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ABSTRACT
How to capture both users’ static and dynamic interests is a gen-
eral problem for recommender systems (RSs) in e-commerce. Re-
searchers have recently introduced neural memory recommender
networks (NMRNs) to handle sparse data and capture users’ dy-
namic interests better, which usually appear in e-commerce plat-
forms. However, NMRNs update their memory with only the last
interacted item, and this interaction-wise memory updating ap-
proach makes them too sensitive to some accidental interactions,
slowing down their learning speed significantly. Motivated by this
observation, we develop a market-based neural memory recom-
mender network (MB-NMRN). We specifically propose a novel
batch-wise memory updating approach that aggregates a market
vector to minimize the influence of accidental interactions. In ad-
dition, we leverage a simplified pairwise hinge-loss to speed up
the training of MB-NMRN. Our experimental results show that
MB-NMRN achieves a remarkable improvement in recommenda-
tion performance over the current state-of-the-art methods and
significantly speeds up learning compared with that of NMRN.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Neural networks.
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1 INTRODUCTION
With the explosive growth of available online information, users
spend a long time to select their suitable items from many prod-
ucts, movies, and restaurants. Recommender systems (RSs) are an
intuitive and effective choice to defend against this consumer over-
choice problem [25, 26, 29, 30, 37]. Moreover, utilizing RSs becomes
a general way to improve user experiences and supplier profits [1].

RSs can be categorized into collaborative filtering RSs [16] and
content-based RSs [21]. Collaborative filtering RSs generate recom-
mendation lists based on user-item interaction records. In contrast,
content-based RSs are trained on the user and item side information,
e.g., descriptions of items, including text, images, and videos. As
content-based RSs rely on domain-specific side information, it is
hard to design robust RSs. Therefore, to build a robust RS that does
not rely on side information, many studies focus on collaborative
filtering RSs. Traditional collaborative filtering RSs [16] first en-
code users and items into a high-dimensional embedding space and
calculate the similarities between users and items with the user and
item vectors in the embedding space. Then, these systems recom-
mend the most similar items to users. Collaborative filtering RSs
usually assume that user preferences and item attributes are static.
However, information in the real world is always dynamic. For
example, [34] has introduced three temporal and dynamic factors
in a movie recommendation field: changes in movie perceptions,
seasonal changes, and user interests. Static preference-based RSs
cannot correctly process these dynamic factors, resulting in poor
recommendation performance. As in the case of the movie domain,
static RSs also perform poorly in e-commerce recommendations,
particularly in the case of flash-sales [9]. In an e-commerce sce-
nario, we have two observations: (i) available items and discount
items frequently change and (ii) users are attracted to recent mar-
ket trends, i.e., they show dynamic interest. As a result, both the
dynamic and the static parts of user interests need to be considered
when developing RSs for e-commerce.

Many studies introduce recurrent neural networks (RNNs) and
long short-term memory (LSTM) models to capture temporal in-
formation from users’ past interactions [9, 19, 34]. However, most
RNN- and LSTM-based models can serve only for session-based RSs
[31], which can process only time-series data. These models have
limitations in capturing the stable part of users’ interests and the
inherent part of item attributes, because RNN and LSTM update all
the memory cells at a time. In addition, session-based RSs usually
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ignore users with few interactions to improve recommendation
performance, because they have poor performance on such users.
These RSs consequently lose their superiority over the highly sparse
data, which is prevalent in the real world. Wang et al. hence devel-
oped a novel key-value memory network (KV-MemNN) [24] based
RS, namely the neural memory recommender network (NMRN),
to relieve the above restrictions. Different from RNNs and LSTM,
KV-MemNNs can read and write part of their memories to cap-
ture both the dynamic and static parts of user interests. However,
NMRNs update their memories at an interaction-wise frequency.
This update strategy raises two problems: (i) The learning speed
of NMRN is slow because the computation of the next interaction
must wait until the memory update of the previous interaction
is finished, and (ii) NMRNs update their memory with only the
last interacted item, which makes NMRNs too sensitive to some
accidental interactions and leads to a decrease in recommendation
accuracy.

To address these problems, we develop market-based neural
memory recommender networks, MB-NMRNs. Specifically, we pro-
pose a batch-wise memory updating approach and simplify the loss
function of NMRNs. Users’ dynamic interests are usually caused
by market trends changes. Therefore, instead of applying the last
interacted item to update the memory, we aggregate a market vec-
tor with some recent interacted items to represent the change of
the market trends and update the memories of MB-NMRNs with
this market vector. Thus, MB-NMRNs can minimize the influence
of accidental interactions and accurately track the market trends
to facilitate the learning of users’ dynamic interests. Furthermore,
updating the memory of an MB-NMRN per mini-batch enables
training of the NMRN in parallel with the mini-batch trick [23], i.e.,
its training speed can be accelerated by matrix computation.

