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ABSTRACT
Position bias removal from ranking models learned using implicit

feedback is extensively studied in the literature for classical web

search. To this end, significant research efforts are made on coun-

terfactual LTR, which reduces bias using the probability of inter-

vention, termed propensity scores. Estimating these propensity

scores is not straightforward. Intervention harvesting [4] is one

notable approach to estimate propensities from observational data

for classical web search. However, only a few works [7, 11] exist

for bias removal from an e-commerce product search. Specifically,

harvesting methods have not been studied in this product search

framework. Furthermore, while learning an unbiased LTR in this

setting by applying different propensity scores, their influence on

other elements, such as the loss function and the optimizer, are yet

to be explored.

This work attempts to bridge these gaps by studying three es-

sential elements of counterfactual LTR in a real-life large-scale e-

commerce setting: harvesting-based propensity estimators, pairwise-

additive LTR losses, and gradient-based optimizers. Specifically, we

aim to analyze the predictive performance of counterfactual LTR

under these three experimental axes. Moreover, there is no compre-

hensive study to analyze the influence of these different elements

in counterfactual LTR in our setting.

Our experiments confirmed an underlying dependency on the

optimizer-loss configuration.In particular, we observed that propen-

sity correction changes the learning dynamics for accelerated gradient-

based optimizers. Thus, counterfactual LTR benefits in tandem with

non-accelerated gradient descent; otherwise, it degrades the per-

formance in a real-life scenario.
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• Information systems→ Learning to rank.
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1 INTRODUCTION
Usingmachine learning to build rankingmodels, collectively known

as Learning-to-Rank (LTR), is the de-facto practice in search para-

digm. These models typically rely on expert annotated relevance

judgments or implicit user feedback for training and evaluation.

As opposed to human evaluated judgments, implicit user feedback

is abundantly available and reflects meaningful user preferences,

making it suitable for the LTR model fitting.

Thiswork concentrates on amore specific use case, the e-commerce

product search. For this type of search, the relevance of a product is

not limited only to matching the content description with the issued

query. It encompasses other factors like the utility of the product

and price [24]. Moreover, user feedback in e-commerce product

search goes beyond clicks, as signals like add-to-cart, bookmark,

and purchase are also available, thus making implicit feedback a

more cost-effective option.

However, the nature of user interactions is inherently biased

[15], making straightforward application of implicit feedback dif-

ficult. One such significant bias is the position bias, where a user

tends to examine and thus interact with higher-ranked products

more than the lower-ranked ones. Consequently, she does not click

potentially relevant documents on lower-ranking positions. The

seminal study by Joachims et. al. [16] proposed unbiased LTR, a

counterfactual learning approach to reduce biases systematically.

Under this framework, we divide a ranking loss function by the

probability of examining a document at a clicked position, i.e.,

propensity score; however, this requires proper knowledge of such

probabilities. Hence, accurate propensity estimation is paramount

for an effective unbiased LTR.

Online interventions are still the gold standard to estimate exposure-

at-position propensities, specifically ranking result randomization [15].

However, in practical scenarios, these interventions are disruptive

https://orcid.org/0000-0003-1729-1927
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and significantly hamper the search experience [27], leading to ad-

ditional unseen costs. Therefore, current research in counterfactual

LTR concentrates on using causal models of users’ implicit feed-

back to leverage observational data and bypass these interventions.

Notably, these methods include propensity estimation [4, 7, 27] and

designing custom ranker’s architecture [5, 28].

This work focuses on using propensity estimation methods in

counterfactual LTR. Specifically, we use interventional harvesting-

based propensity estimators [4]. This class of estimators uses his-

torical user click-logs where various rankers may rank the same

query-document pair at different positions. They emulate the effect

of ranking result randomization. This enables us to compute the

propensities offline.

We go from theory to practice, testing intervention harvest-

ing estimators with counterfactual LTR on a large-scale real-life

e-commerce query log obtained from the Rakuten product search

engine. We aim to answer the following questions: i) How do

harvesting-based propensity estimators behave in an e-commerce

setting? ii) How do different loss functions and optimizers influence

the ranking performance of counterfactual LTR methods corrected

using harvesting-based propensity estimations?

Our contribution is twofold:

• We tested interventional harvesting-based propensity esti-

mators on a real-life e-commerce dataset and analyzed their

limitations in this setting.

• We empirically study the relationship between the different

elements in unbiased LTR, such as the loss function, the

optimizers, and the estimated propensities.

To the best of our knowledge, this is the first work to do so. These

aspects of counterfactual LTR are well studied for the classical

search (Sec. 3). The same is missing for e-commerce product search.

2 RAKUTEN ICHIBA USE CASE
Rakuten Ichiba is the largest e-commerce marketplace in Japan

hosting nearly 56 thousand merchants selling around 360 million

items
1
. The product search engine of Rakuten Ichiba, henceforth

referred to as Rakuten, receives around 130 million queries per day

and has to retrieve relevant items from the catalog containing these

360 million items. Frequent A/B testings to validate ranking models

or similar online interventions on such a large-scale product search

engine result in the potential risk of loss of revenue. Thus, we

deliberately limited the context of this work to offline propensity

estimators to avoid performing online interventions.

