in e-commerce often include a collection of
product attributes that are desired by a customer. One line of work
for extracting these attributes from the query is by treating it as

a Named Entity Recognition(NER) problem. A weakly-supervised
approach for doing this is the work by Guo et al [11] which applies
a weakly supervised LDA algorithm, to identify four types of enti-
ties from commercial web search queries containing single named
entities. A supervised learning approach is by Cowan et al. [5] in
the domain of travel search queries, where a linear chain CRF is
trained on a manually labeled NER dataset. Some NER based models
in e-commerce search are [39] and [3]. The problem of attribute
extraction from search queries can also be treated as a multi-label
text categorization problem as demonstrated by Wu et al [41]

2.3 Embedding based retrieval
Classic Embedding Based Retrieval(EBR) methods such as LSA[7],
LDA[1], BLTM and DPM[9] involve projecting the query and the
document/product into a common embedding space thus capturing
concept based similarity. These methods either suffer from being
trained on an unsupervised objective which does not align well
with the retrieval/ranking task or they have issues with scalability.
In recent times, neural network based methods have gained pop-
ularity due to their ability of distributed representation learning
and scalability. Mitra et. al.[25] provides a good survey of neural
methods in IR. Guo et. al. [10] categorize deep neural network based
methods for IR into 2 categories namely representation-focused
models and interaction-focused models. Our approach falls in the
category of representation-focused models since e-commerce prod-
uct descriptions mostly satisfy the “Verbosity hypothesis” [10]. A
seminal work in the space of representation-focused models is the
DSSM model [16] which discriminatively trains a DNN by maxi-
mizing the conditional likelihood of the clicked documents given
a query using the clickthrough data. New models such as DRMM
[10], Duet [26] have been further developed to include traditional
IR lexical matching signals. Few examples of applying EBR in e-
commerce settings include JD.com[42] and in other search engines
include Search engine EBR papers [15] [28].
In this work, we handle the problem of representation learning of
queries and products in the same space by proposing different deep
models. We report the performance of learned representations from
these models on product ranking and retrieval tasks.

3 METHODOLOGIES
Myntra’s click-stream data is our main source of information for
getting products that are relevant to a given query. Using the click-
stream data, we form a Query-Product bipartite graph with edge
weights representing the number of sessions across which a product
is clicked for a given query, as shown in Figure 1 (edge weights
represented as𝑤𝑖𝑛𝑑𝑒𝑥 ). From the click-stream data, we also form an
un-directed Product-Product graph with edge weights representing
the number of sessions where 2 products are clicked in the same
session, as shown in Figure 2 (edge weights represented as𝑤𝑖𝑛𝑑𝑒𝑥 ).

3.1 Data Preparation
The query-product co-occurrence is mainly driven by the search
and ranking engine whereas the product-product co-occurrence
is also influenced by the similar product recommendation engine
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Figure 1: Query-Product Graph

Figure 2: Product-Product Graph

and thus it captures a richer source of information about product-
product similarity. All products in Myntra are categorized into var-
ious ArticleType-Gender(ATG) groups e.g (AT:Dresses, G:Women),
(AT:T-shirts, G:Men) etc. For the Product-Product graph, we only
add edges between 2 products belonging to the same ATG. We
create (query, positive-product) pairs by taking the query as the
anchor and the top 100 products from the Query-Product graph
(based on edge-weights) as the positive examples for the query. We
observe that clicked results for some queries are limited to 1 ATG
whereas for some queries the results span several ATGs. We mark
queries spanning several ATGs as “unnamed queries” since they do
not refer to a specific ATG. For example, the query “bags” would
result in different types of bags such as ladies handbags, laptop bags,
trolleys etc. We remove such queries from our dataset as they are
already handled well by the current search engine. For queries span-
ning a single ATG, we observe that some queries are very broad in
nature and almost all products in the relevant ATG may be relevant
to the query for e.g: “men tshirts” (ATG: (T-shirts, Men)). Any query
whose clicked results cover more than 30% of the products in the
relevant ATG is marked as a “broad query” and the rest are marked
as “narrow queries”. As we use triplet loss in order to optimize
different neural models, we follow 2 types of negative sampling
strategies for mining negative examples to calculate the triplet loss.
For “broad queries”, we randomly sample a product from a differ-
ent ATG (different from that of the positive product) whereas for
“narrow queries” such as “skinny fit jeans for men”, half of the time,
we randomly sample a product from the same ATG as that of the
positive product and otherwise we sample from a different ATG.
We also use the Product-Product graph to generate anchor-positive
pairs of products. This is done by simulating a fixed number of