To summarize, this work makes the following contributions:
• We develop a market-based neural memory recommender net-
work and propose a batch-wise memory updating approach.
Also, we introduce a market vector to track the change in mar-
ket trends. This improvement enables MB-NMRNs to better
learn users’ dynamic interests.
• We remove the penalties of positive items from the loss function
of NMRNs. By combining our batch-wise memory updating
approach and this simplified loss function, the training of MB-
NMRN can be accelerated with a mini-batch trick.
• We conduct experiments on a real-world e-commerce dataset.
The experimental results demonstrate that our model signifi-
cantly outperforms NMRN and the other competitors in recom-
mendation accuracy and computational efficiency.

Roadmap.We review some related works in Section 2, and then we
introduce NMRN in Section 3. Our proposed framework is presented
in Section 4.1. Section 5 reports our experimental results. Finally,
Section 6 concludes this paper.

2 RELATEDWORK
2.1 Collaborative Filtering RSs
Collaborative filtering RSs generate recommendations based on
historical user-item interactions, including explicit (e.g., previous
ratings) and implicit feedback (e.g., past purchases). One of the most
famous collaborative filtering RSs is matrix factorization (MF) [16].

MF learns static latent vectors that represent users and items by op-
timizing the prediction and the ground truth value in the user-item
interaction matrix. In recent years, inspired by the great success of
deep learning and graph neural networks in many fields, developing
RSs based on deep learning and graph neural networks has become
a promising research direction. For example, NeuCF combines an
MF and a Multi-Layer Perceptron (MLP) to improve recommenda-
tion accuracy by learning user and item vectors containing deep
and shallow features. He et al. [6] proposed LightGCN to enhance
user and item embeddings by extracting the high-order structure
information from a user-item interaction graph with graph convo-
lutional networks.

The above RSs ignore the temporal and dynamic information in
users’ interactions, and it is difficult for these systems to provide
accurate recommendations. Therefore, [12, 14, 20] have proposed
session-based models. They can capture sequential information
from users’ historical interactions by utilizing sequential models,
such as RNNs and LSTM. However, they can serve only time-series
data and produce degraded recommendation performances on users
with few interactions.

2.2 Memory Networks
Memory-based neural networks (MemNNs) are novel learning mod-
els inspired by the advances of modern computer architecture [5].
MemNNs can flexibly manage their memories by reading and writ-
ing parts of memory components [17]. In [33], Weston et al. firstly
proposed the concept of MemNNs. MemNNs share their memories
among all data and can capture the sequential change of data at
a distribution level. They have demonstrated that MemNNs out-
perform RNNs because the representation ability of MemNNs is
higher than that of RNNs. MemNNs have been leveraged in many
research fields, such as question answering [24, 27] and knowledge
tracking [8].

In [31], Wang et al. proposed a novel neural memory recom-
mender network (NMRN) to develop MemNN-based RSs. NMRNs
can capture both users’ stable and dynamic interaction patterns,
and the dynamic part is learned by updating the memories with
the last item information. However, NMRNs update their memories
per interaction, and thus the computation of a new interaction
must wait until the memory update of the previous interaction is
finished. As a result, NMRNs cannot serve real-world recommenda-
tions, which require RSs with a fast computational speed to improve
user experiences. In addition, updating memories with only the
last interacted item makes NMRNs too sensitive to some accidental
interactions and leads to a decrease in recommendation accuracy.

3 NEURAL MEMORY RECOMMENDER
NETWORK

This section describe the architecture of the original NMRN, which
is shown in Figure 1. NMRN is a recommender system developed
based on KV-MemNN and generative adversarial networks [4],
which are composed of a discriminator (D) and a generator (G).
The generator of NMRN samples informative negative items to
better train the discriminator. The discriminator of NMRN is a KV-
MemNN that captures users’ static and dynamic interaction patterns
to better measure the similarities between users and items. After
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Figure 1: The architecture of NMRN. NMRN contains a dis-
criminator, which measures similarities between users and
items, and a generator, which samples informative negative
items to help the learning of discriminator.

the discriminator calculates the similarities between a user and
items, NMRN recommends the items with the highest similarities
to the user. In this work, we denote matrices and vectors with bold
capital letters and bold small letters, respectively.

3.1 Discriminator
Given a user 𝑢, an item 𝑣 , and their interaction (𝑢, 𝑣), the discrim-
inator measures the similarity between 𝑢 and 𝑣 . It first calculates
the latent user embedding u through multiplying 𝑢 by a user em-
bedding matrix A. The latent item embedding v is also calculated
through multiplying 𝑣 by an item embedding matrix B. The shapes
of A and B are R𝑁×𝑟 and R𝑀×𝑟 , respectively. 𝑁 ,𝑀 , and 𝑟 are the
number of users, items, and embedding dimensions, respectively.
Similar to KV-MemNNs in the QA systems [24], this discriminator
leverages a key memory matrix M𝑘 and a value memory matrix
M𝑣
𝑡 to capture both users’ static and dynamic interests. M𝑘 and

