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ABSTRACT
Marketplace platforms offer the convenience of browsing through
entire catalogs of offerings via a search bar. At Etsy1, an uncon-
ventional inventory of over 100 million unique handmade products
presents even greater challenges in product search given that many
listings fall outside of standard categories. Personalizing the search
experience becomes increasingly important with the overwhelming
number of relevant items per query, especially for top percentile of
queries by search volume. In accounting for individual user prefer-
ences, a personalized model sifts through millions of listings to find
a vital few that match their intent and taste.

In this paper, we show how we use a combination of content-
based, graph-based and session-based listing representations to con-
struct user and query representations from multiple implicit feedback
types aggregated over various time frames to build a personalized
learning-to-rank model at Etsy. With rigorous offline evaluations
and three online A/B tests conducted across platforms, we show that
the proposed personalized ranking variants significantly outperform
the existing baselines in ranking metrics with measurably higher
degrees of personalization given by Kendall Tau correlation coeffi-
cient. Since 2020, the personalized models have been successfully
deployed on live traffic at scale across many platforms, with users
converting more and faster with higher repeated repurchases. We
also provide a deeper analysis of various segments (i.e, query or user
bins, platforms) to uncover where personalization shines.
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1 INTRODUCTION
At Etsy, an unconventional inventory of over 100 million unique
handmade products can become overwhelming for buyers to find
what they are looking for. Etsy’s product search is one common
way for buyers to browse through the catalog, and personalizing this
search experience thus becomes important in helping the user find
items that best fit their preference, as seen in Figure 1.

Many of the most popular queries (also referred to "top" or "head"
queries; see Table 2 for details) are broad and short in length. For
the query "necklaces", Etsy offers over 300k listings that fall into
this product category. Some example items that fall into this group
are lockets, chains, and personalized nameplate necklaces. This, and
other similar head queries that are vague in nature, are not only the
most searched queries, but also the most purchased. In 2020, the top

1E-commerce platform for handmade products at https://www.etsy.com
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Figure 1: Personalized results for two different users given search query "sapphire".
Top user previously purchased "gemstone", "crystal", and "birthstone" items. Bottom
user purchased "necklace" and "jewelry" items.

searched query on Etsy was "personalized gifts", which had over 5
million search results [21], as each buyer might look for different
products for the gifts.

Tail queries such as "woolen upcycle coat" and "early renaissance
canvas print" tend to be specific and lengthier than head queries.
Although one might argue that personalization is less important for
tail queries (since there are potentially fewer listings that fit the
query) we show that our personalized model with user profile and
query representations improves conversion rates on tail queries also.

Intuitively, the more implicit feedback a user provides in the form
of clicks or purchases the better our model can learn their preferences.
However we show that our personalized model performs well even
on user segments that haven’t often interacted with the marketplace.
For sellers too, personalization might help the model better recognize
the unique qualities of their listings and find the best suited buyers.

Personalization has been shown to improve the user experience
and increase the relevancy of returned results [1]. There are many
different approaches to personalization but at the center of it lies
the user profile, such as those described in [7]. Motivated by these
works, our personalized model focuses on behavior modeling using
user implicit feedback representations. The user embeddings are
aggregated listing representations, of various types. In summary, we
discuss the personalized search ranking model and analyze the differ-
ent features that lead to an improved user experience and increased
conversion.Our contributions are as follows:

• We use content-based, graph-based and session-based list-
ing embeddings for personalization to build individual user
profiles. We generate these embeddings from four modes of
user implicit feedback (clicks, purchases, favorites, cart adds),
combined with various time frames of aggregation (i.e, recent
vs lifetime), to improve our ranking model relevancy metrics.

• We show that this personalization model deployed on live
traffic improves user rates of return and conversion rate. We

https://www.etsy.com
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also share the insights on how they perform on various user
and query segments.

• We measure the degree to which our model personalizes
search results. Head queries’ results as well as traffics on
the mobile application platform (where habitual users reside)
have lower average Kendall Tau correlation coefficient and
thus higher degree of personalization than tail queries.

2 RELATED WORKS
Research on personalization within Search has garnered increased
interest in recent years. In particular, usage of implicit feedback logs
to generate various embeddings have proven successful in real-world
applications [8, 14, 26]. Research on user profiles have explored dif-
ferent ways to create representations from implicit feedback signals.
Clicks and purchases are among some of the more common signals,
but add-to-collection and favorites signals also reveal user interests
and taste preferences. A few approaches to creating such embed-
dings include the work in [3, 8, 14, 18, 28, 30], as well as topic
models to build user profiles for personalization in [6, 12, 20, 25].