We focus on the desktop version of the Rakuten website, where

the search engine results pages (SERPs) display results in a 2-

dimensional grid. Under the default filters setting, each result page

presents 45 items with five items per row, leading to 9 × 5 SERPs.

Only the first page for each query is logged in the dataset. Fig. 1

shows a typical SERP of Rakuten
2
.

2.1 Rakuten LTR dataset
We performed all the experiments using search logs collected from

the Rakuten product search engine. Our dataset contains 2% of

users’ queries, sampled randomly, during the period of April 3
rd
,

1
https://rakuten.today/blog-ja/rakuten-ichiba-25years-2022-j.html?lang=ja

2
Search date: May 9, 2022. SERP URL: https://search.rakuten.co.jp/search/mall/kobo/

Figure 1: A typical web SERP of Rakuten Ichiba

2021 to April 19
th
, 2021. Products in a result page can typically

be sorted using various options, such as best match, descending

price or ascending price, user review scores, new arrival etc. For

this paper, following [7], we log results sorted according to the

best match. The final dataset contains 556 252 queries with 40.322

average number of result products per query. Normally each query

contains 45 result items. However, queries for very specific products,

or queries with specific filters activated (e.g. color, genre) result in

fewer items in the SERP. Table 1 details the dataset.

The feature set has 70 features, including query, product, and

query-product dependent features. The query features rely on its

structure, such as its length. The product features include informa-

tion on the product’s description and previous user exchanges with

the product. Finally, the query-product features enclose mainly

similarity-based information such as SOLR
3
similarity fields

4
. Also,

the data collection pipeline records three types of user interactions

with the search results, clicks, add-to-carts, and purchases.

Fig. 2 shows the frequency of clicks and purchases for different

rank positions. We fit an power-law model on the top 45 positions,

𝑓 (𝑥) = 𝑎 (𝑥𝜎 ) + 𝑏, where 𝑎 denotes the amplitude, 𝑏 is the offset,

and 𝜎 is the decay constant. Thus, the power-law model accurately

depicts the observed popularity ranking. In particular, we have for

clicks and purchases 𝜎 = −0.89, 𝑎 = 8k and 𝑏 = −150 for purchases,

and 𝑎 = 48k and 𝑏 = 236 for clicks. This decay shape, in particular,

the lack of oscillations every five items, may suggest that users

examine items in a 1-dimensional list or sequential reading, from

left to right and top to bottom. Nevertheless, items are displayed in

a 2-dimensional grid. We confirm this intuition in Sec. 6.

2.2 Limitations
Business constraints compel us to deploy bias removal solutions

with minimal disruption to the current functional pipelines—this

constrains our exploration of more complex ranker architectures,

such as the Dual Learning algorithm [6]. Consequently, we adopted

3
https://solr.apache.org/

4
https://solr.apache.org/guide/8_4/other-schema-elements.html

https://rakuten.today/blog-ja/rakuten-ichiba-25years-2022-j.html?lang=ja
https://search.rakuten.co.jp/search/mall/kobo/
https://solr.apache.org/guide/8_4/other-schema-elements.html


Testing harvesting-based Propensity Estimation on Counterfactual Learning-To-Rank for Ichiba SIGIR eCom’22, July 15, 2022, Madrid, Spain

Table 1: LTR dataset description

Number of samples (queries) 556 252

Average number of products per query 40.322

Number of features 70

Click rate (% clicks among impressions) 5.553%

Conversion rate (% purchases among impressions) 0.193%
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Figure 2: Frequency of the click and purchase feedback sig-
nals along different rank positions in the LTR dataset.

a simple unbiased LTR method, counterfactual LTR [16]. Also, we

relied on linear rankers to limit the experimental design and used

pairwise additive ranking losses as learning objectives. These rank-

ing losses are ubiquitous in LTR as they include two staples of the

field: RankNet and SVM-rank. Therefore, our problem boils down

to estimating the propensities. Furthermore, since Rakuten Ichiba is

a real-time product search engine, performing online interventions

such as result randomization is not affordable, motivating us to

turn towards offline propensity estimation techniques.

3 RELATEDWORK
Two main strategies exist to avoid randomized experiments to

assess exposure-at-position propensities in e-commerce. One is to

tailor the architecture of the ranker [5, 28], and another one is to

build propensity estimators [4, 7, 27]. Both methods impose a causal

model of click generation to bypass interventions. However, we aim

to use agnostic strategies to ranker’s architecture; we rely on linear

rankers. Hence, we use harvesting-based propensity estimations to

set reweighting values in counterfactual LTR [17] (Sec. 4.2.2).

Propensity estimators. [4] introduced various estimators of exposure-

at-position propensities from historical click-logs. The cornerstone

of these methods is the interventional sets, a set of logs where two

or more rankers rank the same query-document pair at different

positions. They tested the performance of these estimators in clas-

sical search data. In parallel, [7] proposed a similar estimator to

harvesting-based estimators in e-commerce settings. However, the

performance of harvesting-based estimators in real-life large-scale

e-commerce needs to be explored.