M𝑣
𝑡 have the same shape R𝐿×𝑟 , where 𝐿 is the number of memory

slots. Each slot in M𝑣
𝑡 represents a type of latent user interaction

pattern at time 𝑡 , while each slot inM𝑘 serves as a key to help users
retrieval latent interest patterns inM𝑣

𝑡 . To capture both users’ static
and dynamic interests, the user embedding u is enhanced with the
latest user interaction patterns in M𝑣

𝑡 . First, the similarity between
user 𝑢 and each slot inM𝑘 (𝑖) is measured by the inverse Euclidean
distance:

𝑠𝑖𝑚𝑖 = −
u −M𝑘 (𝑖)

 . (1)

Then, the softmax normalized similarities serves as the attention
scores to help retrieve information fromM𝑣

𝑡 , where the attention
score of slot 𝑖 is calculated as:

𝑤𝑖 =
𝑒sim𝑖∑𝐿
𝑗=1 𝑒

sim𝑗
. (2)

After that, the memory-enhanced user vector p is calculated by ag-
gregating the different latent user interaction patterns inM𝑣

𝑡 under
the guidance of the above attention scores, where p is formulated
as:

p =

𝐿∑︁
𝑖=1

𝑤 (𝑖)M𝑣
𝑡 (𝑖) . (3)

Finally, the similarity between user 𝑢 and item 𝑣 is defined as the
inverse Euclidean distance between p and v, where the Euclidean
distance between p and v is calculated by:

𝑑 (𝑢, 𝑣) = | |p − v| | =

√√
𝑟∑︁
𝑖=1
(𝑝𝑖 − 𝑣𝑖 )2 . (4)

The discriminator is optimized by minimizing a novel weighted
approximate-rank pairwise (WARP) loss [10]. The WARP loss is
defined as:

L =
∑︁
(𝑢,𝑣) ∈𝑆

∑︁
𝑣−∼V−𝑢

𝜆𝑢,𝑣 ∗ |𝑞 + 𝑑 (𝑢, 𝑣) − 𝑑 (𝑢, 𝑣−) |+ , (5)

where |𝑧 |+ = 𝑚𝑎𝑥 (𝑧, 0) denotes the standard hinge-loss, 𝑞 is the
safetymargin size, which should be larger than zero, 𝑆 is the training
user-item interaction dataset, 𝑣− is a negative item sampled by the
generator, andV−𝑢 is a randomly sampled item subset from items
with which𝑢 has never interacted. Besides, 𝜆𝑢,𝑣 denotes the penalty
of a positive item 𝑣 :

𝜆𝑢,𝑣 = log
(
𝑟𝑎𝑛𝑘𝑢,𝑣 + 1

)
, (6)

where 𝑟𝑎𝑛𝑘𝑢,𝑣 is the rank of item 𝑣 in 𝑢’s recommendation list.
Because ranking all items results in a high computational cost,
NMRN ranks sampled negative items. The approximate rank is
calculated as:

𝑟𝑎𝑛𝑘𝑢,𝑣 ≈
⌊
𝑁 − 1
𝑁𝑢,𝑣

⌋
. (7)

Note that 𝑁 is the total number of items and 𝑁𝑢,𝑣 is the number of
negative items that need to be drawn until 𝑣− satisfying 𝑑 (𝑢, 𝑣) −
𝑑 (𝑢, 𝑣−) + 𝑞 > 0.

3.2 Interaction-wise Memory Update
To capture both user’s static and dynamic interests, the discrim-
inator updates its value memory after the similarity calculation
of each user-item interaction (𝑢, 𝑣) ∈ 𝑆 . For each (𝑢, 𝑣) ∈ 𝑆 , after
𝑑 (𝑢, 𝑣) is calculated, the value memoryM𝑣

𝑡 is updated by the latent
embedding of item 𝑣 , i.e., v. The discriminator first erases a part
of the memories and stores the user’s static interests with the re-
maining part of memories. Then, it adds the most recent interaction
information into its memories with the last interacted item. In the
erasing step, the value memory matrixM𝑣

𝑡 is partially erased and
modified by an erased vector e𝑡 :

M̃𝑣
𝑡+1 (𝑖) = M𝑣

𝑡 (𝑖) ◦ [I −𝑤 (𝑖)et] (8)

e𝑡 = Sigmoid (W𝑒v + b𝑒 ) , (9)
where I is a vector with all elements being 1, ◦ is element-wise
multiplication, W𝑒 is a linear transformation matrix, and b𝑒 is a
bias vector. In the adding step, an add vector a𝑡 is calculated in a
similar way:

a𝑡 = Tanh (Wav + ba) , (10)
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whereW𝑎 and b𝑎 are a linear transformationmatrix and bias vector,
respectively. Finally, the updated value memory matrix is calculated
as follows:

M𝑣
t+1 (𝑖) = M̃𝑣

t+1 (𝑖) +𝑤 (𝑖)at . (11)
Due to this interaction-wise memory-updating operation, the simi-
larity inference of each interaction has to wait until the previous
memory updating is finished. This significantly limits the training
speed of the discriminator.

