Block-SCL: Blocking Matters for Supervised Contrastive Learning
in Product Matching

Mario Almagro®
mario.almagro@nielseniq.com
NielsenIQ - Innovation
Madrid, Spain

Emilio Almazan®
emilio.almazan@nielseniq.com
NielsenIQ - Innovation
Madrid, Spain

ABSTRACT

Product matching is a fundamental step for the global understand-
ing of consumer behavior in e-commerce. In practice, product
matching refers to the task of deciding if two product offers from
different data sources (e.g. retailers) represent the same product.
Standard pipelines use a previous stage called “blocking”, where
for a given product offer a set of potential matching candidates are
retrieved based on similar characteristics (e.g. same brand, category,
flavor, etc.). From these similar product candidates, those that are not
a match can be considered hard negatives. We present Block-SCL,
a strategy that uses the blocking output to make the most of Su-
pervised Contrastive Learning (SCL). Concretely, Block-SCL builds
enriched batches using the hard-negatives samples obtained in the
blocking stage. These batches provide a strong training signal lead-
ing the model to learn more meaningful sentence embeddings for
product matching. Experimental results in several public datasets
demonstrate that Block-SCL achieves state-of-the-art results de-
spite only using short product titles as input, no data augmentation,
and a lighter transformer backbone than competing methods.

CCS CONCEPTS

« Information systems — Retrieval models and ranking; Lan-
guage models; Near-duplicate and plagiarism detection.

KEYWORDS

product matching, blocking, e-commerce, contrastive learning, trans-
formers

ACM Reference Format:

Mario Almagro, David Jiménez, Diego Ortego, Emilio Almazan, and Eva
Martinez Garcia. 2022. Block-SCL: Blocking Matters for Supervised Con-
trastive Learning in Product Matching. In Proceedings of ACM SIGIR Work-
shop on eCommerce (SIGIR eCom’22). ACM, New York, NY, USA, 7 pages.

*M. Almagro, D. Jiménez, D. Ortego and E. Almazan contributed equally to this research.
E. Martinez contributed to the writing of the document and previous discussions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGIR eCom’22, July 15, 2022, Madrid, Spain

© 2022 Copyright held by the owner/author(s).

David Jiménez"*
david.jimenez@nielseniq.com
NielsenIQ - Innovation
Madrid, Spain

Diego Ortego”
diego.ortego@nielseniq.com
NielsenIQ - Innovation
Madrid, Spain

Eva Martinez Garcia
eva.martinezgarcia@nielseniq.com
NielsenIQ - Innovation
Madrid, Spain

1 INTRODUCTION

Nowadays e-commerce websites offer hundreds of millions of prod-
ucts as a result of the online expansion of retailers’ businesses. In
this context, performing product matching successfully, i.e. automat-
ically finding offers of the same product from different data sources
is key to providing good quality of experience. The product match-
ing task is particularly challenging due to a large number of existing
products, their high heterogeneity, missing product information,
and varying levels of data quality [24]. An example of product offers
to match from different sources extracted from WDC dataset [17]:
"Kingston DataTraveler microDuo 3C 32GB Zilver - Prijzen Tweakers"
and "Kingston Technology GmbH LambdaTek|USB flash drives". Prod-
uct matching, then, requires a substantial language understanding
and domain-specific knowledge [11] to differentiate between posi-
tive and negative pairs. We refer the reader to [20] for a detailed
overview of product matching challenges.

The current trend in product matching is to use the Transformer
paradigm [11, 16, 24], which relies on robust pre-trained Trans-
former models to serve as starting point for solving downstream
tasks [4, 32]. For example, the authors in [1, 11, 28] concatenate the
two product descriptions and subsequently process them using a
Transformer encoder, e.g. BERT [4], and add a classification head
on top to solve product matching as a binary classification task.