Regarding actual e-commerce data, [7] used 40k queries, whereas

we relied on approximately 500k in our experiments; this is one

order of magnitude more queries than previous studies.

Pairwise-additive LTR losses. [2] tested various counterfactual

LTR with pairwise-additive losses. In particular, they introduced

an SVM rank variant that optimizes Discounted Cumulative Gain

(DCG), SVM-Rank DCG (Sec.4.2.1). They showed that this ranker

outperforms other linear rankers in terms of DCGon semi-simulated

data. To our knowledge, there are no comparisons of these LTR

losses in counterfactual LTR in real large-scale e-commerce data.

Optimizers. [12] compared various solvers on semi-simulated

data: Stochastic Gradient Descent (SGD), and some of it variants,

ADAM and AdaGrad. They observed that, in all tested cases, learn-

ing with SGD in counterfactual LTR improves over clicks. However,

other accelerated variants like ADAM fail in some instances. As far

as we know, there are no comparisons of different optimizers in

counterfactual LTR on real large-scale e-commerce data.

4 BACKGROUND AND METHODOLOGIES
We consider the problem of diminishing the position bias in LTR

from biased clicks in an e-commerce environment. We first intro-

duce the causal model of users’ clicks. Then, we introduce LTR with

pairwise additive metrics and its different learning signals. Finally,

we present the harvesting-based propensity estimators.

We denote sets as calligraphic, e.g., D𝑞 , and vectors in bold, e.g.,

p. We use [𝐾] = {1, . . . , 𝐾} to denote a list of 𝐾 elements. Also,

we use query-document (𝑞, 𝑑) to index feature vectors to avoid

cluttering by adding another variable.

4.1 Position-based propensity model
The position-based model (PBM) simulates users’ click behavior by

assuming that a click only depends on the displayed position and

relevance of the document. Thus, a user clicks on a given document

𝑑 if she observes it at position 𝑘 and considers it relevant to the

issued query 𝑞. The PBM is as follows:

𝑃

[
𝑐𝑘 (𝑑) = 1 | 𝑞

]
∝ 𝑃

[
𝑒𝑘 (𝑑) = 1

]
· rel(𝑞, 𝑑)

= p𝑘 · rel(𝑞, 𝑑),
(1)

where rel(𝑞, 𝑑) is the relevance of item 𝑑 to query 𝑞, 𝑐𝑘 (𝑑) ∈ [0, 1]
and 𝑒𝑘 (𝑑) ∈ [0, 1] correspond to the click and examination occur-

rences for document 𝑑 at position 𝑘 . In the PBM, the examination

probability p𝑘 is identical to the observation propensity [17], and

it corresponds to the source of discrepancy between the clicks and

relevance, our signal of interest.

4.2 LTR with pairwise additive losses
LTR aims to learn a ranker 𝜙 that predicts sortings from document-

query features. We denote by 𝑆𝜙 (𝑞) the sorting of all candidate
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documents D𝑞 for query 𝑞 ∈ Q. Thus, the output of 𝑆𝜙 (𝑞) is the
list of sorted/ranked documents in D𝑞 , d = 𝑆𝜙 (𝑞).

We rely on the class of pairwise additive losses as the objective

function of the learning algorithm. Pairwise additive losses are

ubiquitous in LTR literature and provide a pleasant formalism for

click debiasing (using the PBM model).

4.2.1 Pairwise additive losses [2] . These metrics are expressed as:

Δ
rel
(d | 𝑞) =

∑︁
𝑑∈D𝑞

𝜆(rank(𝑑 | d)) · rel(𝑞, 𝑑), (2)

where 𝜆(·) is a monotonic weighting function. The class of linearly

decomposable metrics contains many commonly used ranking met-

rics: average rank, DCG, precision at 𝑘 , and RBP [20]. We consider

negative values wherever necessary to make the notation consistent

with risk minimization.

4.2.2 Debiasing Pairwise Additive Losses. Counterfactual LTR uses

a generative user behavior model to reduce bias in clicks. Thus, it

modifies the empirical loss by weighting each sample by its Inverse

Propensity Score (IPS). The counterfactual loss is as follows

Δ
IPS-click

(d | 𝑞) =
𝐾∑︁
𝑘=1

𝜆 (rank(𝑑 | d)) · 𝑐𝑘 (𝑑)
p𝑘

. (3)

We have a propensity per query, p𝑘 , whenever we assume, one

clicked item per query.

Eq. 3 is an unbiased estimate of the full-information loss, Eq. 2, if

the propensities are correct and p > 0 for all 𝑑 that are relevant [17].

Thus, the learning algorithm is guaranteed to find an unbiased

ranker for large enough training data. However, the theory indicates

asymptotic convergence in the sample size.

4.3 Harvesting-based propensity estimators
We note that the performance of Counterfactual LTR requires know-

ing the truth position propensities p ∈ R𝐾+ . However, this require-
ment is often not met in practice, as performing interventions is

frequently impossible for business-sensitive tasks due to their high

costs. We can bypass interventions by simulating them via a click

generating model, e.g., PBM. Harvesting-based propensity estima-

tors [4] is one of such methods.

