
When Volatility Reigns: Learning to Rank Recommendations in
Second Hand Marketplaces

Jose San Pedro∗
Jordi Esteve†∗

jose.sanpedro@adevinta.com
j.esteve.sorribas@gmail.com

Adevinta
Barcelona, Spain

Victor Codina
victor.codina@adevinta.com

Adevinta
Barcelona, Spain

Sandra Garcia Esparza
sandra.garcia@adevinta.com

Adevinta
Barcelona, Spain

ABSTRACT
Second-hand marketplaces exhibit unique features that make them
a challenging problem setting for recommender systems. Users
interact with the system to buy and sell items, which in turn makes
the inventory highly volatile: cold start is not only a problem, but
rather an organic characteristic of these systems. The lifespan of
items is measured in hours or days, instead of months or years. And
the catalog abounds with near-duplicate items, as many different
users try to sell their own instance of a product (e.g. a specific
model of smartphone). This paper presents the results obtained
from testing different recommendation strategies in this challenging
context. Both collaborative filtering and content-based methods
are evaluated using a three-fold methodology: offline evaluation,
user study, and finally A/B test. The results found have relevant
implications for the design and evaluation of recommender systems
in the application domain of second-hand marketplaces.
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1 INTRODUCTION
Recommendations are a popular tool used in many e-commerce
applications. Their goal is to facilitate the discovery of relevant
content to potential buyers and ultimately increase user conver-
sion and satisfaction. While the catalog of purchasable products
is organically dynamic, most have a minimum lifespan of several
years where users can interact with, add to basket and purchase
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Figure 1: Related items recommendation in the detail page
of an ad in Milanuncios.

them over many different sessions. In this process, users interact
with similar and complementary products, that enable the success-
ful use of Collaborative Filtering (CF) methods to learn effective
recommendation models.

This paper presents a case study of recommender systems ap-
plied to second-hand marketplaces (or just, marketplaces). While
well within the e-commerce domain, marketplaces present a num-
ber of unique challenges that limit the application of traditional
recommender systems literature in e-commerce. Marketplaces are
fully user-driven: supply and demand of goods respond to the needs
of users wanting to obtain a monetary incentive for items they no
longer need (i.e. sellers) and users that prefer to satisfy their pur-
chasing needs with pre-owned items (i.e. buyers).

In such a type of marketplace, items emerge and vanish as a
response of users listing items for sale and finally transacting. Each
item listed is unique: regardless of the actual product listed (e.g.
iPhone 12), each item has been used by a different user and in a
different way. Some may have light use, some others heavy. Some
may feature a mint condition, while others may present visible
blemishes. Beyond the differences that the many instances of a
single product may have, the main challenge for creating effective
recommendations is the individuality of such items within the
system: each listed item is uniquely identified by its own id. This
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vastly increases the sparsity of the item space. Moreover, once sold
it is no longer available in the platform. This hampers the ability
to leverage from the knowledge collected about items during their
lifetime, which depending on their category and popularity, can
span from hours to a few weeks.

As a result of these characteristics, marketplaces exhibit an or-
ganic and permanent cold-start scenario. Ideally, if the marketplace
can create matches between buyers and sellers efficiently, then
items would be sold and removed from the platform before enough
data to train an effective collaborative filtering model can be col-
lected. Moreover, the item catalog is populated by near-duplicates
that pose difficulties not only for training relevance models, but
also for conducting offline evaluation, because the relevance of
near-duplicates cannot be easily generalized. Hence, in this setting
offline accuracy measurements tend to underestimate the potential
of a model to recommend relevant items: relevance is assessed as a
function of the items interacted with by users (i.e. viewed, saved,
. . . ), thus excluding unseen but probably relevant items.

In this work, we focus on one of such marketplaces: Milanun-
cios1, one of Adevinta’s largest platforms in Spain. As in many other
marketplaces, Milanuncios offers a wide variety of item categories
to organize its catalog, which are grouped into four main verti-
cals: Generalist, Motor, Real Estate and Jobs. Each vertical presents
unique characteristics; ads are not created and browsed equally for
buying and selling houses or smartphones. Solutions for recom-
mending items should cater for such differences to optimize the
expected impact per vertical. We consider the specific case of the
Motor vertical, and in particular focus on the cars category. This
category is one of the primary growth pillars for Adevinta 2, and
provides an interesting problem setting where structured metadata
related to car characteristics is available, enabling learning oppor-
tunities that can be leveraged for building effective content-based
recommender systems. We implemented such a recommender, and
present a deep dive study comparing it to several baselines.