With learned embeddings, user representations can be constructed
using in-session implicit feedback [3, 8, 30], or a combination of
recent and longer term window ranges [2, 8, 15, 24, 28] for down-
stream tasks in search and recommendations. Authors in [3] show
that combining content-based features and content-agnostic based
item embeddings on users’ recent clicks can improve mean recipro-
cal rank in an e-commerce setting. [2, 5] constructs user profiles as
a combination of previously purchased items for their zero attention
model by applying weights to interactions and recency.

In production, search and recommendation systems are typically
comprised of two stages: the first pass narrows down the product
catalog to a subset of relevant candidates [13, 17, 23, 29, 30], while
the second pass performs finer-grained re-ranking of the items to
optimize for relevancy and other business metrics [9, 10, 16, 19, 22,
27]. In the past, personalization was applied to the retrieval step like
in [3, 29] or both retrieval and ranking passes demonstrated in [26].
In this paper we apply personalization to the re-ranking step.

[11] proposes the degree of personalization for web search results
to examine the difference in rankings between search results among
users. We analyze the effect of personalized search results across
query segments and platforms to examine the degree to which our
model generates different rankings among users for the same query.

3 METHODOLOGY
In the following sections we describe the building blocks of our
user profile and query embedding features: listing representations.
We then explain how we create multiple profiles per user based
on various time windows of aggregation and types of interactions.
Finally we discuss feature engineering and detail the underlying
re-ranking model used by both the baseline and personalized models.

3.1 Listing and Query Representations
Three main listing representations include: content embeddings,
item-interaction embeddings, and interaction-based graph embed-
dings. The first two are listing specific while the third produces both
query and listing embeddings per interaction type. Modeling interac-
tions in the latter two approaches are inspired by the hypothesis that
the different ways in which a user interacts with an item indicates
different kinds of intent, evidenced in [30].

Content Representations, 𝐿𝐶 . To capture listing content features, we
construct sparse vectors from titles, tags and other seller-contributed
texts using Tf-Idf and BM25. We construct up to trigrams over the
corpus of all available listings.
Item Interaction Embeddings, {𝐿𝑆,𝑖 }𝑖∈I . Similar to [30], we learn
item interaction embeddings by using one-year session data with
interactions (i.e., click, favorite, purchase) to construct dense vectors
that represents co-occurrence patterns with respect to user implicit
feedback. These embeddings are trained using a skip-gram model,
where an instance of data constructed on a given user session, S =

{𝑝1, ..., 𝑝𝑘 }, consists a sequence of item-interaction tuples, 𝑝 𝑗 ∈
L × I, with L and I denote the set of items and interaction types.
As a result, a click-interaction listing embedding will have a different
embedding than a purchase-interaction for the same listing.
Interaction-based Graph Embeddings, ({𝐿𝐺,𝑖 }𝑖∈I , {𝑄𝐺,𝑖 }𝑖∈I ). In-
spired by the initial work in [14], we extend the vector propagation
algorithm to learn representations per interaction type (i.e., click,
add-to-cart, purchase) for both queries, {𝑄𝐺,𝑖 }𝑖∈I , and listings,
{𝐿𝐺,𝑖 }𝑖∈I , in the same semantic space. For each interaction 𝐼 , we
construct a bipartite graph 𝐺𝐼 with the node set 𝑉𝐼 = {𝑃,𝑄}, where
an edge 𝑒 ∈ 𝐸𝐼 connects a listing, 𝑝 ∈ 𝑃 , and a query, 𝑞 ∈ 𝑄 , if there
is at least one co-interaction between them. These vectors consider
content and user interaction data in a shared semantic space of query
and listing vocabulary. We propagate from listings to queries, such
that listings with commonly associated queries in the local neighbor-
hood of the graph would have similar vectors to reduce semantic gap.
The representations are trained over a year’s worth of data on user
interaction logs (i.e, clicks) to maximize model quality to account
for heavy seasonality effect, thus increasing coverage rate for rare
tokens. New listings or queries without interaction data outside the
graphs leverage the learned token representation in the vocabulary
to achieve nearly full coverage rate. One might argue to build one
single bi-partite graph with weighted edges among different inter-
actions, but we observe better improvement with interaction-based
approach and also it is efficient at scale.

3.2 User Representations
For a given user, our approach to personalization aggregates repre-
sentations of listings with which the user engaged to create a user
profile based on implicit feedback averaging over different time
windows: recent (i.e, last 14 days) and lifetime (i.e, all historical
purchases or carts from the users). We use all three types of list-
ing representations described in section 3.1, four modes of implicit
feedback (click, favorite, add-to-cart, and purchase), and two time
windows for user feedback (recent and lifetime).