fixed length short random walks from each product node (anchor)
and making all visited nodes its positive examples. The negative
products are randomly sampled half of the time from the same ATG
as the anchor and rest of the times from a different ATG. These
product-product pairs are also augmented to the query-product
pairs for training in one set of experiments. Using the mentioned
approach, we finally obtain two sets of data, i.e., Query-Product
and Product-Product data. We explain different neural models that
we develop in order to learn the latent representation for queries
and products in Myntra Fashion e-commerce. The basic entity for
the first two neural architecture is GRU cell[4]. The third neural
model is based on Transformer[37], i.e., RoBERTa[21] model which
is first pre-trained on the Fashion corpus that we created manu-
ally and then fine-tuned by optimizing Triplet loss. We experiment
with each of these different deep models in two settings, i.e., first
by training them on Query-Product data and then by augmenting
Query-Product data with Product-Product data for training.

3.2 Gated Recurrent Units(GRU)
The GRU has gating units like LSTM[13] that control the flow of
information inside the unit. The GRU is different from LSTM as it
does not have separate memory cells. The GRU cell mainly consists
of two gates, i.e., Reset Gate and Update Gate. These gates are
described below1:

• Reset Gate: Helps to control howmuch of the previous state
information will be remembered.

• Update Gate: Controls the amount of previous information
to throw away and what new information to add based on
the current input to the GRU unit. This gate acts similar to
the forget and input gate present in LSTM cell unit.

Formally, for a given time step t, assume that the input minibatch
𝑋𝑡 ∈ R𝑛𝑥𝑑 with number of examples as n and the number of inputs
as d. Also, the hidden state of the previous time step is𝐻𝑡−1 ∈ R𝑛𝑥ℎ
with number of hidden units as h. Then, the update gate 𝑍𝑡 ∈ R𝑛𝑥ℎ
and reset gate 𝑅𝑡 ∈ R𝑛𝑥ℎ are obtained as follows:

𝑅𝑡 = 𝜎 (𝑋𝑡𝑊𝑥𝑟 + 𝐻𝑡−1𝑊ℎ𝑟 + 𝑏𝑟 ) (1)

𝑍𝑡 = 𝜎 (𝑋𝑡𝑊𝑥𝑧 + 𝐻𝑡−1𝑊ℎ𝑧 + 𝑏𝑧) (2)
where𝑊𝑥𝑟 ,𝑊𝑥𝑧 ∈ R𝑑𝑥ℎ and𝑊ℎ𝑟 ,𝑊ℎ𝑧 ∈ Rℎ𝑥ℎ are weights and
𝑏𝑟 , 𝑏𝑧 ∈ R1𝑥ℎ are biases. The candidate hidden state �̃�𝑡 ∈ R𝑛𝑥ℎ at
time step t,

�̃�𝑡 = tanh(𝑋𝑡𝑊𝑥ℎ + (𝑅𝑡 ⊙ 𝐻𝑡−1)𝑊ℎℎ + 𝑏ℎ) (3)

where𝑊𝑥ℎ ∈ R𝑑𝑥ℎ and𝑊ℎℎ ∈ Rℎ𝑥ℎ are weights and 𝑏ℎ ∈ R1𝑥ℎ is
bias. The equation that leads to hidden state at time step t is given
as,

𝐻𝑡 = 𝑍𝑡 ⊙ 𝐻𝑡−1 + (1 − 𝑍𝑡 ) ⊙ �̃�𝑡 (4)
GRU has fewer tensor operations as compared to LSTM and they are
faster to train as well, so we choose GRU cell unit in order to build
first two neural architectures. Below we describe bi-directional
GRU based neural model, where first neural model has only single
layer, i.e., one forward GRU and one backward GRU in order to
read the textual sentence. The second neural model is more deep as

1The definition of GRU cell and equations are taken from
https://d2l.ai/chapter𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −𝑚𝑜𝑑𝑒𝑟𝑛/𝑔𝑟𝑢.ℎ𝑡𝑚𝑙
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it consists of two layers, i.e., two forward GRU and two backward
GRU.