Our study considers the “related-items” recommendation sce-
nario, where the item currently being viewed is used as a query to
retrieve similar related items, aiming at helping users navigate the
catalog and find relevant items (see Fig 1). This is the most common
application of recommenders in Milanuncios, and is expected to
have the maximum impact for its users.

The contribution of the paper is two-fold. First, the paper com-
pares the effectiveness of different recommendation strategies, in-
cluding collaborative-filtering and content-based, in the domain
of second-hand marketplaces. The evaluation is performed using
both offline and online methods. Second, the paper provides exper-
imental evidence of the offline-online gap in the recommenders
problem setting, by comparing the results of two offline evalua-
tion methods (standard evaluation using a held-out dataset and
user study) with the results obtained in an online controlled ex-
periment. Both contributions have relevant implications for the
design and implementation of recommender systems in the context
of marketplaces.

The paper is organized as follows. We review previous relevant
literature in Section 2. Section 3 formalizes the recommendation
1http://milanuncios.com
2https://www.adevinta.com/stories/articles/adevinta-launches-growing-at-scale-its-
new-strategic-plan-designed-to-accelerate-its-profitable-growth

problem and describes the baseline strategy, based on CF, currently
used in our production environment. Section 4 introduces a content-
based recommender suitable to our application domain. Section 5
and 6 provide offline evaluation results of all the strategies. The
results of comparing the strategies in an A/B test are reported in
Section 7. We conclude with Section 8.

2 RELATEDWORK
Cold-start. Cold-start, where interaction data about a user or item
is not available in the system, is a common problem in recommender
systems, specially for CF methods. The item cold-start problem can
be solved with two different approaches: i) hybrid solutions that
incorporate both behavioural and content information from the
item (e.g. price) [1] and ii) pure CF that dynamically updates the item
representations as more clicks are gathered [2, 3]. However, these
two strategies do not consider cold-start as the norm; their goal is to
expose cold-start items to users to collect enough data to generate a
stationary representation of them. In our setting, items are transient:
once sold, they leave the catalog. Our goal is to increase the liquidity
of the marketplace: increase the rate of transactions, and hence
decrease the lifetime of items. Aiming at collecting data for the
purpose of generating a stationary representation introduces a
conflicting interest.

Methods purely based on content for generating recommenda-
tions (CB) present their own drawbacks, with some authors claim-
ing that content alone does not provide enough information to
generate relevant recommendations [4]. In this work, we build a
recommender that relies on a learning to rank approach using only
content features but leveraging behavioural signals during training.

Learning to rank for recommender systems. The goal of
learning to rank (LTR) is to improve the ranking of documents by
applying machine learning techniques [5]. Traditionally, learning
to rank has been applied to Information Retrieval (IR) problems,
commonly to rank search results given a search query. In the last
years learning to rank has also been successfully applied to recom-
mender systems in many domains such as in music [6], fashion [7]
and marketplaces [8]. In the context of recommendations, a query
often corresponds to a user or an item for which we want to provide
recommendations. To alleviate the computational complexity of
ranking the full catalog during the inference stage, production sys-
tems are generally designed so that predictions are only computed
for a subset of documents, called candidates [8, 9].

In this paper, we built a content-based pairwise ranking approach
following the LTR paradigm. This ranking model uses structured
and unstructured content features, generated from the adsmetadata,
to compute the similarity between pairs of items. Our underlying
hypothesis is that, by effectively leveraging user generated content,
we can overcome the limitations of CF in this particular domain.

Evaluation. Before deploying or testing a new algorithm in
production it is common to conduct an offline evaluation to as-
sess its potential without the productionization cost and the risk
of harming the user experience [10]. Recent work in the recom-
menders area has shown the existence of a significant difference
between offline and online performance, offline-online gap, which
arises from different factors, such as biases that may unfairly favour
certain algorithms [11]. This problem is especially significant in
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domains with high sparsity, where exact matches do not necessarily
correlate with relevance as highly as in other domains.

To address these limitations, some authors conduct user studies,
which have shown to provide a closer approximation to the quality
of recommendations than offline methods [12]. An advantage of
user studies is that they are not affected by biases commonly found
in offline evaluation. For example, in [13] a user study is presented
where different CF and CB algorithms for related item recommen-
dations are benchmarked, concluding that CB approaches provided
a better match of item similarity with regards to the user’s expec-
tations. Our work is similar to [14], in which the authors evaluate
different algorithms for the home improvement domain. The limi-
tations of offline evaluation in their application setting to properly
assess similar, but not exact, products motivates them to conduct a
user study in addition to the offline evaluation to choose the algo-
rithm to use in production. In our case, this problem is magnified
by the extreme volatility and abundant presence of near-duplicate
items. We provide a comparison of the performance of several rec-
ommendation strategies using these two evaluation methods to
assess their suitability in our context by comparing their outcomes
with the result of an online controlled experiment.