Harvesting-based estimators rely on click-logs from multiple

rankers to synthesize interventions using co-occurrences statistics.

Formally, these estimators use 𝑀 rankers, {𝜙𝑖 }𝑀𝑖=1
with their re-

spective click logs, i.e., query-document-click tuples, to emulate the

effect of swapping pairs of ranking positions, (𝑘, 𝑘 ′), in LTR sys-

tems. This work uses Chain and All pairs propensity estimators.

Harvesting-based estimators use the following assumption:

Assumption 1. For all 𝑖 ∈ [𝑀], the query distribution 𝑃 [Q] does
not depend on the choice of the ranker 𝜙𝑖 .

The previous assumption is realistic as the assignment of queries

to rankers is randomized in A/B tests. The condition also implies:

∀𝜙𝑖 : 𝑃 [Q | 𝜙𝑖 ] = 𝑃 [Q] ⇒ ∀𝑞 ∈ Q : 𝑃 [𝜙𝑖 | 𝑞] = 𝑃 [𝜙𝑖 ] .

Definition 4.1. The interventional set S𝑘,𝑘′ is the set of query-
document pairs such that two rankers, 𝜙 and 𝜙 ′, put a document 𝑑

at positions 𝑘 and 𝑘 ′, respectively. Then, the interventional set is:

S𝑘,𝑘′ B {(𝑞, 𝑑) : rank(𝑑 | 𝑆𝜙 (𝑞))) = 𝑘 ∧ rank(𝑑 | 𝑆𝜙′ (𝑞)) = 𝑘 ′,
∀𝑞 ∈ Q, 𝑑 ∈ D𝑞

}
,

where 𝑘 ≠ 𝑘 ′ ∈ [𝐾], and 𝐾 is some fixed number of top positions

for which propensity estimates are desired, e.g. 𝐾 = 10.

The interventional set contains query-document pairs where

the choice of the ranking function assigns at random a document

𝑑 to position 𝑘 or 𝑘 ′. Thus, the sets S𝑘,𝑘′ represent virtual swap
interventions between ranks 𝑘 and 𝑘 ′. Nevertheless, Definition. 4.1
does not require any query to occur multiple times.

Assumption. 1 ensures that the virtual swap is entirely random-

ized. However, the assignment is not uniform. We can reweight it

to make it uniform. The weight 𝑤 (𝑞, 𝑑, 𝑘) is the number of times

a ranker 𝜙𝑖 ranks a document 𝑑 at position 𝑘 for n𝑖 queries and
𝑖 ∈ [𝑀], where n𝑖 be the number of queries that 𝜙𝑖 processed,

𝑤 (𝑞, 𝑑, 𝑘) B
𝑀∑︁
𝑖=1

n𝑖 1[
rank(𝑑 |𝑆

𝜙𝑖
(𝑞)))=𝑘

] .
All intervention harvesting estimators rely on the rate of clicks

in position 𝑘 (and in position 𝑘 ′):

ĉ𝑘,𝑘
′

𝑘
=

𝑀∑︁
𝑖=1

∑︁
𝑞∈Q𝑖

∑︁
𝑑∈D𝑞

1[ (𝑞,𝑑) ∈S𝑘,𝑘′]1
[
rank

(
𝑑 |𝑆𝜙𝑖 (𝑞)

)
=𝑘

] 𝑐 (𝑑)
𝑤 (𝑞, 𝑑, 𝑘) .

4.3.1 Adjacent Chain estimator . The Adjacent Chain estimator

(Chain) is a local estimator of position propensities, and it is an

adaptation of the estimator used in [27]. It uses a chain of swaps

between adjacent pairs ranked at positions 𝑘 and 𝑘 − 1. To get

the relative ratio between any two positions, we first compute the

ratio of the number of clicks at position pairs (𝑘, 𝑘 − 1). Then, we
multiply the ratios of adjacent positions for various 𝑘 . In particular,

we have the following propensity ratio for position pairs (𝑘, 1):

p̂𝑘
p̂1

=
ĉ1,2

2

ĉ1,2
1

·
ĉ2,3

3

ĉ2,3
2

· . . . ·
ĉ𝑘−1,𝑘

𝑘

ĉ𝑘−1,𝑘

𝑘−1

. (4)

This estimator is statistically consistent under mild conditions.

4.3.2 All Pairs estimator . The All Pairs estimator (All pairs) is
a global estimator of position propensities, which leverages most

of the information in the interventional sets S𝑘,𝑘′ . It optimizes a

weighted cross-entropy objective overall interventional sets. Thus,

this objective requires computing the ratio of non-clicks ¬ĉ𝑘,𝑘
′

𝑘
,

which corresponds to replacing 𝑐 (𝑑) for 1 − 𝑐 (𝑑) in Eq. 4.