3.3 BiGRU: Single Layer

Figure 3: BiGRU:Single Layer Architecture

Single Layer BiGRU based model is shown in Figure 3. It consists
of one forward and one backward GRU layer in order to learn the
query/product representations in latent space. We train a BPE[32]
tokenizer over the Fashion corpus2 and use it in all the proposed
neural models for tokenizing the input. The input to the model
can be a query text or product description. As shown in the ar-
chitecture, the last forward and backward GRU hidden states are
concatenated and passed to a fully connected layer and finally the
model is trained to optimize for the Triplet Loss function. The
mathematical formulation of the Triplet Loss function is given as:

𝐿𝑜𝑠𝑠 =

𝑁∑
𝑖=1

[𝑑 (𝑓 𝑎𝑖 , 𝑓
𝑝

𝑖
) − 𝑑 (𝑓 𝑎𝑖 , 𝑓

𝑛
𝑖 ) + 𝛼]+ (5)

where 𝑓 𝑎
𝑖
, 𝑓 𝑝
𝑖
, 𝑓 𝑛
𝑖

correspond to the embeddings of query/product,
positive product(clicked product) and negative products(as men-
tioned in Section 3.1) obtained from the model respectively. And 𝑑
denotes the distance metric which is cosine distance in our model
optimization. []+ denotes the function which will be non-zero if the
value inside is positive and zero otherwise. The model optimization
will try to bring the query/product embedding closer to positive
product, i.e., clicked product and it will push away the random
negative products from the query/product embedding. We have
used this loss function in all our neural models in order to do the
model training and then obtained the embeddings from the trained
model for doing the evaluation over test dataset.

3.4 BiGRU: Multi Layer
In order to increase the model capacity, we have introduced another
BiGRU layer and the same is shown in Figure 4. This architecture
contains two forward GRU Layers and two backward GRU layers.
The BPE tokenizer that is shown is same as described in Section
3.3. This model is almost similar to single layer BiGRU architecture
proposed in Figure 3 except for one more layer that gives the model

2Consists of queries, product titles, descriptions and reviews etc.

Figure 4: BiGRU:Multi Layer Architecture

more flexibility to learn better query/product representations that
result in improved metrics as discussed in Section 5. This model is
also trained by optimizing for Triplet Loss function which is given
in Equation 5. Each of the proposed neural model is capable to take
query text or product text as input. In Section 4, we will describe
how we train each of the proposed model by giving two types of
data, i.e., Query-Product data(obtained from Query-Product graph)
and Product-Product data(which is obtained from Product-Product
co-occurence graph).

3.5 RoBERTa model
RoBERTa[21] model which is a variant of BERT[6] is used for learn-
ing Fashion language using Fashion Corpus that is described in Sec-
tion 4. The BERT model optimizes over two auxiliary pre-training
tasks:

• Mask Language Model (MLM): Randomly masking 15%
of the tokens in each sequence and predicting the masked
tokens

• Next Sentence Prediction (NSP): Randomly sampling sen-
tence pairs and predicting whether the latter sentence is the
next sentence of the former

BERT based representations try to learn the context around a word
and is able to better capture its meaning syntactically and seman-
tically. For our case, we directly use RoBERTa model as it only
optimises for MLM auxiliary task which is sufficient for efficient
pre-training as shown in [21]. In experiments we use byte-level
BPE [32] tokenization3 for encoding sentences present in Fashion
corpus. We use perplexity[2] score for evaluating the RoBERTa
language model. Perplexity is defined as the exponentiated aver-
age log-likelihood of a sequence. If we have a tokenized sequence
𝑋 = (𝑥0, 𝑥1, 𝑥2, ...., 𝑥𝑡 ) then perplexity of X is,

𝑃𝑃𝐿(𝑋 ) = exp { −1
𝑡

𝑡∑
𝑖

log 𝑃𝜃 (𝑥𝑖 |𝑥<𝑖 )} (6)

where log 𝑃𝜃 (𝑥𝑖 |𝑥<𝑖 ) is the log-likelihood of the ith token condi-
tioned on the preceding tokens 𝑥<𝑖 according to RoBERTa model,
3The tokenizer is same across both the GRU and RoBERTa based models.
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where 𝜃 indicates the model parameters. Generally, lower is the
perplexity, better is the language model. After pre-training, the
model would have learnt the syntactic and semantic aspects of
tokens present in sentences in the Fashion corpus. With the help of
self-attention it learns the context in which different tokens appear
and tries to predict masked tokens based on the left and right con-
text. Masking helps the RoBERTa model to use both the left and the
right context without facing the problem of data leakage and the
model learns contextual low dimension representation of tokens.
The pre-training setup of RoBERTa model is shown in Figure 5.
Again the BPE tokenizer used is same as mentioned in other neural
approaches described in Sections 3.3 and 3.4.