To the best of our knowledge, this is the first work that provides
an in-depth study of recommenders in the marketplaces application
domain, where volatility, item cold-start and near duplication are
dominating factors. This work debates the effectiveness of different
strategies in this domain.

3 PROBLEM DEFINITION AND CURRENT
SOLUTION

We solve the related-items recommendation task as a surrogate
problem of estimating the similarity between a pair of items. This
similarity can be inferred from behavioural and/or content data.
Formally, given a source item that belongs to catalog 𝐼 , we derive a
function that retrieves the most similar items𝑇 ⊂ 𝐼 and ranks them
in decreasing order of similarity, according to a specific definition
of similarity. Our goal is to provide the top-20 recommendation list
for every item in the catalog, which is the maximum size of the
related items widget in the application.

3.1 Baseline Recommender
Our baseline recommender is a mixed hybrid strategy [15]. This
hybrid model combines the recommendations generated by two
item-to-item similarity models: a CF approach where similarity is
based on item co-ocurrences, and a CB similarity approach that
only relies on text matching. Our hybridisation strategy consist
of appending the new items retrieved by the CB recommender
to the CF recommendations. We call our baseline recommender
backfill-hybrid.

CF approach. Our method builds on top of the Adamic-Adar’s
index measure [16] that calculates item proximity by looking at the
amount of shared neighbors, i.e. users that clicked on them in our
case. A correction is applied based on users’ activity, as to make
the contribution to the score of users with too many neighbors
less significant than users with fewer connections. We also apply a
time decay function that reduce the contribution of older item co-
occurrences to favor more recent interactions. Finally, we filter out

recommended items with scores below a minimum threshold for
controlling the trade-off between relevance and coverage. We will
refer to this model as Adamic. We have experimented with more
sophisticated CF methods, including matrix factorization-based
approaches, e.g. lightFM [1], and sequence-based like Prod2Vec [17].
We did not observe a significant enough gain in our online metrics
to justify the added complexity of training and serving these models.

CB approach. The method we use is BM25F [18], a widely used
text similarity algorithm in the IR field with the ability to exploit
document structure via content field weighting. Specifically, we
calculate the BM25F score for each pair of items using the following
three fields: title, description and price. To this end, we preprocess
text fields by applying standard tokenization and stopword removal.
Price is bucketized using a fixed bin size to enable a more effective
matching. Finally, we only score item pairs in the same geographical
region to improve the scalability of the solution given the large size
of our item inventory. We will refer to it as BM25F.

3.2 Implementation Details and Limitations
Currently the two aforementioned candidate generation approaches
are implemented as batch Spark jobs that generate recommenda-
tions in an hourly fashion. Recommendations are then stored in a
in-memory key-value store for fast online retrieval. The backfilling
aggregation is performed in real time. The main advantage of our
baseline hybrid recommender is primarily its low complexity and
satisfactory accuracy-coverage trade-off. However, this simplicity
comes with some limitations.

On the one hand, any CF approach is very sensible to the cold
start problem, short item lifetime and abundance of near-duplicate
items. We heuristically mitigate these limitations by hourly updat-
ing our CF model. On the other hand, our CB approach is based on
text matching and cannot capture complex relationships at feature
level from the data, e.g. users might be willing to travel further
for a good deal. Additionally, BM25F deals poorly with numerical
features (e.g. car price) and categorical features (e.g. car model), and
our hypothesis is that they are crucial to provide relevant recom-
mendations. Although, hybrid-backfill is robust to cold-start, the
top positions of the recommender are populated with CF recom-
mendations, and so the aforementioned limitations still hold.

4 LEARNING TO RANK RECOMMENDATIONS
To mitigate the aforementioned limitations, we built a content-
based ranking model that leverages both structured and unstruc-
tured metadata to learn similarities at a product level using LTR.

By learning similarities at the product level, we alleviate the
issues caused by high catalog volatility: items are unique and can
just be bought by one user, but products are stationary. To learn
such similarities, we need to be able to infer complex relationships
among metadata fields of different types, which simple models
such as BM25 are unable to. An example of such interplay between
metadata fields would be the relation between price and distance: a
good deal would encourage users to travel further.