Let R ∈ R𝐾×𝐾+ be the matrix of expected relevances. For 𝑘 ≠

𝑘 ′ ∈ [𝐾]:

R𝑘,𝑘′ = E𝑞


∑︁
𝑑∈D𝑞

1[ (𝑞,𝑑) ∈S𝑘,𝑘′] rel(𝑞, 𝑑)
 . (5)

Let R̄ the normalized expected relevance, such that each R𝑘,𝑘′ is
within the interval [0, 1]. Normalizing ensures that the contribution

of each aggregated click-through sample is proportional to the size

of its interventional set.
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All pairs is the solution of the following training objective:

(p̂, R̂) ← arg max

p,R

∑︁
𝑘≠𝑘′∈[𝑀 ]

ĉ𝑘,𝑘
′

𝑘
log

(
p𝑘 R̄𝑘,𝑘′

)
+¬ĉ𝑘,𝑘

′

𝑘
log

(
1 − p𝑘 R̄𝑘,𝑘′

)
.

The optimization step in All pairs has 𝑂 (𝐾2) complexity, where

𝐾 is usually small, e.g., 𝐾 < 100. [7] proposed a similar propen-

sity estimator method to All pairs. However, it does not require
fitting a relevance model. Both estimators rely on equivalent mod-

eling assumptions, and their difference in performance remains to

be defined; thus, we selected to investigate estimators based on

interventional sets.

4.4 Intervention harvesting for Rakuten
The primary concept of harvesting swap interventions exploits

the use of search query log data collected during an A/B test. The

data contains queries served by five different rankers deployed in

conjunction during the A/B test, where each query is sent to one

of the randomly selected rankers, thus satisfying Assumption 1.

Around 22.5% of the queries were sent to different variants, each

receiving around 4.5% of the queries, collecting 1 249 308 queries to

estimate propensities through intervention harvesting.

The implementation of intervention harvesting [4] is different for

Rakuten in two aspects. Firstly, even for identical user queries, the

item-query features change over time based on numerous factors

such as sales or offers. Secondly, the item catalog, the pool of items,

is also constantly evolving. Therefore, the candidate set of items

associated with a query varies over time. As a result, one ranker

might yield two different rankings for the same query. Accordingly,

we can relax the definition of interventional set (Definition 4.1) by

not requiring that two different rankers 𝜙 and 𝜙 ′ rank a document

𝑑 at positions 𝑘 and 𝑘 ′, respectively. Hence, the interventional set
S𝑘,𝑘′ is the set of query-document pairs such that there exists one

ranker Φ that ranks a document 𝑑 at positions 𝑘 and 𝑘 ′.
We impose an additional restriction to determine whether two

queries are identical, ensuring that the item pool has not changed

significantly between the two queries. Apart from an exact string

match, we considered two queries the same if they share at least

90% items in the retrieved set. As mentioned above, the dataset

logs only the first SERP of a query containing 45 items. Thus, two

queries are identical if the query strings are an exact match and the

logged SERP contains at least 42 common items.

5 EXPERIMENTAL SETUP
We conducted extensive experiments to study the effect of position

bias correction on different perspectives of learning-to-rank models

for Ichiba product search. Through the results of these experiments,

we aim to answer the following research questions:

RQ1 How do harvesting-based propensity estimators behave

in an e-commerce setting?

RQ2 How do different loss functions and optimizers influence

the ranking performance of counterfactual LTR methods

corrected using harvesting-based propensity estimations?

5.1 Training and evaluation
Reliable relevance judgment strongly affects the potency of the

learned LTRmodel. However, the notion of relevance in e-commerce

product search differs from a standard web search. For classical web

search, the results are judged relevant by human annotators if the

textual content in the result corresponds to the intent of the issued

query. On the contrary, the utility of a product goes beyond the

textual content and involves a collection of different parameters,

such as its brand, price, or user rating.

A typical e-commerce search log contains different levels of

user interactions which serve as surrogates of the relevance of

products against an issued query [24]. As mentioned in Sec. 2.1,

Ichiba search logs have three feedback signals, namely clicks, added-

to-carts, and purchases. After a thorough study, Santu et. al. [24]

observed that training with purchase signals presents the most

robust model, followed by clicks. Thus, the purchase denotes overall

user satisfaction and is a more robust proxy for relevancy. However,

due to the sparsity of the purchase signals, it is advised to use clicks

for training initially. Motivated by these results, we have used clicks

to train the learning-to-rank models and purchases to validate them

and measure their performances.

Thus, we used the dataset (Section 2.1) for training and evalu-

ation, where we rely on clicks during training and purchases for

evaluating the models. We evaluated using nDCG@10 [13], consid-

ering the highest 10 ranked items.

5.2 Methods to compare
We compared bias correction methods using different estimated

propensities against no correction. In turn, all these models use four

different loss functions and train using four different optimizers.

5.2.1 Propensity estimators. We aim to fit a ranker𝜙 byminimizing

the Counterfactual LTR loss, Eq. 3. We rely on various estimators

of the position propensities, as follows:

Naive It learns on user feedback signals ignoring any bias, i.e.,

clicks.It boils down to setting each position propensity to

one, p𝑘 = 1 for 𝑘 ∈ [𝐾], and it is our baseline.