Figure 5: RoBERTa Pre-training setup using Fashion Corpus

Figure 6: Fine-Tuning RoBERTa model with Triplet Loss

After Pre-training the RoBERTa model over Fashion corpus, we
fine tune it to optimize for the Triplet loss function. The architec-
ture for fine-tuning the pre-trained RoBERTa model is shown in
Figure 6. Similar to other BiGRU based neural models, we fine-tune
it over Query-Product and Product-Product data as described in
Section 4. A query text or product description can be given as input
to this model after tokenizing through BPE tokenizer and then the
model will generate the embeddings corresponding to different
tokens. A pooling layer is applied to the embeddings to generate a
single embedding which acts as a latent representation of the input.
Again the Triplet Loss is optimized using this model in order to

reduce the distance between query/product and clicked product
and increase the distance between query/product and random neg-
atively sampled products.
The three neural approaches mentioned are compared by com-
puting different metrics like Mean Reciprocal Rank(MRR), Mean
Average Precision(MAP) and Normalized Discounted Cumulative
Gain(NDCG) for product ranking task. We also evaluate the pro-
posed models for product retrieval task by calculating precision@K
and recall@K metrics. The quantitative analysis is explained in
Section 5.

4 EXPERIMENTAL SETUP
4.1 Dataset Description
For all our experimentswe use 60 days of click-stream data. Spark[33]
framework is used to prepare the Query-Product and Product-
Product graphs. The resulting data contains approximately 140k
“unique”(in terms of exact matching) queries and 950k products.
We randomly split the queries into train and test sets in the ratio of
85:15 resulting in around 119k train queries and 21k test queries.
We only use queries in the train set to form the query-product pairs.
The Product-Product graph is also formed from click-stream events
in the same time-span as the Query-Product graph. For generating
product-product pairs for data augmentation, we simulate 5 random
walks of length 5 per product node in the product co-occurrence
graph and also remove repeating nodes from the random walk. We
use the igraph[17] library for simulating the random walks.

4.2 Model Training
We train different models proposed in Section 3 in different data
settings. Each of the mentioned neural model is trained using only
Query-Product data as well as a larger data consisting of Query-
Product and Product-Product data. We call the models trained with
the larger data as models with Augmented Data as shown in Table
1 and 2. We will first describe the settings and the framework used
to train GRU based neural models and then explain the pre-training
and fine-tuning of the RoBERTa model. For all the models, we train
the Byte-Pair Encoding(BPE) tokenizer over the whole dataset con-
sisting of product descriptions, queries and product reviews. This
dataset is called as Fashion Corpus. This tokenizer is used in order
to tokenize the model input. The vocabulary size of the tokenizer
is kept as 30K. The Query-Product training data consists of query
along with one clicked product that acts as positive and a randomly
sampled product that acts as negative. The negative product is sam-
pled from the same ATG or from a different ATG based on “narrow”
or “broad” query type as mentioned in Section 3.1. For example: If
the query is ‘women kurtas’, the positive product is the one which
is clicked by the user and the negative product is sampled from
different ATG because it is a broad query. In each of the neural
models, the triplet loss optimization is performed by taking these
positive and negative examples. For Product-Product data, we have
an anchor product and other positive product which co-occurred
with the anchor product in the random walk over Product-Product
Graph. For this data, the negative product is sampled half of the
time from the same ATG and half of the time from a different ATG.
The model architectures proposed in Section 3 are trained first on
Query-Product data and then by augmenting Product-Product data
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to see the impact of adding the second data on model performance.
The results with respect to different metrics are explained in Section
5.