Formally, our solution is as follows: given a catalog 𝐼 with |𝐼 |
items, we define the 𝑛𝑡ℎ item 𝑖𝑛 ∈ 𝐼 as a vector of content features
[𝑓1𝑛, ..., 𝑓𝑀𝑛],∀𝑓𝑚𝑛 ∈ R where𝑀 is the number of features. Then,
our goal is to find a non-linear function 𝑔 that best sorts a set of
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Figure 2: This image depicts the process to extract similarity
labels from the data. We generate a user-item (𝑢𝑖 -𝑖𝑖 ) bipartite
graph, from which we extract co-clicked items. In this exam-
ple, just items that are co-clicked at least by two users are
considered similar.
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u3

i1

i2

i3

(i1, i2)

(i1, i3)

(𝒇1, 𝒇2)
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items 𝑇 ⊂ 𝐼 for a given source item 𝑠 ∈ 𝐼 using to this end the
feature representation built, which is independent of the unique
item identifier.

4.1 Defining Similarity
Learning to rank requires having a clear notion of similarity (or
relevance) between queries and documents. In our problem setting
(related items recommendations), both queries and documents are
items of the marketplace. Relevance for each pair of items can be
obtained from explicit assessor judgments or inferred from implicit
data [19]. This work considers the latter scenario.

As already stated, we assume that users tend to interact with
similar and related items during their sessions. The more users that
co-interact with a given pair of items, the stronger the evidence to
consider these items relevant to each other. This process is visually
described in Figure 2. With this assumption, we can use item co-
occurrences across users as our similarity proxy. We can adjust
the level of agreement required to consider pairs of items relevant
by defining a minimum co-ocurrence threshold. In our setting,
we found empirically that 2 users gave enough evidence of the
similarity between pairs of items.

Negative signals, i.e. pairs of items that weren’t co-clicked, are
more common than positives and need to be subsampled. Negatives
were sampled uniformly at random with a ratio of 50:1. We found
this ratio to be a good trade-off between training complexity and
task learning in this scenario.

4.2 Feature Processing and Generation
This section introduces the feature space used to represent our
sample items. Given that the goal is to endow the model with the
ability to abstract individual items into classes (or products), it is
crucial that the representation chosen captures as many facets as
possible of the items characteristics.

4.2.1 Feature processing. Table 1 lists the metadata available to
represent items in our marketplace for the specific category of
cars. The list includes a variety of categorical, numerical and un-
structured textual variables. It is worth noting that all these item
metadata are user generated and, as such, are subject to noise and
inconsistencies resulting from the lack of a controlled data acquisi-
tion process. For instance, the presence of typos and capitalization

Table 1: List of content data and their type. For a snapshot
of the catalog, we show the type the numeric data and the
percentage of missing values for each content feature, the
cardinality of the categorical and ordinal data and the inter
quantile range (IQR) of the numerical data. IQR for geoloca-
tion and publication date are not disclosed for confidentiality.

Name Type Cardinality/ % missing
IQR

raw model free text 36,268 4
model categorical 36,268 4
brand categorical 70 0
fuel type categorical 10 5
seller type categorical 2 0
seller unique identifier categorical 129,459 0
color categorical 8,326 7
transmission type categorical 6 6
price numerical 4,300-20,000 0
mileage numerical 46,000-168,344 5
registration year numerical 2008-2018 5
geolocation numerical - 0
publication date numerical - 0
number of doors ordinal 7 6

differences, artificially increase the sparseness of categorical vari-
ables. Also, the data is inherently unbalanced, as some brands and
price ranges are largely more popular than others.

We carried out a feature processing stage specifically for cate-
gorical and text variables consisting of two steps: normalization
and encoding. In the normalization step, accents were removed and
text was converted to lower case.

During the encoding step, we aimed at reducing the sparsity of
categorical variables. There are many methods, of varying com-
plexity, to produce effective and compact categorical features from
user generated content: target encoding, hash encoding, entity em-
beddings [20], etc. In the context of our problem setting, where
only car brand and color had to be re-encoded, we decided to run
this process manually to preserve the well known semantics of
these two variables. We conducted an analysis of the distribution
of car brands in the marketplace catalog. We found that car brand
follows a long-tail distribution, so we decided to keep the most
representative brands, by popularity, in the catalog (a total of 18)
and clustered the remaining brands into six additional classes with
clear associated semantics (e.g. luxury cars, off-road 4x4, . . . ). A
similar process was followed for the color variable, resulting in 11
disjoint color classes.