3.3 Generator
The goal of the generator is to generate plausible negative items so
that the discriminator faces difficulty in distinguishing interacted
items and negative items. Therefore, the objective function is to
maximize the expectation of the similarity between users and the
generated negative items. The loss function of the generator L𝐺 is
described as follows:

L𝐺 =
∑︁
(𝑢,𝑣) ∈S

𝑣−∼𝑃𝐺 (𝑣− |𝑢,𝑣)

E [−𝑑𝐷 (𝑢, 𝑣−)] , (12)

where −𝑑𝐷 (𝑢, 𝑣) denotes the similarity between a user 𝑢 and an
item 𝑣 measured by the discriminator. 𝑃𝐺 (𝑣− |𝑢, 𝑣) is the probability
of sampling a negative item 𝑣− for a given interaction (𝑢, 𝑣), and it
is calculated as:

𝑃𝐺 (𝑣− |𝑢, 𝑣) =
exp (−𝑑𝐺 (𝑢, 𝑣−))∑
𝑣∈V−𝑢 exp (−𝑑𝐺 (𝑢, 𝑣))

, (13)

where 𝑑𝐺 (𝑢, 𝑣) is the Euclidean distance between user 𝑢 and item 𝑣 .
Note thatV−𝑢 is a set of negative items 𝑣 randomly sampled from
items never interacted with user 𝑢. To calculate 𝑑𝐺 (𝑢, 𝑣), the gen-
erator encodes users and items with the transformation matrices E
and F and utilizes two MLPs to separately extract deep embeddings
of users and items. Then, the generator measures the Euclidean
distance in the above deep embedding space. The generator applies
a policy gradient-based reinforcement learning algorithm to opti-
mize its parameters based on the loss L𝐺 . The gradient of L𝐺 is
calculated as:
∇𝜃𝐺L𝐺 =

∑︁
(𝑢,𝑣) ∈S

E𝑣−∼𝑃𝐺 [−𝑑𝐷 (𝑢, 𝑣
−) ∇𝜃𝐺 log 𝑃𝐺 (𝑣− |𝑢, 𝑣)]

≃
∑︁
(𝑢,𝑣) ∈S

∑︁
𝑣−
𝑖
∼𝑃𝐺
[−𝑑𝐷

(
𝑢, 𝑣−𝑖

)
∇𝜃𝐺 log 𝑃𝐺

(
𝑣−𝑖 |𝑢, 𝑣

)
] .

(14)

3.4 Top-K recommendations
For each test user, the similarities between the user and negative
items, which are not interacted with this user, are measured by the
discriminator. Then, the K most similar items are recommended to
this user.

4 MB-NMRN: MARKET-BASED NEURAL
MEMORY RECOMMENDER NETWORK

This section presents the details of our proposed batch-wise mem-
ory updating approach, which enables NMRN to be more flexible to
adjust its memory updating frequency. By utilizing the batch-wise
memory updating approach and a simplified hinge-loss, our MB-
NMRN can accelerate its learning with the mini-batch trick [23].
Table 1 summarizes the notations used in this section.

Table 1: Summary of notations

Notation Description
u𝑏ℎ Mini-batch of users
v𝑏ℎ Mini-batch of items
𝑆𝑏ℎ Mini-batch of interactions
𝐻 Mini-batch size
U𝑏ℎ Embedding matrix for u𝑏ℎ
V𝑏ℎ Embedding matrix for v𝑏ℎ
W𝑏ℎ Mini-batch attention
P𝑏ℎ Deep embedding matrix for u𝑏ℎ
C−
𝑏ℎ

Negative item matrix
𝐽 Number of negative items per user
m Market vector
w𝑚 Market attention

4.1 Batch-wise Memory Updating
Instead of updating the value memoryM𝑣

𝑡 in an interaction-wise
manner, we aggregate the items from amini-batch of interactions to
learn a market vector, which can better represent recent interaction
patterns than a single item. Then, we updateM𝑣

𝑡 with this market
vector, after the similarity inference of the above mini-batch of in-
teractions. By doing so, our MB-NMRN can minimize the influence
from some accidental interactions and accurately track the market
trends to facilitate the learning of users’ dynamic interests. In addi-
tion, mini-batch-level memory updates enable the discriminator to
infer the similarities of user-item pairs in a mini-batch in parallel.