Alternatively, R. Peters and C. Bizer [16] process the product
descriptions individually and estimate separate description embed-
dings, which are then compared in a metric learning fashion and
classified as match or not match. Metric learning frameworks are
very popular in natural language processing (NLP) for a variety of
applications including: text classification [2], sentence representa-
tion [6], named entity recognition [22] or text retrieval [27]. These
metric learning methods work by pulling together representations
of the same concept and pushing apart representations for different
concepts. Currently, the methods based on Supervised Contrastive
Learning (SCL) are leading the progress in metric learning [9]. SCL
proposes a training objective that, within a batch of training sam-
ples, considers positives for each sample those of the same class
and as negatives the remaining ones. This vanilla version of SCL
has been adapted or improved in different contexts, e.g. text classi-
fication [2], product matching [16], learning with label noise [14]
or long-tailed classification [3]. In particular, authors in [16] use
vanilla-SCL for product matching, where positive/negative pairs
are simply positive/negative pairs of product offers. We adopt a

SIGIR eCom’22, July 15, 2022, Madrid, Spain

similar approach and focus on a key aspect overlooked in [16]: the
hard negatives.

Product matching usually involves a blocking pre-processing
step to discard entries that are unlikely to be matches, thus reducing
the matching problem to the resulting blocking entries. Moreover,
hard negatives play a key role in achieving better similarity learning
[26, 29], thus we believe that the blocking is a natural source of
hard negatives that can boost metric learning for product matching.

In this paper, we propose to use blocking information to en-
hance supervised contrastive learning for product matching in
e-commerce. The main contributions of the paper are listed below:

e We demonstrate that considering hard negatives from the
blocking information during the batched optimization bene-
fits the learning process and boosts product matching per-
formance.

e We evaluate our approach in 6 public datasets comparing
results with top-performing methods. Moreover, in the ab-
lation study, we show the impact of adding more positive/
negative samples in the blocking.

e We demonstrate that solely using hard negatives for SCL
without using larger backbones and tricks from related meth-
ods obtains the best overall results while improving the effi-
ciency of the models considerably.

2 RELATED WORK

The problem of product matching refers to the task of finding
product offers in a large dataset given a textual query for product
offers. The main challenge lies in the fact that query and candidate
offers come from different domains e.g. retailers. In practice, this
problem is approached with a two-stage pipeline:

(1) Blocking: a light comparison on the entire dataset is con-
ducted with the goal of identifying a subset of descriptions
that are potential matches for the product query. It is ex-
pected to obtain a subset without false negatives.

(2) Matching: the descriptions from the “blocking” stage are
classified as match or not match for the input query.

Most works found in the literature deal only with the second stage in
isolation. In particular, the problem is treated as a pair classification
problem, where each pair is independent of the other. However, we
believe that there is relevant information in the blocking output
that we can use to improve the matching stage.

Early solutions for product matching were based on hand-crafted
features and rules that provided a high level of interpretability
at the cost of involving human expert knowledge [5, 21]. Deep-
matcher [13] can be considered the first deep learning based model
for product matching. This method generates independent features
for each description using Recurrent Neural Networks, which are
then compared and classified as match or not match.

More recently, Transformer-based approaches have shown good
performance on solving this task [1, 11, 15, 28]. These methods
usually concatenate pairs of textual product offers and feed them
to a large pre-trained language model (e.g. BERT) that is fine-tuned
with a classification head that provides matching/not matching
predictions.

Nevertheless, the performance of Transformer-based models is
directly related to the quality of the sentence embeddings used.

Almagro et al.

Since BERT-based models do not produce independent single sen-
tence embeddings, they are generated by averaging the outputs of
the BERT model or by using the special [CLS] token. However, these
sentence embedding methods have shown limitations to properly
capture sentence semantics [12, 18, 31]. Also, the pre-training task
significantly impacts the embeddings quality [7]. Many works lever-
age the information from BERT models to build sentence embed-
dings [10, 19], and those using self-supervised contrastive learning
approaches achieve the state-of-the-art results. Some of them focus
on building positive sentence pairs [6, 30], or using prompt learn-
ing [8, 25] to reduce token embeddings biases and make the BERT
layers capture better sentence semantics that help the network
distinguish between soft and hard negative examples.

To the best of our knowledge, there is only one recent work that
learns sentence embeddings for product matching via contrastive
learning [16]. We name this approach Vanilla-SCL as they follow
the original SCL [9] random strategy for assembling the batches.
Nevertheless, they ignore the information from the blocking, which
is a source of hard negatives. Recent works [24] have shown the
benefits of using hard negatives and positives to obtain better prod-
ucts embeddings. We identify the potential benefits of using hard
negative examples enclosed in the information from the blocking fil-
tering when applying supervised contrastive learning and propose
to include that information during batch construction.