4.2.1 GRUbasedNeuralModels. The single layer BiGRUmodel
is trained in Pytorch[29] Deep Learning framework. The Embed-
ding layer of the model is 𝐸 ∈ R |𝑉 |𝑥𝐷 , where |𝑉 | is vocabulory
size which is 30K and 𝐷 is the input token embedding dimension
which is 100. The hidden unit size of GRU cell is also 100. There
is a dense layer after the BiGRU as shown in Figure 3. After the
forward and backward GRU cells read the tokenized input, their last
hidden states are concatenated and given as input to dense layer
with𝑊𝐷𝑒𝑛𝑠𝑒 ∈ R200𝑥100. While training the model, we pass query
text as well as product description for both the positive product and
negatively sampled product one after another and generate their
embeddings. Finally, the Triplet loss optimization is performed over
these embeddings to minimze the loss. The multi-layer BiGRU neu-
ral model which is shown in Figure 4 is trained in a similar fashion.
The number of BiGRU layers in this model are 2, i.e., two forward
GRU and two backward GRU cells. After taking the tokenized input,
forward GRU reads it and finally generates the hidden state from
second GRU cell. In a similar way, the second GRU cell of backward
GRU produce the final state. These two hidden states are concate-
nated and passed to the dense layer as shown in the architecture.
All the other hyperparameters for this model are kept same except
from two BiGRU layers instead of one. GRU based neural models
uses Adam[19] optimizer in order to update the parameters of the
model. All the GRU based models are trained for 50 epochs.

4.2.2 RoBERTa based Neural Models. In order to model the
problem of query/product representation learning, we first train
the RoBERTa model from scratch to learn the different syntactic
and semantic aspects of words appearing in the context of Fashion.
We have prepared a Fashion corpus of size ∼ 4.5𝐺𝐵 consisting
of product titles, descriptions, product reviews and queries. This
corpus is used to pre-train the RoBERTa language model and then
the pre-trained RoBERTa model is fine-tuned for the Triplet loss
optimization.

Pre-training over Fashion Corpus. For RoBERTa model pre-
training, the architecture is shown in Figure 5. The model is trained
to optimize ‘Masked Language Modelling’ objective as men-
tioned in 3.5 for 2 epochs with a cumulative training time of
2.5 days and per-gpu training batch size of 8. The multi-gpu pre-
training is done using Pytorch[30] framework and HuggingFace
library[40] based implementation of RoBERTa model with 2 Tesla
V100 GPUs. The architecture of RoBERTa model that is used is
‘DistilRoBERTa- base’ from HuggingFace having 6 encoder lay-
ers, 12 attention heads per layer and 82 million parameters
and this model is called as RoBERTaForMaskedLM. The hidden em-
bedding dimension of the RoBERTa model is 768 and the position
embedding is also of the same dimension. The model accepts the
tokenized input of maximum length 512. The model uses AdamW
[20][22] optimizer in order to update the parameters during train-
ing. The perplexity of the RoBERTa model over evaluation dataset
is obtained as 3.5. In Section 5, we show how the RoBERTa model
pre-trained over Fashion corpus is able to capture the context and

predict the masked words with relevant words as compared to al-
ready pre-trained RoBERTa model that is pre-trained on standard
datasets.

Fine-tuning RoBERTa model. The fine tuning architecture of
the RoBERTa model is shown in Figure 6. After pre-training the
RoBERTa model from scratch on Fashion corpus it is fine-tuned for
the triplet loss optimization. In order to prevent deviation of model
parameters while fine-tuning, we use slanted triangular learning
rate[14] strategy which first linearly increases the learning rate and
then linearly decays it as per defined update rule. In order to per-
form this fine-tuning, we use scheduler present in the HuggingFace
library. The optimizer for updating the parameters of this model
is same as mentioned in pre-training of the RoBERTa model. The
architecture for this model is same as the pre-trained RoBERTa
model except that there is one RoBERTa pooling layer present at
the top of the model. The class name of the model is called RoBER-
TaModel in the HuggingFace. When we initialize the RoBERTaModel
with the pre-trained model, all the weights get initialized with the
pre-trained weights. Given the tokenized input text, this model will
output a embedding of dimension 768 which is then passed to a
dense layer of dimension:𝑊𝐷𝑒𝑛𝑠𝑒 ∈ R768𝑥100. Finally, we optimize
this model for the Triplet loss function in order to fine-tune the
model in two different data settings, i.e., training on Query-Product
data and training by augmenting Product-Product data. This model
is fine-tuned for only 1 epoch.
We report the performance of different models for ranking and re-
trieval tasks in Section 5. Among different models, RoBERTa model
act as a good baseline for serving the relevant products over fashion
e-commerce given the user query.

5 RESULTS & VISUALIZATION
In order to evaluate the embeddings obtained from different models
proposed in Section 3, we choose two tasks: Product Ranking and
Product Retrieval. For these two tasks, we report different metrics.