For a given user 𝑢, let 𝑠𝑘𝑡 ⊂ 𝑆𝑢 be the set of listings that the user
engaged in the last window 𝑡 for interaction type equals 𝑘 . Let 𝑆 be
the set of all possible permutation for 𝑠 𝑗𝑡 . For 𝑠𝑘𝑡 and every listing
embedding, we can construct multiple user representations as:

{𝑈
𝐶,𝑠𝑘𝑡

,𝑈
𝑆,𝑠𝑘𝑡

,𝑈
𝐺,𝑠𝑘𝑡

, }
𝑠𝑘𝑡 ∈𝑆

,

where 𝑈
𝐶,𝑠𝑘𝑡

= 𝐴𝑔𝑔(∪{𝑚:𝑚∈𝑠𝑘𝑡 }
𝐿𝑚
𝐶
), for example, is a user represen-

tation derived based on the listing content representations.
For instance, we take all the recent listings a user has favorited

in the last weeks (i.e, 14 days), retrieve the item interaction embed-
dings for each of these listings and average the vectors to create a
user’s item interaction embedding for their recently favorited items.
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Figure 2: Ranking of features based on feature importance gain for feature types
and query interaction types, respectively.

Different time windows for recency have been explored, we finalize
to recent clicks and carts over 14 days while considering lifetime
favorites and purchases. A more granular approach to weighting user
implicit feedback learned through attention mechanisms could be
extended, however that is outside the scope of this work.

3.3 Personalized Learning-to-Rank Model
For the baseline and the personalized variants we use an ensemble
gradient boosted decision tree with LambdaMART algorithm in
the second pass of the information retrieval system [4]. Here is the
mathematical formulation. Let 𝑞 denote the query from a user 𝑢 and
𝑙𝑖 ∈ 𝐿(𝑞,𝑢) denote the 𝑖-th listing in the set of listings associated
with 𝑞 and 𝑢. For each 𝑙𝑖 , let 𝑥𝑖 denote the feature vector for this
(query, user, listing) tuples, and 𝑟𝑖 denote the listing’s relevancy
(i.e, 1 if the user purchases the listing). Given search data logs{
𝑞,𝑢, [(𝑥𝑖 , 𝑟𝑖 )]

𝐿(𝑞,𝑢)
𝑖

}
, we aim to learn a (personalized) ranker, 𝑓 ,

that predicts a relevance score on the 𝑙 given a query 𝑞 (and user 𝑢)
through the minimization of the empirical risk function as follows,
𝑓 = argmin𝑓

∑
(𝑞,𝑢)

∑
𝑙𝑖 ∈𝐿(𝑞,𝑢) 𝐿𝑜𝑠𝑠

(
𝑓 (𝑥𝑖 ), 𝑟𝑖

)
.

For personalized models, we experimented with two variations.
The first variation (P1) contains user embedding features that the
non-personalized model (B) doesn’t have. Compared to the P1, the
second model (P2) adds query embedding features learned from
the Interaction-based query-listing Bipartite Graph described in Sec-
tion 3.1. Query features are then engineered to interact with user
representations, creating more personalized features for ranking. We
experiment with incremental models to show that with each addition
of user and query embeddings, we get further model improvements.

3.4 Ranking Features
The baseline model uses both sparse and numeric features that de-
scribe listings, shops and query. Some of the raw features include
dwell time (i.e, average dwell time per listing), product attributes (i.e,
color, material types), taxonomy (i.e, clothing, jewlery), and binned
query frequency statistics. We create ratios, normalize and combine
composition features from the query to the listings or shops [9, 27].
The personalized models include all the baseline model features plus
new features generated with query and user representations detailed
in Section 3.1 and 3.2.

The personalized learning-to-rank models receive similarity scores
(i.e., cosine, dot product) calculated between user profile or query
representations and candidate listing embeddings. For the most part,
scores are generated across the same vector types. For example,
we generate similarity scores between a user’s recent clicks con-
tent vector and all candidate listings’ content vectors. These inputs
are among the few hundred total number of features passed to the
decision tree, which include raw features and baseline features.

Models Purchase NDCG @10 Kendall Tau (avg)
Web Traffic App Traffic Web Traffic App Traffic

P1 (user reps) +3% +4.8% 0.9073 0.8109
P2 (query + user reps) +6.9% +9.17% 0.8527 0.7783

Table 1: Offline evaluations of personalized models P1 and P2 vs Baseline (non per-
sonalized) on attributed purchase search requests, measured by % change in NDCG@10
and degree of personalization in Kendall Tau correlation coefficients. A lower Kendall
Tau score indicates greater degree of personalization.