3 APPROACH

The proposed approach relies on two steps: pre-training using SCL
with blocking information and product matching classification.
First, we train the backbone and projection network to produce
robust sentence representations so that offers of the same product
are separable from the rest. Then, we freeze the backbone and
replace the projection head with a linear layer to perform product
matching classification using pairs of product offers.

3.1 Pre-training

Broadly speaking, we adopt the SCL approach from [9] proposed
for visual representation learning and adapt it to learn sentence
embeddings for product matching. This is achieved by pulling of-
fers of the same product closer in the feature space and pushing
away those of other products during training. Figure 1 presents an
overview of the pre-training proposal.

First, we use the sampling strategy depicted in Sec. 3.1.2 to select
a batch B; of product offers x;, where i € [1,|8;|] and |B;| is the
batch size. The purpose of using blocking information relative to
each product is to identify the product offers that should lie closer
in the feature space and thus force the model to learn representa-
tions that differentiate them. Every product offer is then mapped
to a low-dimensional representation z; by learning a transformer
encoder network fy and a multi-layer perpectron projection head
g with parameters 6 and ¢, respectively. In particular, the sentence
embedding v; = fp (x;) is generated by average pooling of token
embeddings produced by fp. Subsequently, the sentence embedding
is transformed into a low-dimensional representation w; = g (v;),
which is later Ly-normalized into z; = w;/||w;l|5. Then, the con-
trastive loss function described in Sec. 3.1.3 is calculated.

Block-SCL: Blocking Matters for Supervised Contrastive Learning in Product Matching

LBSC
Blocking 1 Blocking 'n’
220 iz | o o |2zl ZneZe |
tt 4 t s

T

Projection head

?
Pooling
A

o o o

Tres) | Ttok_1 Ttok M Tisery |

Transformer encoder

Blocking-based sequential batch
- J

Blocking-based sequential batch construction

Blocking 'n'
p,...p;

Blocking 1
p;...p;

1
n...ng

o o o

n;...n; |

Figure 1: Diagram of the proposed pre-training strategy
and the blocking-based batch construction, where ’p’ and
‘n’ refers to positives and negatives offers within the same
blocking, respectively.

3.1.1 Data preparation. Most of the datasets in product matching
(e.g. WDC [17]) consist of m pairs of relatively similar product offers
labeled to denote if they refer to the same product (match) or not
(non-match). Then, each data pair includes a product offer on the left
(left;), a product offer on the right (right;), and a binary matching
label y;. The nature of the data is that matching/non-matching
offers correspond to the same/different product, sharing all of them
a high degree of textual similarity given that they come from the
same blocking. Therefore, we can assume that non-matching pairs
provide a source of hard negative samples.

Although product and blocking identifiers are not always pro-
vided, such information can be generated using the set of offer pairs.
Those pairs sharing some offer would constitute a blocking, while
only matching offers would have the same product id. Therefore,
we propose to use a match-based graph to assign unique product
identifiers to all matching offers, while assigning the same blocking
identifier to all non-matching products compared with a specific
product.

SIGIR eCom’22, July 15, 2022, Madrid, Spain

3.1.2 Blocking-based batch construction. Batches are built to con-
tain product offers x; from n different blockings, so offers with the
same product id are considered positive samples, and offers not
sharing the product id but sharing the blocking id are assumed
to be hard negative samples. To do so, data is sampled in such a
way that we obtain a set of product ids in every batch for which
we have a set P; of positive offers and a set N; of hard negative
ones. The cardinality of |P;| < k and |[N;| < ¢, being k and ¢
hyper-parameters that denote the number of positive and negative
samples in a blocking to be selected for each product id, e.g. k = 2
selects 2 positive offers for the product id associated to sample x;.

Note that the sum of positive and negative samples in the batch
|P;i| +|Ni| = |Bi| — 1, where —1 denotes the self-contrast case. This
batch creation strategy forces the network to distinguish between
positive and negative pairs that have similar text sequences as they
belong to the same blocking, as well as unrelated offers coming
from the remaining blockings.