5.1 Product Ranking Task
In order to compare different neural models with respect to a down-
stream task, we use query-clicked product ranking task. Table 1
show different ranking metrics computed for different models. In or-
der to compute Mean Reciprocal Rank(MRR) for all the models with
respect to clicked product, we have created a test dataset containing
one clicked product and 20 negative products for every query, so
the ratio of positive to negative is 1:20. All the models are evaluated
on this test dataset. Among the different neural baselines, the single
layer BiGRUwith augmented data is able to give 38.8%MRR. BiGRU
with 2 layers trained over only Query-Product data give a MRR
score of 44.5%. The fine-tuned RoBERTa model give a MRR score
of 48% which is trained with only Query-Product data and a MRR
of 40% with augmenting Product-Product data. For Multi-layer
GRU, we observe a performance drop in the MRR but an increase in
MAP and NDCG with augmented data. For the RoBERTa model, we
observe a decline in all the ranking metrics with augmented data.
We suspect that the drop is due to fine-tuning only for 1 epoch
even after augmenting more data. The RoBERTa model is able to
outperform both the single layer GRU and multi layer GRU with
just 1 epoch of fine-tuning as compared to 50 epochs for the other
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models. As RoBERTa model is already pre-trained over Fashion
corpus, it is able to achieve a higher MRR score thereby leverag-
ing transfer learning. In order to further compare these different
models, we compute other ranking metrics like MAP and NDCG.
We prepare another smaller test dataset from Query-Product graph
containing positive(clicked) products and 3 random negative prod-
ucts per positive product with respect to each query. In this smaller
dataset, the queries are a subset of bigger dataset that we use for
computing MRR metric. For every query in this smaller dataset,
we rank the set of positive and negative products using the em-
beddings obtained from the trained models. For example, if for a
given query there are 𝑛1 positive(clicked) products and 𝑛2 = 3𝑛1
negative products, then we first obtain the embedding for query
text. Then we obtain the product embedding for each of the 𝑛1 +𝑛2
products using their product description from the trained models.
All the 𝑛1 +𝑛2 products are ranked using cosine-similarity between
query embedding and product embedding. After generating the
predicted ranking, we compare it with the ideal ranking where all
the positive(clicked) product should present before all the negative
products(non-clicked). With respect to this dataset, the RoBERTa
model fine-tuned with only Query-Product data outperforms other
models with a MAP of 70.9% and NDCG of 81.1%.

Approach MRR MAP NDCG
GRU:Single Layer 29.36% 59.7% 73.3%

GRU:Single Layer with Augmented Data 38.8% 60.9% 74.2%
GRU:Multi Layer 44.5% 58.9% 72.7%

GRU:Multi Layer with Augmented Data 41.5% 61.2% 74.5%
RoBERTa model 48% 70.9% 81.1%

RoBERTa model with Augmented Data 40% 63.6% 76.1%

Table 1: Evaluation for product ranking task

5.2 Product Retrieval Task
The query and product embeddings learned using different models
can be used to retrieve the products given the query embedding. A
comparison of all the models with respect to product retrieval task
is shown in Table 2. For product retrieval task, we use the same
dataset that we use to calculate MAP and NDCG and filtered only
those queries that belong to 1 ATG. In order to assign the ATG to
queries, we look at the clicked product for the queries and assign
the ATG of the clicked products to the queries.
For retrieving the products based on query embedding, we con-
struct six4 different Annoy[34] index over the product embeddings
obtained from different models. For every query in the test dataset,
we obtain the query embedding from the model and then refer
the Annoy index to fetch top 50 products. Along with each query,
we also have a ground truth set of clicked products obtained from
Query-Product graph that is used to compute the Precision@50
and Recall@50 metrics. Among the different models, RoBERTa
model outperform all other models with a Precision@50 of 4.5%
and Recall@50 of 21.1%.