4.2.2 Feature generation. Learning a ranking model requires cap-
turing the similarity between queries and documents in the feature
space used for representing instances. In this section we describe
the features generated using the metadata fields at our disposal:

Similarity features are a function of items pairs (namely source
and candidate) and aim at capturing different dimensions of the
similarity between them. We use the item metadata listed in Table 1
to compute the following set of features for each pair of items:
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Table 2: Configuration of the top 3 best models and their MAP@5 on the validation set. The first four hyper-parameters
are of structural type and the remaining are learning parameters. The number of trees (num_tree) was controlled with
early_stopping_round, which was set to 10. We set scale_pos_weight equal to the the negative sampling ratio to control class
imbalance. Hyper-parameters names respect the name in the documentation.

num_tree num_leaves max_depth min_data_in_leaf learning_rate subsample colsample_bytree reg_lambda MAP@5
- [5-3000] [3-30] [200-1000] [0.01-1.0] [0.4-1.0] [0.4-1.0] [0.01-100.0] -

143 1140 24 509 0.22 0.67 0.74 1.87 0.811
195 525 25 568 0.15 0.65 0.50 15.23 0.810
93 290 30 269 0.34 0.68 0.62 64.27 0.807

• Geodistance with Haversine distance
• Absolute and relative distance (as a percentage) for price,
mileage and registration year

• Car model similarity: cosine similarity between the items
model represented as TF-IDF vectors.

• Boolean similarity for: unique seller identifier, seller type,
number of doors, transimission type, fuel type and color.

Standalone features are functions of individual items and aim
at enriching the model with the ability to incorporate user prefer-
ences and biases towards specific cars and car characteristics. We
include the freshness of the ad (i.e. the number of days since it was
published), and the categorical brand and model of both source and
candidate items, also looking at the possibility to find interactions
between the brands themselves (e.g. users searching for Renault
may be willing to buy Peugeot if there is a good deal) and also
between brands and other features (e.g. geographical distance may
not be as important for buying a luxury car as it is for a more
conventional vehicle).

As a result of this feature generation processes, each pair of
source and candidate itemwas represented by a vector of 20 features,
15 similarity features and 5 standalone features.

4.3 Ranking Model, Training and Tuning
As described in Section 4.2, the input of the model is represented
as tabular data. Gradient boosting Decision Trees (GBDT), which
have been successfully used for ranking [6, 21], are the state-of-art
for this type of data and easier to train than other more complex
models [22, 23]. Among the several GBDT algorithms, we selected
LightGBM [24] because it handles categorical features and missing
values (see Table 1), as well as for its efficiency and scalability.

To train the model, we collected a dataset using one full week
of interaction data from the cars category of Milanuncios, which
amounted to several million pairs of co-occurring items. We used
the processes presented in Section 4.1 and 4.2 to build the item
pairs representation. This dataset was split at the query level into
70% training, 20% validation and 10% test sets. We tuned the model
hyper-parameters using the standard hold out approach and we
considered two types of hyper-parameters: structural, which define
the physical structure and complexity of the model, and learning
parameters. Table 2 lists the hyper-parameters that we tuned, in-
cluding the considered ranges. The remaining hyper-parameters
were left at their default value3. We used the Tree Parzen Estimator
tuning strategy [25] to optimize the search process, and the Katib
3https://lightgbm.readthedocs.io/

Figure 3: Ranking system architecture. The inference runs
hourly to update the recommendations according to the latest
catalog snapshot.

Dataset 
generation

Feature 
processing 
and 
generation

Model training 
and tuning

Shareable 
offline 
components

In-memory
storage

Training pipeline

Inference pipeline

Distributed 
batch job

Serving 
API

Candidates

Content 
data

User-item 
logs

Recommendations
generation

Model

Feature 
processing 
and 
generation

Model

Object 
storage

Serving   
API

framework to orchestrate the whole process 4. The objective func-
tion used for the lightGBM model was LambdaRank [26] and the
evaluation metric optimized during the tuning process was Mean
Average Precision at a cutoff level of 5 (MAP@5).

The top 3 best models, in terms of MAP@5, found during the
tuning process are presented in Table 2. We selected the third best
model because of its complexity-performance trade-off: it has sub-
stantially fewer trees at the expense of a marginal decrease in
MAP@5 (< 0.5%). This reduced model complexity allows to run
inference at a fraction of the time it would take for the top 2 models,
reducing the latency of generating recommendations. The perfor-
mance of this model in the test set was MAP@5=0.768.

To analyze the contribution of each feature to the prediction
model, we used Shaply values [27]. We found that the most im-
portant features are related to price, registration year, car model
and geolocation. These findings help to validate our hypothesis
that numeric and categorical features carry relevant information
for modeling item similarity, which limits the ability of simpler
methods (i.e. BM25F) to effectively perform this task.