3.1.3 SCL loss. The supervised contrastive learning loss is defined
as follows:

1 1 exp (z; - 2p /1)

Lscr =75) 5 Z —log ,
|8il 53 |7’i|p673i be%\m exp (zi - 2/ 7)

(1)

where 7 is a temperature scaling constant and both the numerator
and denominator compute inner products between pairs of offers
embeddings. The former does it in-between positive offers, while
the latter normalizes it using all offers in the batch B; except the
current i offer. Minimizing Eq. 1 implies adjusting 6 and ¢ to pull
together the feature representations z; and z, of positive product
offers, while pushing apart z; from all negative product offers in
B; \ Pi. The gradient analysis of Lgcy in [9] reveals this training
objective focuses on hard positives/negatives rather than easy ones.
Introducing the blocking information via ; and N; promotes data-
to-data relations between hard positive/negative samples.

3.2 Product matching classification

This last stage computes binary matching predictions for offer
pairs by learning a linear layer on top of the frozen pre-trained
transformer backbone. Figure 2 shows an overview of the prod-
uct matching classification. The classification head receives the
concatenation of the sentence embeddings from the two offers to
match, v; and v;, together with the concatenation of the Euclidean
distance and cosine similarity of vi and v;. Then, the classifier layer
input is (v;, 0}, [0; — vj|,v; * v;). For simplicity the two last terms
are referred as similarity in Figure 2. Note that the concatenation
of this type of information is a standard practice in other works
[10, 16] to help converge to top matching performance, something
we have also observed in our experiments. Furthermore, the pre-
viously mentioned strategy assumes that v; goes before v; in the
concatenation classifier, while there is no reason not to use the
reversed order. Therefore, we also add the reversed concatenation
order (vj,v;, |v; — vj|,v; * v;) and average the logits of both orders,
which we experimentally saw to slightly help in boosting matching
performance.

SIGIR eCom’22, July 15, 2022, Madrid, Spain

Binary cross;entropy loss

Pair 1 Pair 'm'
| Vieft1 | Vrightt |simi|arity oo o | Vieftm | Vrightm |similarity|
4 4 ; t]
Pooling

Tias Toi| O O O Teokm Tiser)

Transformer encoder

Sequential batch
_ J

Sequential batch construction

Pair 1 Pair 'm'

Figure 2: Diagram of the proposed downstream strategy and
the sequential pair-based batch construction.

4 EXPERIMENTS

In this section we describe first, the datasets used to validate our
approach, then the experimental setup and the results obtained
compared to several related works. Finally, we present an ablation
study on the influence of the number of positives and negatives in
the construction of the blocking within the batch.

Table 1: Datasets general statistics: train split.

Dataset Size #pos. #neg. #offers #prods.
pairs pairs
Abt-Buy def. 822 6,837 2,112 1,084
Amzn-Goog. def. 933 8,234 3,445 2,279
small 722 2,112 2,790 745

med. 1,762 6,332 3,846 745
large 6,146 27,213 4,238 745
xlarge 9,690 58,771 4,307 745

WDC-Comp.

4.1 Datasets

We conduct all our experiments using 6 public datasets that are
commonly used in the field of e-commerce and product matching:
Amazon-Google [13], Abt-Buy [13] and WDC [17] (all variants

Almagro et al.

Table 2: Datasets general statistics: test split.

Dataset #pos. pairs #neg. pairs #prods.
Abt-Buy 206 1,710 921
Amzn-Goog. 234 2,059 1,962
WDC-Comp. 300 800 745

Table 3: Datasets blocking statistics: train set.

Dataset Size Average Average Average
block. size pos/block. neg/block.
Abt-Buy def. 119+134 1.2+1.0 10.6 £ 13.1
Amzn-Goog. def. 15.0+£125.5 2.8+41.1 12.1+84.8
small 6.1+2.6 1.5+0.8 45+24
med. 17.3 £ 6.7 3.7+1.8 13.5+6.1
DC- .
WDC-Comp. 1. ve 71.6+30.3 131294 584+253
xlarge 146.8+92.4 20.7 £22.7 126.0+77.7

of the computers subset, i.e. small, medium, large and xlarge). Ta-
bles 1 and 2 shows general statistics of the train and test splits.
Unlike other methods [16], we only use the title as an input feature
(or equivalently the shortest textual information used to describe
the product offer), which greatly simplifies the training, i.e. fewer
memory requirements, and computations, while achieving better
performance.