REM [27] It is a learning-based unbiased estimation of propen-

sities that does not depend on result randomization by rely-

ing on the PBM model to avoid interventions. It alternates

between fitting a ranker and an examination predictor. REM
assumes that the joint optimum of the ranker and the propen-

sity model produce unbiased estimates of propensity scores.

We used a random forest classifier with 20 trees and Gini

impurity as the splitting criterion in the maximization step.

Each iteration uses the random forest of the previous itera-

tion and refines it additively with the new batch of data. This

method is the most straightforward data-driven propensity

estimator; hence, we use it as a reference.

Chain [4] The propensities are estimated by the adjacent chain

estimator using the intervention sets (Sec. 4.3.1).

All pairs [4] The propensities are estimated by the all pairs

estimator using the intervention sets (Sec. 4.3.2)

5.2.2 Step: Row-wise quantization . As described in Sec. 2 and

exhibited in Fig. 1, the default desktop result page in Ichiba presents

the ranked items in a grid format with five items displayed per row.

Intuitively one can assume that while scrolling through such a

result page, users are exposed to five items in a row simultaneously,

resulting in virtually the same examination probability for these



SIGIR eCom’22, July 15, 2022, Madrid, Spain Goswami et al.

five items. Motivated by this assumption, we tested a quantized

version of propensity scores specific to the Ichiba. We denoted this

quantization as Step, it is calculated as follows:

p̂step
𝑘

=

8∑︁
𝑖=0

1[𝑘∈K𝑖 ]
|K𝑖 |

∑︁
𝑗 ∈K𝑖

p̂𝑗 , (6)

where K𝑖 ≔ {(5 𝑖), . . . , (5 𝑖 + 5)} for 𝑖 ∈ {0, . . . , 8} is the set of five
items for row 𝑖 . The mean aggregation of row-wise propensities in

Eq. 6 is a design choice, and it could be replaced by another statisti-

cal aggregate, e.g., median. We studied the Step version along with

the Raw version of REM, Chain, and All pairs.

5.2.3 Rankers and learning. In this study, we are not evaluating

the capacity of the ranker, i.e., finding the ranker with the best

predictive performance. Instead, we aim to assess the influence of

data-driven propensity estimation methods in ranking. Thus, we

use a linear ranker 𝜙 (Sec. 4.2) to score the documents. The linear

model cancels out the effect of the representation power or capacity,

it leads to fast inference/prediction times, and it is widely used in

LTR [19]. Also, it constitutes the original definition of SVM-Rank,

a cornerstone in LTR research.

We use the following three pairwise-additive loss functions:

SVM-Rank [14] It is a linear classifier that computes the hinge

loss between candidate pairs. It also uses the ℓ2 regularization

term to avoid overfitting.

SVM-Rank DCG [2] Modifies the SVM-Rank and constitutes

a creates a relaxation of the DCG loss (Sec. 4.2.1).

RankNet [8] It computes the logistic loss for candidate pairs.

Also, we investigate the impact of the optimizer on the predic-

tion performance of Counterfactual LTR with different propensity

estimators. We consider four commonly used optimization methods:

Regular SGD [23], AdaGrad [10], RMSProp [26], and ADAM [18].
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Figure 3: The size of interventional sets. For a given query-
document pair, the frequency of ranking a document on top
using a ranker 𝜙 and the bottom using a ranker 𝜙 ′ is low.
White cells denote zero values.

5.3 Implementation
We use Pytorch [21] as the training framework for all the experi-

ments. PytorchLTR [12] library implements various LTR loss func-

tions based on Pytorch, including those tested in this work. We

implemented the bias correction version of all the loss functions

using the general PytorchLTR framework. Also, we employed the

Pytorch implementation of the optimizers with their default pa-

rameters and set learning rates in {0.0075, 0.01, 0.05, 0.075, 0.1, 0.5}.
Models are trained with mini-batches with a batch size of 64 queries.

We computed the interventional sets using PySpark
5
.

6 RESULTS
6.1 Interventional sets for Rakuten search
It is required to compute the interventional set to calculate position

propensity estimates with Chain or All pairs. Thus, we start by
exploring the interventional sets obtained for Rakuten search logs.

Fig. 3 depicts the logarithm of the size of interventional set,

log
10

(��S𝑘,𝑘′ ��) for position ranks 𝑘 ≠ 𝑘 ′ ∈ [45] Due to symmetry,

we show only the upper triangular part of the matrix, where white

cells correspond to zero values. We observe a low frequency of

swapping positions 𝑘 ≤ 10 and 𝑘 ′ ≥ 35. Specifically, there are

instanceswhere the intervention setS𝑘,𝑘′ is zero for𝑘 ≥ 35. In other

words, two rankers rarely position the same query-document pair

at contrasting rankings positions, higher and lower, respectively.

We see that swapping the top-one position with the bottom ten

positions has four empty sets. Hence, the results for contrasting

rankings are unreliable.

Even if high-contrast rankings are unreliable, we kept all posi-

tion values in our experiments because these forty-five positions

are essential for business, because it corresponds to our scenario,

i.e. Rakuten Ichiba 9 × 5 grid display. Also, setting a threshold to

the position value will hinder the out-of-the-box application of

propensity estimates.