4.4 Architecture and Candidate Generation
The system architecture used for generating recommendations is
depicted in Figure 3. The training pipeline works offline and period-
ically updates the ranking model to capture seasonality and broad
4https://www.kubeflow.org/docs/components/katib/
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behavioural shifts in user preferences. The inference pipeline com-
bines an offline and online components. The offline side computes
recommendations for all items in the catalog using the pairwise sim-
ilarity model in a batch process, and saves them in a fast in-memory
storage. The online side serves client requests for recommendations,
which are retrieved by directly querying this storage.

Because of the quadratic complexity of the pairwise inference
process, the inference pipeline makes use of a preliminary candidate
generation stage. Many candidate generation strategies have been
proposed; for instance, combining heuristic business rules with
models based on text matching algorithms and click aggregations
[8], or methods to encode the catalog in a latent space and retrieve
candidates with approximate nearest neighbours queries [9]. Our
candidate generation strategy is similar to the former, where we use
as candidates the items retrieved by the two baseline recommender
strategies, Adamic and BM25F. We did not pursue any additional
candidate generation strategies as the main focus of this work is
on the ranking phase. Using this candidate generation model, we
obtained an average of over 80 candidates for every source item.
These were then scored by the ranking model, and the resulting
top 20 finally stored to be returned by the API (section 3). We will
refer to this full solution as ltr-car.

5 OFFLINE EVALUATION
5.1 Experimental Design
To mimic as much as possible our production setting, in which
recommendations are updated in hourly fashion, we follow a sliding
window evaluation method using test sets of 1-hour size and a strict
time-dependent condition to ensure that all the test interactions
are always more recent than any training interaction [28]. For this
experiment we used all the hours of a given day, i.e. 24 test splits.

Our evaluation protocol is based on a next item prediction scheme,
similar to recentwork for evaluating session-based recommenders [29],
since we believe it resembles closely our production setting5. In this
evaluation protocol, user sessions are treated as the ground truth,
and the task of the evaluated system is to predict, for a given item in
the session, the immediate next k items. Differently from the origi-
nal scheme, where items are iteratively revealed one after another
to simulate the user journey throughout a session, at each iteration
we only consider the current item as source. We empirically found
that using 10 iterations per session and the 10 subsequent items
(k) per source as maximum produces the most reliable results in
our test data in terms of variance across splits. After applying the
aforementioned splitting protocol we obtained in the order of tens
of thousands distinct test source items per split.

5.2 Results and Discussion
Table 3 shows the results of the evaluated algorithms in terms of
Mean Average Precision at 5 (MAP@5) as a ranking metric, and F1
score (F1@5) as a relevance metric.

Comparing the candidate generation approaches individually,
we observe that BM25F vastly underperforms Adamic (-84% in
both metrics), supporting the case that CF outperforms CB in of-
fline evaluations. As expected, the difference between Adamic and
5We also tried a non-session based protocol but resulted inmetrics with higher variance,
possibly caused by irrelevant items from different sessions

Table 3: Metrics correspond to the mean value across all test
splits along with their 95% confidence interval.

Model MAP@5 F1@5

Adamic 0.0480 ±0.0018 0.0648 ±0.0011
BM25F 0.0077 ±0.0003 0.0107 ±0.0003
backfill-hybrid 0.0494 ±0.0019 0.0617 ±0.0011
ltr-car 0.0211 ±0.0005 0.0329 ±0.0005

backfill-hybrid is minimal, given that Adamic is always placed at
the top of the ranking. Opposite to our intuition, the proposed
ltr-car model features a substantial performance decrease (-57%
MAP@5 and -46% F1@5) compared to backfill-hybrid.

The offline evaluation results did not match the expectations we
had for the proposed ltr-car model. Although we were aware of
the limitations of offline evaluation, there was a real concern that
the new method may harm the user experience during an A/B test.
We conducted a blind user study to collect additional information
about the performance of the proposed ltr-car method.

6 USER STUDY
6.1 User Study Design
The study aimed at understanding the preference of users for differ-
ent recommendation strategies. In particular, we considered the two
baselines described in Section 3.1 as well as our proposed method.

In the study, we presented tasks to participants to collect evi-
dence of these preferences. Each task corresponds to a single source
item (i.e. a car for sale in the marketplace), and shows the three
top recommendations for Adamic, BM25F and ltr-car in a 3x3 grid.
Notice that for the top 3 recommendations the backfill-hybrid is
essentially the same as Adamic (see Section 3.1). We selected the
top 3 recommendations to simplify the tasks to participants, and is
in consonance with the UI design of the marketplace where only
the first 3 recommendations are visible as shown in Fig 1.