Additionally, we inspect the statistics related to the blocking
information as shown in Table 3. In the table, we present three
main columns: Avg. block. size, which refers to the number of prod-
uct textual descriptions that are candidates to be a match for each
query product description. The Avg. pos/block representing the
match descriptions out of the candidates and, the Avg. neg/block for
the non-match descriptions. Note that each query product might
have different blocking sizes as well as the number of positive and
negative descriptions, thus we present the average statistics across
all query products. We can observe significant differences in these
three aspects between datasets, for example, a ~ 30X increase in the
number of negatives per blocking in the xlarge version compared
to the small version. Note that the specific characteristics of the
blocking in each dataset might yield different optimal configura-
tions of our method. For instance, for datasets with more number
of negatives in the candidates’ list we might want to select more
negatives per blocking to increase variability in the batch.

4.2 Experimental setup

We use a pre-trained BERT medium (BERT-med)! as the backbone
(6 layers, 8 attention heads, and 512 hidden dimension size) in all
the experiments and a cosine annealing scheduler for the learning
rate with 5% of warm-up period and maximum value of 5 - 107>.
For the supervised contrastive learning pre-training, we use a
projection head composed of one linear layer of dimension 512 fol-
lowed by gelu activation, dropout with probability 0.1, LayerNorm,
and a final linear projection to a low-dimensional representation

Ihttps://huggingface.co/google/bert_uncased_L-6_H-512_A-8

https://huggingface.co/google/bert_uncased_L-6_H-512_A-8

Block-SCL: Blocking Matters for Supervised Contrastive Learning in Product Matching

SIGIR eCom’22, July 15, 2022, Madrid, Spain

Table 4: F1-score results on the test set of each dataset. The symbol * denotes that we run our implementation of the method.
The results marked with * where taken from [16]. The © symbol indicates the rows used to aggregate results. Bold denotes the

best performing results and underlined the second best.

WDC-Computers

Backbone #param. Approach Abt-Buy Amzn-Goog. small medium large xlarge ‘ Avg.
Ditto baseline [11] 91.05* 65.92 86.37* 91.90* 94.68" 94.73% | 88.80"
RoBERTa 110M Ditto [11] 89.33 75.58 - - - - 86.90"
Vanilla SCL (w/ tricks) [16] 93.70 79.28 93.18 97.66 98.16 98.33 | 93.38
BERT-base 110M JointBERT [15] - - 77.55 88.82 96.90 97.49 | -
DistilBERT 66M Ditto [11] - - 80.76 88.62 91.70 95.45 | 86.90"
Fine-tuned LM 10.43 21.09 10.03 26.86 70.73 79.16 | 36.38
BERT-med 35.3M Vanilla SCL (w/o tricks) [16]* 90.95 80.69 87.26 92.63 94.67 94.67 | 90.14
Blocking SCL (Ours) 93.30 86.61 90.49 96.97 98.00 97.83 | 93.86
Bi-LSTM - DeepMatcher 62.8 70.70 61.22 69.85 84.32 88.95 | 72.97

of 256. We train for 300 epochs in Abt-Buy, Amazon-Google, and
WDC-small-computers, 400 epochs in WDC-medium-computers,
600 epochs in WDC-large-computers, and 800 epochs in WDC-
xlarge-computers. Regarding the hyper-parameters related to the
blocking, for the smaller datasets Abt-Buy, Amazon-Google and
WDC-small-computers we found the optimal configuration with 1
positive and 16 negatives while, for the rest we used 2 positives and
16 negatives. In general we have observed stability of the models
on the blocking parameters, however, a more rigorous analysis will
be required to understand the relation between dataset and the
selection of these hyper-parameters. After training, we select the
model checkpoint with the lowest validation loss for the subsequent
fine-tuning.

To estimate a product matching prediction, we replace the pro-
jection head learned during pre-training with a linear layer that
maps the 512 dimensional sentence embedding from the Trans-
former backbone to the matching/not-matching space. We train
for 50 epochs freezing the backbone and use early-stopping if the
validation loss does not decrease in 10 epochs. For evaluation, we
use the checkpoint with the highest F1-score in validation.