5
https://spark.apache.org/docs/latest/api/python/
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Figure 4: Propensities calculated using various data-driven
estimators in a 9×5 grid display, following the layout of a typ-
ical Rakuten SERP.REM (left) produces position propensities
according to a sequential reading assumption.Chain (middle)
gets similar values row-wise with a trend to decrease from
top to bottom. All pairs (right) leads to noisy propensities
with a mild trend to decrease from top to bottom.
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6.2 RQ1 Estimating propensities for Rakuten
We computed several data-driven propensity estimations on Rakuten

search logs and explored their behavior (Sec. 4.4).

Fig. 5 shows the plots of the estimated propensities using data-

driven approaches and their row-based quantization (step). REM
exhibits monotonically decreasing propensities due to the construc-

tion of the model. REM obeys the following exponential decay

model, 𝑝 (rank) = 0.17 exp (−rank/5.73) + 0.03, in contrast to the

power-law decay in the observed data ( Sec. 2.1). The propensi-

ties estimated with the Chain method display an overall linear

decreasing trend up to the rank 35, 𝑝 (rank) = 0.93 − 0.02 rank.

After this rank, the Chain method is likely contaminated due to

the number of clicks for consecutive rankings resembles, leading

to values closer to one. Regarding All pairs, it produces noisy
estimates due to unreliable interventional sets for high contrast

rankings (Fig. 3). However, we still observe a decreasing linear

trend, 𝑝 (rank) = 0.57 − 0.006 rank.

Fig. 4 shows the grid display of the estimated propensities. The

grid display is an array of nine rows and five elements/positions

per row, following the layout of a typical Rakuten SERP. As said

before, All pairs return noisy propensity estimates with a tendency

to decrease values for the bottom rows. All pairs solves in principle

a similar problem to REM; they both aim to find the propensity and

relevance models, which is a more challenging endeavor compared

to just estimating propensities, as is the case for Chain. Still, All
pairs does not impose smoothness constraints on the solution,

which explains, in part, this noisy behavior. On the other hand,

REM produces less noisy propensities.

Nonetheless, in the central demography of Rakuten, Japanese

people may have distinct browsing habits, e.g., observing docu-

ments from right to left. However, theChain estimator gives higher

values to the top row and lower values to the bottom rows. In par-

ticular, we observe decreasing row-wise propensity values up to

row seven, where the estimated clicks are unreliable due to the lack

of interventional sets. Nevertheless, there is not much difference

between the values of the same row. These results contrast the

sequential reading constraint of the standard REM. Regarding the

Chain method, it seems oblivious to the display type, e.g., list or

grid, because of its co-counting nature, and this result reassures

our assumption of row-wise examination (Sec. 5.2.2). Mainly, the

Chain method produces similar propensities to the ones reported

in [11] for desktop.

6.3 RQ2 Performance of unbiased LTR
We assess the effectiveness of the position propensities estimated

in the previous experiment to correct for position bias in pair-

wise losses-based LTR predictors, Eq. 3. Regardless, counterfactual

LTR is asymptotically unbiased only for the correct propensity

scores. Thus, we explore the effect of these empirical estimations of

propensity scores on large-scale but finite e-commerce data, a non-

asymptotic case. Additionally, we evaluated the impact of propen-

sity estimates on the convergence of the optimizer to a good ranker.

Table. 2 presents the performance in terms of nDCG@10, of

different propensity estimation methods and solvers. We assess

statistical significance with a paired t-test with 𝑝 < 0.0001, which

considers multiple comparison tests. Bold denotes the maximum

row-wise, and Blue denotes the maximum across losses for the

same solver. Statistically significantly lower and higher nDCG@10

than Naive is denoted with ▽ and △ respectively. Regarding losses,

the SVM-Rank DCG is consistently the best performing model for

all optimizers. In contrast, both SVM-Rank and RankNet are not

robust to scaling.

The Chain estimator improves prediction when used with SGD

and Step propensities. On the other hand, its Raw version only

leads to significant positive effects for the RankNet model. For All
pairs, its Raw version only improves performance in conjunction

with the SGD solver.

For REM, its Raw version only improves: (SVM-Rank DCG, Ada-

Grad) and (RankNet, ADAM). These results indicate that the list

assumption of the standard REM estimator may not be valid. How-

ever, its Step version also underperforms, suggesting a smoother

decay, as is the case for Chain (Fig. 5).

Fig. 6 portrays the variability across all reweighting methods,

i.e., row-wise variability in Table 2. This variability is crucial to

understanding the significance levels depicted in Table 2 as some

methods have low variance, and similar values can be significantly

different under a t-test. The SVM-Rank DCG model displays the

lowest variance and the best predictive performance for all solvers.

Thus, the relaxation of the DCG loss is less sensitive to scale, making

it the most robust among all tested losses. Meanwhile, the SVM-

Rank model has enormous variability, and RankNet displays an

intermediate behavior. These results suggest that the SVM-Rank

and RankNet models require additional regularization to control

the stability of the generalization error.