The participants were agnostic to the strategy used to generate
each recommendation of the grid. For each task, they were asked to
select the 3 best recommendations using a checkbox next to each
recommendation. Figure 4 depicts the web interface used to collect
the responses. To aid in the task, participants could readily inspect
some relevant metadata fields (car brand and model, mileage, . . . ) as
well as a photograph for both the source and recommended items.

To minimize the potential influence of different biases in the
results of this study we took the following design decisions. First,
we established that each task should be assessed by two partici-
pants independently. The combined set of judgments per task was
used to determine the final score for each strategy. Furthermore,
task assignment was performed uniformly at random by pairs of
participants, to promote pair-based diversity in the collection of rat-
ings. Second, the 3x3 grid presented to participants was randomly
shuffled to mitigate the effect of the presentation bias.

An important point in the study design was the source selection
strategy, i.e. what source items and recommendations would be
used to compile the set of tasks. Ideally, we want to assess as many
recommendations as possible, but the cognitive effort required to
solve each task adds up quickly, so sub-sampling was required. We
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Figure 4: Web interface used for the tasks of the User Study. Participants had access to metadata to help them find the best
recommendations.

decided to stratify the item catalog by brand to generate a repre-
sentative sample: for the top 10 most prevalent car brands in the
catalog we randomly sampled 10 vehicles, for a total of 100 unique
source items. The assignment process took the brand stratification
into account to distribute brands evenly across participants.

A total of 12 participants (3 female) whose ages ranged from 27
to 48 years old took part in the study. All of the participants were
workers of the company, and held a variety of occupations, includ-
ing scientists, engineers, and analysts. The main limitation of this
study is that this small group of participants is not representative
of the overall population. The study was implemented as a website
accessible to participants online. All of the participants completed
the assigned tasks (between 16 and 17) for a total number of 200
tasks, corresponding to 100 sources assessed by 2 participants.

6.2 Results and Discussion
Participants’ selections were used as relevance indicators to com-
pute a performance score for each recommendation strategy. Firstly,
we combined the responses of the two assessments given per task
to obtain a binary relevance judgment per recommendation. With
these relevance judgments, we could then compute the average
precision for each task, and ultimately the Mean Average Precision
(MAP@3) for each strategy averaging the metric across all tasks.

Because each of the three recommendation strategies is indepen-
dent of the other two, it was possible that twowould simultaneously
choose one or more identical items in their top 3. In these cases,
when an item that was recommended by two strategies was chosen
by a user, it was considered as relevant for both strategies.

We show the MAP metric obtained for each strategy in Table 4.
We can observe that participants of our user study had a clear pref-
erence for the recommendations generated by the ltr-car strategy.

Table 4: Results of the user study. MAP is significantly higher
for the ltr-car model, contradicting the findings of the offline
evaluation. Significant differences are marked with “**”

Pairwise differences (p-value)
MAP@3 BM25F Adamic ltr-car

BM25F 0.304 - - -
Adamic 0.311 0.067 (1.0)
ltr-car 0.638 0.334 (0.000**) 0.327 (0.000**) -

We carried out a Kruskal-Wallis test to establish the statistical sig-
nificance of the differences between strategies, which resulted in
a strong rejection of the null hypothesis (H=69.44, p<0.001). After
finding significance in the results, we computed a series of post-hoc
Dunn’s tests [30] to establish significance at the pairwise level. This
test showed a significant difference between ltr-car and the two
baseline methods.

These findings are not aligned with the results of the offline
evaluation, indeed leading to the exact opposite conclusions. The
ltr-car model, despite achieving a poor MAP performance in the
offline evaluation process, vastly outperforms the baselines using
the same metric when users directly compare the recommendations
generated by each strategy. Although the user study considers a
small set of recommendations, which limits the ability to generalize
these results, it provides enough support to conduct an online test
to measure its performance when used by real users in the wild.

7 ONLINE EVALUATION
The user study results provided us enough confidence to carry out
an A/B test to compare the two approaches studied: our production
baseline (backfill-hybrid) and the proposed solution (ltr-car).
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7.1 Online Metrics and Experiment Design
Measuring online performance is not always straightforward.While
the ultimate goal is to drive a higher revenue for the marketplace,
previous literature suggest that recommenders may not be able to
increase short-term revenue [31], as users can achieve their pur-
chasing goals using alternative navigational tools. In our domain,
we have the added difficulty that transactions do not normally hap-
pen in the context of the marketplace; buyers and sellers often meet
face to face to this end, limiting our ability to observe recommender-
induced transactions. For all these reasons, measuring a meaningful
change in revenue in the span of a few days is unfeasible.