4.3 Results

Table 4 reports the resulting F1 scores of our experiments along
with top-performing methods in 6 commonly used public datasets.
The compared methods are DitTo [11], Vanilla-SCL [16], Joint-
BERT [15] and DeepMatcher [13]. We name the recent method
in [16] as Vanilla-SCL given that it performs random sampling
of negatives following [9], as opposed to our Block-SCL method
that uses negative mining from blocking information. For Vanilla-
SCL we report the results from [16] using RoBERTa-base backbone,
which we name Vanilla-SCL with tricks (w/ tricks) due to using
data augmentation and serialization of multiple input features (title,
description and additional information) with additional tagging of
the data field and value using special tokens [COL] and [VAL]. We
further reproduce Vanilla-SCL without tricks (w/o tricks), i.e. no

data augmentation and using only the title with no tagging strat-
egy, and run it ourselves using BERT-med backbone to enable fair
comparison with our Block-SCL.

Our method surpasses by a large margin (T 7.3) the results of
the previous top-performing method [16] in the Amazon-Google
dataset. This dataset is the less saturated one in terms of perfor-
mance, giving sufficient room for improvement, unlike the other
5 datasets, where related work performance ranges from 93.16 up
to 98.1 F1-score. In the remaining datasets, our method achieves
comparable results to [16] using a model 3x smaller and a more mod-
est training strategy e.g. smaller batch-sizes and input sequences.
Regarding efficiency, we conducted a preliminary evaluation of
training times simulating the configuration proposed by [16], the
results are presented in Table 6. Our configuration is significantly
more efficient, having a 4x and 2X speed up with BERT-med and
RoBERTAa, respectively. These results suggest that building complex
batches with hard negatives brings benefits during training, leading
the convergence of the model to a more optimal minimum, without
requiring large architectures.

The fine-tuned LM approach in Table 4 refers to using the pre-
trained BERT-med backbone from a general domain and entirely
fine-tuning it on the downstream task of product matching follow-
ing the approach described in section 3.2. This strategy performs
poorly, thus demonstrating that the pre-trained model is key to
learning meaningful sentence embeddings for product matching.

Due to computational restrictions, we were not able to run our
method with RoBERTa-base and the same configuration proposed
in [16]. However, we should expect some improvement when using
RoBERTa-base (110M) compared to BERT-med (35.3M), as bigger
architectures, trained on larger datasets and batch sizes usually
come with performance gains in supervised contrastive learning
[9]. Moreover, data augmentation in NLP is known to be hard, so
we do not apply it given that using labels, i.e. product identifiers
in our scenario, reduces the importance of data augmentation in
contrastive learning [23].

SIGIR eCom’22, July 15, 2022, Madrid, Spain

4.4 Ablation studies

A key component of our approach is the construction of the batches,
as described in 3.1.2. In this stage, we sample a certain number of
positive and negative pairs from each blocking. However, it is un-
clear how many positives and negatives we should select. Table 5
shows the results of not using the blocking in the batches, as in
Vanilla-SCL, and presents Block-SCL performance when varying
the number of positives and negatives. Regarding the impact of
including hard-negatives in the batch we report an improvement of
2.8 points with respect to not using hard-negatives, i.e. random sam-
pling. Additionally, we observe a clear tendency for improvement
as the number of negatives increases in the batch. These results
verify the effectiveness of our approach and our initial hypothesis
that the use of hard negatives from the blocking examples within
the same batch should lead the model convergence to a more opti-
mal solution. Finally, we do not observe any impact of the number
of positive samples chosen from each blocking, which suggests
that positives within a blocking are relatively redundant and pro-
vide a very similar training signal. Nevertheless, further analysis
need to be conducted to gain a more solid understanding of these
parameters influence.

The experiments in this section are run on the WDC Computers
medium dataset using the same configuration except for the hyper-
parameters stated in the Table 5. Concretely, we used the BERT-
med architecture, the training was optimized with AdamW using a
warm-up of 5% followed by a cosine annealing learning rate decay
strategy. For the pre-training stage we used a batch size of 256, and
trained for 200 epochs with an initial learning rate of 1074, In the
product matching classification, we used a batch size of 64 during
50 epochs with an initial learning rate of 5 - 10~. Finally, we report
the average of 3 runs along with the standard deviation, which
demonstrates the stability of Block-SCL.

Table 5: Influence of the number of positives/negatives in
WDC-medium. We report the average and standard deviation
of the F1-score values after running 3 repetitions of Block-
SCL with different seeds.