The SGD optimizer produces stable solutions for all propensity

correction methods. However, we do not observe the same behavior
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Table 2: Performance nDCG@10 for various propensity estimation methods and solvers. Bold denotes the maximum row-wise,
and Blue denotes the maximum across losses for the same solver. Statistically significantly lower and higher nDCG@10
compared to Naive is denoted with ▽ and △ respectively (𝑝 < 0.0001)

Solver Loss Naive REM All pairs Chain

Raw Step Raw Step Raw Step

AdaGrad

SVM-Rank DCG 0.4272 0.4282△ 0.4270 0.4273 0.4252
▽

0.4260
▽

0.4272

SVM-Rank 0.4258 0.3656
▽

0.4191
▽

0.4114
▽

0.3205
▽

0.3744
▽

0.3192
▽

RankNet 0.4242 0.4149
▽

0.4181
▽

0.4228
▽ 0.4248 0.4233 0.4227

▽

ADAM

SVM-Rank DCG 0.4252 0.4157
▽

0.4239
▽

0.4239
▽

0.4248 0.4255 0.4244
▽

SVM-Rank 0.4225 0.3465
▽

0.3989
▽

0.3500
▽

0.3502
▽

0.3507
▽

0.3505
▽

RankNet 0.4014 0.4112△ 0.3439
▽

0.3759 0.3502
▽

0.3981
▽

0.3501
▽

RMSProp

SVM-Rank DCG 0.4268 0.4224
▽

0.4239
▽

0.4254
▽

0.4248
▽

0.4257
▽

0.4265

SVM-Rank 0.4091 0.3456
▽

0.3989
▽

0.2904
▽

0.3498
▽

0.3508
▽

0.2904
▽

RankNet 0.4013 0.4099
△

0.3434
▽

0.3720
▽

0.2902
▽ 0.4209△ 0.3505

▽

SGD

SVM-Rank DCG 0.4304 0.4278
▽

0.4287
▽

0.4305 0.4280
▽

0.4281
▽ 0.4306

SVM-Rank 0.4237 0.3937
▽

0.3967
▽ 0.4246△ 0.4233

▽
0.4229

▽
0.4244

△

RankNet 0.4230 0.3801
▽

0.3966
▽

0.4227 0.4235 0.4207
▽

0.4228

in other solvers. In particular, there is a detriment in the perfor-

mance of SVM-Rank for AdaGrad and RMSProp. [12] reported

similar effects for SGD and showed that ADAM occasionally con-

verges to a suboptimal solution for the Counterfactual LTR problem.

We can attribute this convergence behavior to suboptimal solutions

of exponential moving averaging variants of SGD like RMSProp

and ADAM [22]. However, AdaGrad is not one of these variants

and still has performance drops. The main difference between SGD

and other solvers is that the base SGD has no memory of previous

iterations, i.e., we set the momentum parameter to zero. Thus, the

propensity reweighting affects the learning dynamics of the opti-

mizer with a recollection of previous iterates.

0.25 0.30 0.35 0.40 0.45
nDCG@10

RankNet
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SVM-Rank DCG

AdaGrad
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Figure 6: Variability of learning models across reweighting
correction methods. SGD presents a minor variance and
higher prediction accuracy than other solvers.

7 CONCLUSION
We conducted several counterfactual Learning-To-Rank (LTR) ex-

periments on data from Rakuten Ichiba marketplace. Notably, we

focused on the position-bias problem and left other sources of biases

for future work, e.g., popularity [1], trust [3], and exposure [25]. We

computed examination-at-position propensity estimates using vari-

ous propensity estimation methods, REM, Chain, and All pairs,
where the latter two are interventional harvesting-based estimators.

Regarding the propensity estimation (RQ1), we noticed that

interventional harvesting-based methods are unreliable for high-

contrast rankings due to data scarcity in these positions. Thus,

these methods demand additional modeling information about the

generative process. Notably, All pairs requires additional spatial
smoothness constraints. Moreover, REM produces a sequential-like

reading of documents, which does not lead to any improvement in

prediction accuracy.

While assessing the influence of loss functions and optimizers

on the performance of counterfactual LTR (RQ2), we did not see

a clear pattern of the scaling correction across pairwise-additive

losses. This lack of pattern hints at an implicit dependency on the

optimizer-model configuration. Also, it empirically indicates that

propensity correction changes the learning dynamics for acceler-

ated or memory-based gradient-based optimizers; in most cases,

these solvers negatively affect the predictive metric. Accordingly,

SGD has robust predictive behavior on real data, which confirms

what [12] reported on semi-synthetic data. In particular, SGD im-

pacts the SVM-Rank positively when combined with All pairs or
Chainwith row-wise quantization, without affecting other rankers.

Nevertheless, we saw that the effect of data-driven propensity es-

timators is challenging to assess in industrial settings, even for

linear models. Still, we believe that the simplicity of linear models

should provide a better insight into debiasing LTR losses than more

complicated predictors or losses.

We consider as future work extending our experiments to list-

wise losses and some state-of-the-artmethods like LambdaMART [9]

and non-linear rankers. We also consider conducting an in-depth

exploration of the effect of propensity scaling on the learning dy-

namics of accelerated SGD methods.
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