4 EXPERIMENTAL RESULTS
In this section, we conduct and discuss the offline and online test re-
sults of the base models and personalized variants. Wea also demon-
strate that the degree to which results are personalized is measurably
different among query segments and across platforms.

4.1 Dataset
We collect training data that consists of purchase search logs from
users to the site from over 30 days. That is, when a user confirms a
purchase from the site the data contains the query used, purchased
item and details about the item such as the tags or taxonomy. The
training data also maintains record of the purchased listing in the
context of all other listings shown in the results page. In offline
experiments cart-add logs were combined with purchase logs to
create training data, however we found that training only on purchase
logs improved the model performance. Training data with over 200
millions instances was constructed from purchase logs from all
platforms on the site, and testing was evaluated on the next day’s
data and done separately on web and mobile application traffic
with three millions testing instances per platform. User traffic on
the mobile application falls into the more active category, as they
typically tend to be signed-in and have more recurring purchases
compared to web traffic users.

4.2 Offline Evaluation and Feature Importance
To evaluate the offline performance of the personalized variants
we use purchase NDCG@k, i,e, 𝑘 = 10. In offline experiments
shown in Table 1, P1 improved over the baseline model (B) purchase
NDCG@10 by 3% and P2 improved over the baseline by 6.9% in
purchase NDCG@10 on web traffic. Users that had purchased many
items in the past 12 months saw a higher increase in NDCG gain
compared to the average user for both P1 and P2 variants in all
platforms.

To examine the effect of different vector types, time ranges of
user aggregated interaction, and modes of user implicit feedback on
purchase NDCG we review the overall rankings of features ordered
by the greatest feature importance gains in the tree model. Among
embeddings for user profiles, features that included content-based
Tf-Idf vectors had higher importance gain, followed by interaction-
based graph vectors that learn listing and query neighborhoods de-
fined by co-interactions and graph adjacent neighborhoods. The
n-gram token weights of the graph embeddings are chosen by prop-
agating query n-grams and similar listings, whereas Tf-Idf weighs
n-gram tokens relative to appearances in the entire listing catalog.

Recent time windows of aggregation for user profiles generally
had higher feature importance gain compared to overall time win-
dows. In this case, users’ current shopping mission might be more
informed by their recent user activity. However the user vectors com-
puted for overall time ranges still remain consequential given their
feature gains relative to a randomly generated control feature. This
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Median Kendall Tau
Query Segments % Search Traffics Length P1 P2

Web App Web App
top 0.01% >= 99.99% 13 0.873 0.751 0.850 0.719
top 0.1% >99.90% and <=99.99% 16 0.918 0.859 0.910 0.824

head >96% and <=99.90% 18 0.970 0.948 0.965 0.909
torso >70% and <=96% 21 0.995 0.991 0.987 0.946
tail <=70% 23 0.999 0.993 0.996 0.949

Table 2: The table provides definition of query segments binned by % search volumes,
median query length, and degree of personalized results per query segments for P1 and
P2 on web and App.

might indicate that lifetime user behavior can still inform general
preferences in users’ shopping missions.

Across the personalized models, user vectors aggregated across
clicks and query vectors aggregated across purchases created fea-
tures with more feature importance gain compared to cart-adds and
favorites. For user profile embeddings, clicks are important sig-
nals whereas query embeddings favor purchase signals. Click-based
query embeddings have higher coverage in the training data com-
pared to the others, and despite purchases have lower coverage in
the training data the signal is stronger than cart-adds.

4.3 Measuring Degree of Personalization
To more deeply understand the effects of personalization, we exam-
ine the degree to which the results are personalized for query bins
using a method similar to [11]. To measure the degree of personaliza-
tion for an entire model, we average Kendall Tau coefficients across
all queries. We group queries into their bins and average across each
bin to obtain the degree of personalization per query segment.

Table 2 and Figure 3 show that the baseline, non-personalized
model, generated results for users with the highest degree of similar-
ity of rankings across all queries on a given day from web and app
traffic after the training window. Without personalized features, we
should expect the results to be the same across users. For the person-
alized model with user profile embeddings, the average Kendall Tau
coefficient decreases and adding query embeddings the coefficient is
the lowest. The personalized models are measurably different among
different users for each query compared to the baseline. Comparing
across platforms, users on our mobile application receive even more
personalized results than web traffic. Historically, mobile application
users tend to visit and purchase more often than the average web
user thus providing the model with more user feedback to generate
results with a greater degree of personalization.