Blocking #pos #neg F1
No 1 0 93.15+ 0.52
1 8 95.96 + 0.20
Yes 2 8 95.91 + 0.46
3 8 96.32 £ 0.15
6 8 96.17 £ 0.13
1 1 93.88 + 0.31
Yes 1 2 94.89 + 0.33
1 95.01 £ 0.52
1 16 96.13 + 0.22
Yes 2 16 96.53 +0.15

Almagro et al.

Table 6: Computational time between different settings.

Approach Backbone it/s epoch/min
BERT-med 9.30 2

Block-SCL (Ours) p BERTa 284 0.80
BERT-med 2.31 0.66

Vanilla SCL [16] RoBERTa 1.25 0.18

5 CONCLUSIONS

In this paper, we tackle the problem of product matching in e-
commerce and focus on learning robust representation of products
using supervised contrastive learning as training loss. This learning
objective based on metric learning suits the product matching task,
which essentially measures similarities between textual product
offers. Building on top of this intuition, we incorporate the block-
ing information within the optimization loop in a way that every
batch randomly samples several disjoint blockings (unique product
ids). We empirically demonstrate that negative samples within the
blocking introduce a strong signal in the supervised contrastive
loss formulation, obtaining high-quality product embeddings.

In the experimental section, we demonstrate that our proposed
Block-SCL method is able to learn more discriminative product em-
beddings by measuring the product matching performance based
on learning a product matching classifier on top of those embed-
dings. We outperform most related work methods by a large margin
and clearly improve over Vanilla-SCL [16] when compared in a fair
setup without tricks. Nevertheless, considering Vanilla-SCL with
tricks (data serialization of multiple product fields and data aug-
mentation) and a larger transformer backbone, we perform on par,
while being more than 4 times faster.

We leave for future work an in-depth analysis on the impact
of the number of blockings in a batch, and positives and nega-
tives within each blocking, as well as experimenting with larger
backbones and tricks whose impact is not clear in previous work.

REFERENCES

[1] U. Brunner and K. Stockinger. 2020. Entity matching with transformer
architectures-a step forward in data integration. In International Conference
on Extending Database Technology (ICEDT).

[2] Q. Chen, R. Zhang, Y. Zheng, and Y. Mao. 2022. Dual Contrastive Learning: Text
Classification via Label-Aware Data Augmentation. arXiv: 2201.08702 (2022).

[3] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. 2021. Parametric
Contrastive Learning. In IEEE/CVF International Conference on Computer Vision
(cev).

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Conference
of the North American Chapter of the Association for Computational Linguistics
(ACL).

[5] W.Fan, X. Jia, J. Li, and S. Ma. 2009. Reasoning about record matching rules. In
International Conference on Very Large Data Bases (VLDB).

[6] T. Gao, X. Yao, and D. Chen. 2021. SimCSE: Simple Contrastive Learning of
Sentence Embeddings. In Conference on Empirical Methods in Natural Language
Processing (EMNLP).

[7] Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016. Learning distributed

representations of sentences from unlabelled data. In North American chapter of

the Association for Computational Linguistics (NAACL).

Ting Jiang, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu

Wei, Haizhen Huang, Liangjie Zhang, and Qi Zhang. 2022. PromptBERT: Improv-

ing BERT Sentence Embeddings with Prompts. arXiv preprint arXiv:2201.04337

(2022).

8

Block-SCL: Blocking Matters for Supervised Contrastive Learning in Product Matching

[10

[11]

[12]

[13

[14]

[15]
[16]

(17]

(18]

[19]

[20

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu,
and D. Krishnan. 2021. Supervised Contrastive Learning. In Advances in Neural
Information Processing Systems (NeurIPS).

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li.
2020. On the sentence embeddings from bert for semantic textual similarity. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 9119-9130.

Y Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan. 2020. Deep Entity Matching with
Pre-Trained Language Models. In International Conference on Very Large Data
Bases (VLDB).

Chandler May, Alex Wang, Shikha Bordia, Samuel R Bowman, and Rachel
Rudinger. 2019. On measuring social biases in sentence encoders. arXiv preprint
arXiv:1903.10561 (2019).