Figure 2 gives the architecture of MB-NMRN. In this figure, u𝑏ℎ
and v𝑏ℎ respectively denote the users and the items from a mini-
batch of interactions 𝑆𝑏ℎ . The size of 𝑆𝑏ℎ is denoted as 𝐻 . The
user embedding U𝑏ℎ and the item embeddings V𝑏ℎ are calculated
through multiplying u𝑏ℎ by user embedding matrixA and multiply-
ing v𝑏ℎ by item embeddingmatrixB, respectively.Without memory
updating, all users in u𝑏ℎ can be enhanced with the sameM𝑣

𝑡 . There-
fore, the discriminator can compute the mini-batch attention W𝑏ℎ ,
the deep user embeddings P𝑏ℎ , and the similarities −𝑑𝐷 (u𝑏ℎ, v𝑏ℎ)
in parallel.m denotes the market vector and C−

𝑏ℎ
∈ R𝐻×𝐽 denotes

a negative item matrix, where each row of C−
𝑏ℎ

is the randomly
sampled candidate negative items for a user. 𝐽 denotes the number
of a user’s candidate negative items.

Inspired by the great successes of convolutional neural networks
and attention mechanisms in information aggregation, we develop
two approaches to aggregating m: (1) a one-dimensional convolu-
tional aggregation approach and (2) a value memory-guided multi-
head attention aggregation approach. Note that applications can
select one of the two approaches based on their requirements.
One-dimensional convolutional aggregation. This approach
learnsm by aggregating V𝑏ℎ with a one-dimensional convolutional
(1Dconv) layer:

m = bc + 1Dconv (w𝑐 ,V𝑏ℎ) , (15)

where b𝑐 and w𝑐 are the bias and weight vectors of the convolu-
tional layer, respectively. The attentions of different itemsW𝑏ℎ are
aggregated to form a market attention w𝑚 . This is used to update
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Figure 2: The architecture of MB-NMRN, which computes a mini-batch of user-item interactions in parallel

the value memory later, and w𝑚 is calculated by:

w𝑚 = b𝑐 + 1Dconv (w𝑐 ,W𝑏ℎ) , (16)

where m and w𝑚 are aggregated by the same 1Dconv layer to
ensure the consistency of items and their corresponding attentions.
This approach uses only a 1Dconv layer and thus can aggregate
information efficiently.
Valuememory-guidedmulti-head attention aggregation. This
approach learnsm by modeling item importance in representing re-
cent interaction patterns. Motivated by the achievement of attention
mechanism in advancing recommendations [3, 28], we introduce
the attention mechanism to achieve the item importance model-
ing purpose. In addition, since the market vector is aggregated to
updating the value memory, we guide the calculation of attention
with the value memory and develop a novel value memory-guided
multi-head attention aggregation approach. Specifically, we denote
𝛼𝑖𝑣 as the attention weight of item 𝑣 and the value memory slot
M𝑣
𝑡 (𝑖), where 𝛼𝑖𝑣 is formulated by:

𝛼𝑖𝑣 =
𝑒𝛼

𝑖
𝑣∑𝐻

𝑣=1 𝑒
𝛼𝑖𝑣
,

𝛼𝑖𝑣 = w𝑇1 ReLU
(
v𝑣 ◦M𝑣

𝑡 (𝑖)
)
+ 𝑏1 .

(17)

w1 ∈ R𝑟 and 𝑏1 denote the weight and bias of a fully connected
layer. v𝑣 is the embedding of item 𝑣 . Then, the market vectorm can
be aggregated by the mini-batch of items and their corresponding

attentions:

m =
1
𝐿

𝐿∑︁
𝑖=1

𝐻∑︁
𝑣=1

𝛼𝑖𝑣v𝑣 . (18)

The market attention w𝑚 is formulated by:

w𝑚 =
1
𝐿

𝐿∑︁
𝑖=1

𝐻∑︁
𝑣=1

𝛼𝑖𝑣W𝑏ℎ (𝑣). (19)

Although the attention approach takes more computation time
than the one-dimensional convolutional approach, the attention
approach better models the importance of different items. In Section
5, we investigate this trade-off.

After aggregating𝑚 and w𝑚 , the value memory matrix M𝑣
𝑡 is

updated by erasing and adding the steps in Equations 8, 9, 10, and
11. The following equations show this updating process:

M̃𝑣
𝑡+1 (𝑖) = M𝑣

𝑡 (𝑖) ◦
[
I −𝑤𝑚 (𝑖)et

]
,

e𝑡 = Sigmoid (W𝑒m + b𝑒 ) ,
M𝑣

t+1 (𝑖) = M̃𝑣
t+1 (𝑖) +𝑤

𝑚 (𝑖)at,
a𝑡 = Tanh (Wam + ba) .