The personalized model with user embeddings serves more per-
sonalized results for broader, popular queries than for tail queries.
We see in Table 2 that the top 0.01% of queries have the lowest
Kendall Tau coefficient of all query bins. Tail and torso queries ex-
hibit high Kendall Tau coefficients between users, with their mode
around 1.0. Figure 3 plots the Kendall Tau correlation for each model
and traffic segment, and shows the modes for top 0.01%, top 0.1%
and head queries around less than 0.9 Kendall Tau correlation.

4.4 Online Results
For online A/B testing, we conducted live traffic experiments on all
platforms including desktop, mobile web and mobile application
over the course of a week, randomly bucketing users into control
versus variant with 50/50 split.

In the personalized variants we observe over 3% in increases of
purchase NDCG@10, consistent with offline results. The overall

Figure 3: Degree of personalized search results per model for web and mobile
application traffic for top queries.

Segments P1 vs Baseline P2 vs P1
Web Traffic Web Traffic App Traffic

(Metrics in % change) CVR CTR CVR CTR CVR CTR
Query: top .01% +0.4%∗∗∗ +0.81% +0.23%∗∗ +2.4%∗ +0.04% +11.8%∗∗

Query: top .1% +.37%∗∗ +1.26% +0.29%∗∗ +5.6%∗∗∗ +0.07% +13.2%∗

Query: head +0.35%∗∗∗ +1.2% +0.11% +4.0%∗∗ +0.22% +21.0%∗∗∗

Query: torso +0.14% +1.69% +0.25% +7.2%∗∗ +0.37% +27.7%∗∗

Query: tail +0.13% −0.32% +0.71%∗∗∗ +6.6%∗ +1.3%∗∗ +6.4%∗∗

User: habitual +0.4%∗ −1.5% +0.27%∗ +3.3% +0.2% +0.26%
User: active +0.61%∗∗ −2.1% +0.36% +3.4% +0.32% +11.6%
Overall +0.65%∗∗ 𝑛/𝑎 +0.59%∗∗ 𝑛/𝑎 +1.1%∗∗ 𝑛/𝑎

Table 3: A/B test results measured by % changes in conversion rates (CVR) and
click-through-rate (CTR) for query and user segments: (a) P1 vs baseline (Web), (b)
P2 vs P1 (Web), (c) P2 vs P1 (Mobile App). Here, (∗), (∗∗), (∗ ∗ ∗) indicate statistical
significance at p-value < 0.1, 0.05, 0.01 levels.

user conversion rate increases while the mean search clicks per
session decreases in the P1 personalized model compared to baseline.
On average, users served this personalized variant purchase more
items using fewer number of clicks during the search session. User
repurchase rates, or the portion of users who bought a subsequent
item within the span of 60 days, also increase.

In P2, query features interact with user profile features to create
a contextualized representation of the user’s query in addition to
the user profile embedding features built on implicit feedback. With
these features, online experiments observed further increases in
purchase NDCG@10 as well as conversion rate compared to P1.

Users with a purchase within the last 12 months are considered
more active users, while all other users are considered less active
users. We observe that adding user profile embeddings increases
conversion rates for more active users, and adding query embeddings
increases conversion rates for less active users. Representing queries
via interaction-based graph embeddings helps the model to learn
query context, even if the user has a sparse history.

To analyze the conversion rates on different queries, we bin
queries into top 0.01%, top 0.1%, head, torso, and tail segments
based on search volume over a year, see Table 3.

Adding personalized user profile features in P1 increases con-
version rates for the broadest, most popular queries. User profile
features also increase the add-to-cart rates for queries in all bins
except tail. With the addition of query embeddings in P2, we get a
further boost in conversion rates for tail queries too. Contextualized
query representations help rarer queries to find suitable listings.

5 CONCLUSION AND FUTURE WORK
In this paper, we discuss how we build personalization in the second
pass search ranking via user profile and query representations con-
structed based on multiple implicit feedback types and various time
windows of aggregation. With these features, purchase NDCG@10
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and user conversion rates increase overall. Personalization affects
users differently, with active users converting at a greater rate due to
their richer user history compared to inactive users. The traffic on
the mobile application platform generates more personalized results
compared to web traffic. We measure the degree to which personal-
ization affects different query segments and found that the top 0.01%
of head queries generate the lowest similarity of rankings between
users, as measured by the Kendall Tau correlation coefficient.
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