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
and V. Raghavendra. 2018. Deep Learning for Entity Matching: A Design Space
Exploration. In ACM International Conference on Management of Data (ICDM).
D. Ortego, E. Arazo, P. Albert, N.E O’Connor, and K. McGuinness. 2021. Multi-
Objective Interpolation Training for Robustness to Label Noise. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

R. Peeters and C. Bizer. 2021. Dual-Objective Fine-Tuning of BERT for Entity
Matching. In International Conference on Very Large Data Bases (VLDB).

R. Peeters and C. Bizer. 2022. Supervised Contrastive Learning for Product
Matching. arXiv: 2202.02098 (2022).

A. Primpeli, R. Peeters, and C. Bizer. 2019. The WDC Training Dataset and
Gold Standard for Large-Scale Product Matching. In World Wide Web Conference
(WWWC).

Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding
the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).

N. Reimers and I. Gurevych. 2019. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In Conference on Empirical Methods in Natural Language
Processing and International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

K. Shah, S. Kopru, and J.-D. Ruvini. 2018. Neural Network based Extreme Classi-
fication and Similarity Models for Product Matching. In Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), In-
dustry Papers).

[21

[22

(23]

[24]

[25]

[26]

[27]

[28

[30

[31

(32]

SIGIR eCom’22, July 15, 2022, Madrid, Spain

R. Singh, V. Meduri, A. Elmagarmid, S. Madden, P. Papotti, J.-A. Quiané-Ruiz, A.
Solar-Lezama, and N. Tang. 2017. Generating concise entity matching rules. In
ACM International Conference on Management of Data (ICDM).

S. Snigdha Sarathi Das, A. Katiyar, R.J. Passonneau, and R. Zhang. 2022. CON-
TaiNER: Few-Shot Named Entity Recognition via Contrastive Learning. In Asso-
ciation for Computational Linguistics (ACL).

Y. Tian, C. Sun, B. Poole, P. Krishnan, C. Schmid, and P. Isola. 2020. What Makes
for Good Views for Contrastive Learning?. In Advances in Neural Information
Processing Systems (NeurIPS).

J. Tracz, P.1. Wojcik, K. Jasinska-Kobus, R. Belluzzo, R. Mroczkowski, and I. Gawlik.
2020. BERT-based similarity learning for product matching. In Association for
Computational Linguistics (ACL), Workshop on Natural Language Processing in
E-Commerce.

Hao Wang, Yangguang Li, Zhen Huang, Yong Dou, Lingpeng Kong, and Jing
Shao. 2022. SNCSE: Contrastive Learning for Unsupervised Sentence Embedding
with Soft Negative Samples. arXiv preprint arXiv:2201.05979 (2022).

C.-Y. Wy, R. Manmatha, A. J. Smola, and P. Kridhenbiihl. 2017. Sampling Matters in
Deep Embedding Learning. In IEEE International Conference on Computer Vision
(ICCV).

L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P.N. Bennett, J. Ahmed, and A. Overwijk.
2021. Approximate Nearest Neighbor Negative Contrastive Learning for Dense
Text Retrieval. In International Conference on Learning Representations.

S. Xu, S.E. Li, and Y. Yang Xiang. 2020. A Pre-trained Matching Model Based on
Self- and Inter-ensemble For Product Matching Task. In International Semantic
Web Conference (ISWC), Semantic Web Challenge on Mining the Web of HTML-
embedded Product Data.

H. Xuan, A. Stylianou, X. Liu, and R. Pless. 2020. Hard negative examples are
hard, but useful. In European Conference on Computer Vision (ECCV).
Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu, and Weiran Xu.
2021. Consert: A contrastive framework for self-supervised sentence representa-
tion transfer. arXiv preprint arXiv:2105.11741 (2021).

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav
Artzi. 2019. Bertscore: Evaluating text generation with bert. arXiv preprint
arXiv:1904.09675 (2019).

L. Zhuang, L. Wayne, S. Ya, and Z. Jun. 2021. A Robustly Optimized BERT
Pre-training Approach with Post-training. In Chinese National Conference on
Computational Linguistics (CCL).

	Abstract
	1 Introduction
	2 Related work
	3 Approach
	3.1 Pre-training
	3.2 Product matching classification

	4 Experiments
	4.1 Datasets
	4.2 Experimental setup
	4.3 Results
	4.4 Ablation studies

	5 Conclusions
	References