(20)

4.2 Simplified Pairwise Hinge-Loss
Themini-batch trick has been introduced into deep neural networks
to accelerate their training. However, existing MemNNs [24, 31, 33]
cannot apply this mini-batch trick due to their interaction-wise
memory updating operations. To address this problem, we propose
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Algorithm 1: Adversarial training
Input: Training set 𝑆
Output: Parameters of discriminator 𝜃𝐷 , Parameters of

generator 𝜃𝐺
1 Randomly initialize parameters 𝜃𝐷 and 𝜃𝐺
2 Rearrange 𝑆 in chronological order
3 while L not converged do
4 for each mini-batch 𝑆𝑏ℎ ∈ 𝑆 do
5 Randomly sample C−

𝑏ℎ

6 Sample v−
𝑏ℎ

with 𝑃𝐺 (𝑣− |𝑢, 𝑣) calculated by Eq. (13)
7 Evaluate L𝐺 by Eq. (12)
8 Evaluate L by Eq. (21)
9 Adversarially optimize 𝜃𝐷 and 𝜃𝐺 by

𝜃𝐷 ← 𝜃𝐷 − ∇𝜃𝐷L, 𝜃𝐺 ← 𝜃𝐺 − ∇𝜃𝐺L𝐺
10 end
11 end

a batch-wise memory updating approach and a simplified pairwise
hinge-loss.

Specifically, the batch-wise memory updating approach allows
the discriminator of MB-NMRN to calculate the user embeddings
P𝑏ℎ and the similarities −𝑑𝐷 (u𝑏ℎ, v𝑏ℎ) in batch-wise manner. Note
that this batch-wise manner enables parallel computation. The
WARP loss requires the generator to continue sampling negative
items for every interaction until 𝑑 (𝑢, 𝑣) − 𝑑 (𝑢, 𝑣−) + 𝑝 > 0. This
requirement significantly limits the training efficiency of the dis-
criminator. Therefore, we simplify the originalWARP loss to sample
only one negative item for one interaction, this makes the discrimi-
nator of MB-NMRN calculate −𝑑𝐷 (u𝑏ℎ, v−𝑏ℎ) in batch-wise manner.
The simplified pairwise hinge-loss L is defined as:

L =
∑︁

(u𝑏ℎ,v𝑏ℎ) ∈𝑆,v−𝑏ℎ∼C
−
𝑏ℎ

[𝑞 + d(u𝑏ℎ, v𝑏ℎ) − d
(
u𝑏ℎ, v

−
𝑏ℎ

)
]+ . (21)

As a result, MB-NMRN is more computationally efficient than the
original NMRN and can better capture user’s static and dynamic
interests to facilitate the recommendation performance.

4.3 Training Algorithm
MB-NMRN leverages the batch-wise memory updating approach
and the simplified pairwise hing-loss to optimize its discriminator
parameters 𝜃𝐷 and generator parameters 𝜃𝐺 . The details of the
training algorithm are summarized in Algorithm 1.

5 EXPERIMENT
The objective of our experiments is to answer the following research
questions:
RQ1: How does our proposed method perform on recommenda-
tions compared with state-of-the-art methods?
RQ2: How does our proposed method perform on computational
efficiency compared with NMRN?
RQ3: How do some hyper-parameters affect the recommendation
accuracy of our proposed method?

Table 2: Basic information on the datasets we used

Dataset Training Validation Test
#users 88,267 1,382 1,551
#items 7,121 553 499
#interactions 163,959 1,773 1,944
#avg. interaction/user 1.85 1.28 1.25

5.1 Dataset
We used a real-world e-commerce platform dataset that provides
items and services (e.g., home electronics, make-up, and travel ser-
vices)1. This dataset contains users’ purchase records from 11/5/2017
to 11/6/2017. We divided the purchase records into three parts:
11/5/2017 to 9/6/2017 as a training set, 10/6/2017 as a validation
set, 11/6/2017 as a test set. For new users and items which have
no interaction information in the training set, we deleted these
new users and items from validation and testing sets. Some basic
information on the dataset is summarized in Table 2.

5.2 Setting
5.2.1 Evaluation Criteria. For each user in the test set, we first
randomly sampled 1000 items, including negative items and items
that this user interacted with in the test set, where negative items
indicate items that did not interact with this user in the training
set.

Then, the top-k recommendations were produced by the method
mentioned in Section 3.4. The result of the top-K recommendations
was measured by the widely used Hit Ratio (HR) [2, 11, 31, 32] and
Normalized Discounted Cumulative Gain (NDCG) [13].
Hit Ratio. Given a user-item interaction in the test set, HR@K
measures whether the item is in the top-K recommendation list or
not. If the target item appears in the top-K recommendation list,
we obtain a hit. HR@K is calculated as follows:

𝐻𝑅@𝐾 =
Number of hits@𝐾

|𝑅 | , (22)

where |𝑅 | is the number of interactions in the test set.
Normalized Discounted Cumulative Gain. The ranking quality
of the recommendation list is usually evaluated with NDCG, which
accounts for the position of the ℎ𝑖𝑡𝑠 by assigning higher scores to
the ℎ𝑖𝑡𝑠 at top ranks and downgrading the scores to ℎ𝑖𝑡𝑠 at lower
ranks. NDCG@K is defined as:

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝑖𝐷𝐶𝐺@𝐾
,

𝐷𝐶𝐺@𝐾 =

𝐾∑︁
𝑖=1

2𝑟𝑖 − 1
log2 (𝑖 + 1) ,

(23)

where 𝑟𝑖 shows the graded relevance of the target item at position
𝑖: 𝑟𝑖 = 1 if the target item is ranked at the 𝑖-𝑡ℎ position, otherwise
𝑟𝑖 = 0. iDCG@K is the ideal order of DCG.