As a usability and navigational tool, recommender systems have
a two-fold objective for our users and marketplaces: first, improve
the user satisfaction with the overall experience with our market-
places, by making relevant content readily available and easy to
browse; second, increase the efficiency of the marketplace to make
successful matches between buyers and sellers.

Given the absence of transactional information, the stronger
signal of interest in an item comes from users contacting each
other using the marketplace-provided tools (e.g. via phone call,
email or direct message). These interactions between users, which
we refer to as lead, can be used to measure interest and success
in our users sessions. In particular, we can define success at the
session level by computing the percentage of sessions with at least
one lead. Analogous metrics, such as percentage of sessions ending
in a transaction, are commonly used in the e-commerce domain for
measuring success [32]. In our context, user sessions are defined
as periods of uninterrupted activity in the marketplace. We use a
threshold of 30 minutes of inactivity to split sessions. This metric
(Session Success Ratio) captures the ability of the marketplace to
effectively match buyers and sellers in every visit, and is influenced
by the relevance of recommendations showed to users.

In addition to this success metric, we also computed two addi-
tional secondary metrics. First, we are interested in the lead to view
ratio (i.e. average number of views that users need to do before
they lead) as a way to measure the effort needed by users to find
compelling items. Second, we also want to measure user engage-
ment with the content clicked, and we used dwell time to this end.
Dwell time was directly computed from server-side events, which
has been shown to be as reliable as client-side measurements in spe-
cific applications [33], which we capped at 150 seconds to remove
outliers and increase metric sensitivity [34].

The experiment was conducted on the ad detail page (see Figure
1) in the cars category of the Milanuncios marketplace. The target
population were logged in users of our iOS platform application
that visited the ad detail page of a car during the duration of the
experiment. Users that met this criteria were split between control
and treatment uniformly at random with an even 50:50 split, so
they would be exposed to one of the recommendation strategies
consistently. We only logged events coming from the cars vertical
for the subsequent analysis and computation of the aforementioned
metrics. The experiment lasted for 15 days. We used a standard
two-tailed t-test to compare the results between control and treat-
ment. With the given experiment duration, and the traffic volume
and population size of the marketplace (which we can’t disclose

for confidentiality reasons), we could compute the statistical signif-
icance of the difference for all the metrics considered at 𝛼 = 0.05
level with a statistical power of 1 − 𝛽 = 0.8.

7.2 Results and Discussion
The experiment showed that the differences between both strategies
were significant for all the metrics considered. The primary metric,
session success ratio, was increased by 5.4% (𝑝 < 0.001) which
shows the ability of ltr-car to expose users to more relevant content,
leading to a higher average number of successful sessions. This
conclusion was further supported by the uplift in the lead to view
ratio, which was increased by a 7.6% (𝑝 < 0.001), indicating a
significant reduction in the effort taken by users to generate a lead.
Finally, dwell time was increased by 2.0% (𝑝 < 0.001), indicating a
higher engagement of users with the content browsed.

The results obtained in the online experiment are in consonance
with the outcome of the user study. We can conclude that, for this
problem setting characterized by a permanent cold-start scenario,
short item lifespan, and abundance of near-duplicates, offline eval-
uation is not able to provide an assessment of relevance useful for
effectively comparing different recommendation strategies. Fur-
thermore, the proposed content-based approach is able to learn a
similarity model for the cars domain using a limited set of metadata
which outperforms collaborative filtering in this domain.

8 CONCLUSIONS AND FUTUREWORK
In this work, we studied the performance of different recommenda-
tion strategies in a highly volatile environment with vast amounts
of near-duplicate items. These conditions limit the effectiveness of
collaborative filtering methods. We proposed a learning to rank so-
lution that successfully models item similarity at the product level
using a purely content-based approach, but leveraging behavioural
signals during training. We conducted an A/B test where the pro-
posed method significantly outperformed our existing baseline, a
hybrid algorithm combining CF and CB recommendation strategies,
highlighting the limitations of methods relying on a the accumula-
tion of user-item interactions in this domain. Finally, we provided
additional empirical evidence of the findings of previous work in
the recommenders area, where online and offline evaluations results
led to opposite conclusions [14].

There are three main areas of this work that we plan to continue
working on. First, we want to extend our comparative analysis to
consider more sophisticated CF methods, such as [35], to further
validate the results found during our study.We also want to improve
our offline evaluation methodology to reduce the offline-online gap,
both by considering alternative weighting schemes (e.g. inverse
propensity scoring) as well as off-policy evaluation methods. Fi-
nally, we want to explore aspects of the recommendations beyond
relevancy, including seller and buyer fairness as well as diversity.
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