In Figure 7 and 8, we show comparison of retrieved product
results5 for some test queries between GRU and RoBERTa models.
For these test queries, we will first pass them through the model
to obtain their embeddings. These embeddings are then used to
retrieve the products from the product index created using product
4which corresponds to 6 different models trained as shown in Table 1 and Table 2.
5Due to the space limitation, we show less number of retrieved results

Approach Precision@50 % Recall@50 %
GRU:Single Layer 1.4% 7.5%

GRU:Single Layer with Augmented Data 1.7% 8.6%
GRU:Multi Layer 1.4% 7.4%

GRU:Multi Layer with Augmented Data 1.2% 6.1%
RoBERTa model 4.5% 21.1%

RoBERTa model with Augmented Data 2.7% 11.1%

Table 2: Evaluation for product retrieval task

Figure 7: Comparison of retrieved product results for test
query: ‘allen solly turtle neck sweatshirts’

Figure 8: Comparison of retrieved product results for test
query: ‘nike running shoes men’

embeddings obtained from GRU and RoBERTa separately.
Figure 7 show the results for the test query:‘allen solly turtle neck
sweatshirts’. The retrieved products from RoBERTa model clearly
indicate the intent of the query, i.e., ‘allen solly’, ‘sweatshirt’with
‘turtle neck’, still some of the results have different neck. Whereas
GRU return the products that are ‘sweatshirt’ but from different
brands and neck pattern.
Figure 8 show the results for the test query: ‘nike running shoes
men’, and the retrieved products from RoBERTa clearly captures
the intent of the query by showing the men running shoes from
the brand:Nike. Whereas the retrieved products from GRU model
are ‘running shoes’ but from other brands.

Figure 9 show the visualization for token prediction task with
respect to different queries. As we see from the visualizations, after
pre-training the RoBERTa model over Fashion corpus, it has a good
understanding of the fashion text and generate valid predictions
for masked tokens in the queries. However, the already pre-trained
RoBERTa model does not generate good predictions and fails to
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Figure 9: Custom pre-trained vs Already pre-trained RoBERTa for Query Completion

Figure 10: Pre-training impact with respect to theword ‘The’

understand the context in some cases. For the test query: ‘boys
<mask>’, the custom pre-trained RoBERTa model(pre-trained over
the Fashion Corpus) give valid predictions for the <mask> token
like ‘jacket’, ‘sweatshirt’, ‘sweater’, ‘shirt’, ‘shorts’ etc. On the
other hand the already pre-trained RoBERTa model give garbage
predictions in the form of different characters like ‘!’, ‘.’ etc. For
one more example test query: ‘tie and dye night <mask>’, the
custom pre-trained model give valid predictions like ‘suit’, ‘dress’,
‘gown’, ‘cream’ etc. But already pre-trained RoBERTa model again
give random tokens as predictions. In order to further assess these
two RoBERTa model, we give the test query as ‘The <mask>’ as
shown in Figure 10. The custom pre-trained model give predic-
tions that are coherent with respect to Fashion like ‘top’, ‘style’,
‘bag’, ‘sleeve’ etc. The already pre-trained model give predictions
that are coherent with respect to english corpus over which it is
pre-trained like ‘Conversation’, ‘Telegraph’, ‘Author’ etc. The al-
ready pre-trainedmodel is pre-trained over BookCorpus( 16GB)[43],
CC-NEWs(76GB[27]), OpenWebText(38GB)[18], Stories(31GB)[36]
etc which explains the incoherent predictions from this model with
respect to Fashion e-commerce. We next highlight the important

conclusions and also the future work that can be done to improve
ranking and retrieval.

6 CONCLUSION & FUTUREWORK
In this paper we proposed different neural models to learn the
representation of queries and products in the latent space. These
low dimension query and product representations can be used to
solve various problems in the fashion e-commerce domain. We pro-
posed single and multi-layer GRU based baseline models that can
be optimized for Triplet Loss using our click-stream data. We also
showed how a RoBERTa model after pre-training on Fashion corpus
can be again fine-tuned for Triplet loss optimization. Each of the
proposed model is trained in two different settings, i.e., first with
only Query-Product Data and then augmenting Query-Product data
with Product-Product data. In order to compare these models and
the representations learned by them, we take the product ranking
and retrieval task. Our experiments showed that RoBERTa model
that is fine-tuned using only Query-Product data outperformed
other proposed models with an MRR of 48%, MAP of 70.9% and
NDCG of 81.1% for product ranking task. This model also gave a
precision@50 of 4.5% and Recall@50 of 21.1% for product retrieval
task. The embeddings learned can also be used to train downstream
models for ranking optimization. RoBERTa model acts as a strong
baseline which can be directly fine-tuned for different ranking tasks
and also leverage the transfer learning due to pre-training over Fash-
ion corpus. Directly fine-tuning the RoBERTa model for ranking
optimization is an interesting future work. It will be interesting
to compare different transformer based architectures for different
ranking and relevance tasks.
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