5.2.2 Evaluation methods. The experiments evaluated the follow-
ing recommendation methods.
• Top-Pop recommends the most popular items to users.

1Actually, this is our private dataset.
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Table 3: Hyper-parameter settings of MB-NMRN

Hyper-parameter Value
𝑟 Embedding dimension 32
𝐿 # of memory slots 64
𝐽 # of candidate neg. items 100
𝑞 Safety margin size 5
𝐻 Mini-batch size 2048

• NeuCF [7] jointly learns a neural network and a matrix fac-
torization model to fuse both the shallow and deep features in
users’ interaction patterns.
• LightGCN [6] develops a light graph convolutional networks
to enhance the user and item embeddings with the learned
structural information from the user-item interaction graph.
• NMRN [31] combines memory networks and generative ad-
versarial networks to capture both users’ dynamic and static
interests.
• MB-NMRN-conv. This is our proposed method with the one-
dimensional convolutional aggregation approach.
• MB-NMRN-attn. This is our proposed method with the value
memory-guided multi-head attention aggregation approach.

5.2.3 Implementation details. The codes of NeuCF2 and LightGCN3

were obtained from the corresponding GitHub repositories. All eval-
uated methods were implemented based on PyTorch4 framework.
The optimizer was Adam [15], and the learning rate was 0.001.
The other parameters were randomly initialized from a Gaussian
distribution N(0, 0.012). To determine the best hyper-parameters,
we tuned hyper-parameters based on the validation set. Instead of
randomly sampling mini-batch user-item interactions from training
set, which is applied in [31], we generated mini-batch in chronolog-
ical order strictly, to mimic the interaction pattern on real-world
e-commerce platforms. MB-NMRN achieves its best performance
with the hyper-parameters shown in Table 3.

5.3 Comparison Results
This section reports the comparison results for recommendation
performance and computational efficiency.

5.3.1 Recommendation performance. Table 4 reports the compar-
ison results of all evaluation methods on HR@K and NDCG@K.
This table shows that both MB-NMRN-conv and MB-NMRN-attn
outperform all the competitors. Specifically, MB-NMRN-attn gains
a 51.66% improvement on HR@1, 54.16% on HR@3, and 52.41% on
HR@10 against the best competitor (LightGCN). Also, it achieves
an improvement of 50.15% on NDCG@1, 49.98% on NDCG@3, and
48.9% on NDCG@10 against LightGCN. This finding empirically
demonstrates that ourMB-NMRN can better track themarket trends
to learn users’ dynamic interests.

5.3.2 Computational Efficiency. To evaluate the effectiveness of
our MB-NMRN on computational efficiency, we compared the run
time of NMRN and MB-NMRN, where the run time indicates the
2github.com/yihong-chen/neural-collaborative-filtering
3github.com/gusye1234/LightGCN-PyTorch
4https://pytorch.org
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time to train a model until the discriminator loss converges on the
validation set. All methods run on the same Linux server with 64
Intel(R) Xeon(R) Platinum 8375C CPUs for a fair comparison. We
test the mini-batch size 𝐻 in [256, 512, 1024, 2048]. To avoid the
influence of the generator, we sampled negative items uniformly at
random for each interaction.

Figure 3 illustrates the run times of NMRN and MB-NMRN. We
can see that both MB-NMRN-attn and MB-NMRN-conv remarkably
outperform NMRN in terms of computational efficiency. This re-
sult demonstrates that our batch-wise memory updating approach
and the simplified pairwise hinge-loss are effective in speeding up
the training. Moreover, MB-NMRN-conv takes less run time than
MB-NMRN-attn due to its light structure (i.e., a one-dimensional
convolutional layer).

5.4 Impact of Some Hyper-Parameters
5.4.1 Recommendation List Size. To investigate the impact of the
recommendation list size K, we conducted experiments by varying
K. Figure 4 shows the comparison results on HR@K and NDCG@K.
From this figure, we observe that MB-NMRN-attn, MB-NMRN-
conv, and LightGCN achieve higher values on HR@K than the
other, when K is small. This result is consistent with the result on
NDCG@K, which emphasizes the importance of the head of recom-
mendation list. This result empirically demonstrates the strength
of these methods in providing accurate recommendations. We find
that the HR@K of most methods achieves about 0.5 to 0.6 when K is
46. This finding indicates that ignoring market trends or confusion
caused by accidental interactions can lead to mis-recommendations
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Table 4: Comparison between our proposal and the state-of-the-art by using HR@K and NDCG@K.

Method HR@1 HR@3 HR@10 NDCG@1 NDCG@3 NDCG@10
Top-Pop 0.0000 0.0298 0.0298 0.0000 0.0220 0.0220
NeuCF 0.0689 0.1692 0.2984 0.0830 0.1536 0.2091
LightGCN 0.2011 0.2536 0.3200 0.2464 0.2826 0.3086
NMRN 0.0303 0.1615 0.2994 0.0373 0.1268 0.1891
MB-NMRN-conv 0.2186 0.3050 0.3380 0.2667 0.3287 0.3413
MB-NMRN-attn (ours) 0.3050 0.3909 0.4877 0.3700 0.4238 0.4595
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at the head of recommendation lists. Therefore, RSs that can accu-
rately track market trends are required to improve recommendation
performances.

5.4.2 Mini-batch Size. To study the impact of the mini-batch size
H, we conducted a comparison experiment with MB-NMRN-attn
trained with different H. The comparison results on HR@K and
NDCG@K are illustrated in Figure 5. (We omit the result of MB-
NMRN-conv, as MB-NMRN-att shows better accuracy.) In these
figures, we can see that the MB-NMRN trained by a larger mini-
batch performs better when K is small. This observation empirically
demonstrates that fusing more recent items can more accurately
capture themarket trends. It is worthmentioning that NMRN equals
MB-NMRN when H is set to 1, and this is the reason why NMRN
performs worse than MB-NMRN.

5.4.3 Candidate Item Number. Our comparison experiment ranked
1000 candidate items for each user to produce top-K recommen-
dations. In this part, we compared our MB-NMRN-attn (the best
proposal) and LightGCN (the best baseline) by varying the number
of candidate items to discuss the robustness of MB-NMRN’s rec-
ommendation performance, where the number of candidate items
is denoted as 𝑄 . (Since the recommendation performance of MB-
NMRN-conv is similar to that of LightGCN, we omitted it.)

Figures 6 and 7 illustrate the results. From Figure 6, we observe
that MB-NMRN-attn stably outperforms LightGCN on HR@1 and
HR@10. Besides, we find that HR@K tends to converge when 𝑄 is
larger than 1000 from Figure 7. The above results demonstrate the
robustness of our MB-NMRN.

6 CONCLUSION
In this work, we developed market-based neural memory recom-
mender networks (MB-NMRNs) for e-commerce recommendations.
Specifically, we proposed a novel batch-wise memory updating ap-
proach to better capture users’ dynamic interests by minimizing the
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influence of accidental interactions. We furthermore introduced a
simplified pairwise hinge-loss to train our MB-NMRN in batch-wise
parallel. The experimental results demonstrate the superiority of
MB-NMRN on both recommendation performance and computa-
tional efficiency.

In e-commerce recommendations, the frequent change of avail-
able items makes the interaction information sparser, which sig-
nificantly impairs recommendation performance. Therefore, we
will focus on addressing the sparse data problem by developing
cross-domain recommender systems that transfer knowledge from
auxiliary domains to enrich the sparse interactions in the target
domain [18, 22, 35, 36].

ACKNOWLEDGMENTS
This research is partially supported by JST CREST Grant Number
JPMJCR21F2.



Trends-enhanced Attention & Memory Networks for E-commerce Recommendation SIGIR eCom’22, July 15, 2022, Madrid, Spain

REFERENCES
[1] Daichi Amagata and Takahiro Hara. 2021. Reverse Maximum Inner Product

Search: How to efficiently find users who would like to buy my item?. In RecSys.
273–281.

[2] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In RecSys. 39–46.

[3] Chen Gao, Xiangning Chen, Fuli Feng, Kai Zhao, Xiangnan He, Yong Li, and
Depeng Jin. 2019. Cross-domain RecommendationWithout Sharing User-relevant
Data. In WWW. 491–502.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In NIPS. 2672–2680.

[5] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural turing machines.
arXiv preprint arXiv:1410.5401 (2014).

[6] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR. 639–648.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWWW. 173–182.

[8] Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
2016. Tracking the world state with recurrent entity networks. arXiv preprint
arXiv:1612.03969 (2016).

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[10] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In WWW. 193–201.

[11] Bo Hu and Martin Ester. 2013. Spatial topic modeling in online social media for
location recommendation. In RecSys. 25–32.

[12] Dietmar Jannach and Malte Ludewig. 2017. When recurrent neural networks
meet the neighborhood for session-based recommendation. In RecSys. 306–310.

[13] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.

[14] How Jing and Alexander J Smola. 2017. Neural survival recommender. InWSDM.
515–524.

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[17] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural language processing. In ICML.
1378–1387.

[18] Mori Kurokawa, Hao Niu, Kei Yonekawa, Arei Kobayashi, Daichi Amagata,
Takuya Maekawa, and Takahiro Hara. 2018. Virtual touch-point: trans-domain
behavioral targeting via transfer learning. In IEEE Big Data. 4762–4767.

[19] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen. 2018.
Learning from history and present: Next-item recommendation via discrimina-
tively exploiting user behaviors. In KDD. 1734–1743.

[20] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-
term attention/memory priority model for session-based recommendation. In
KDD. 1831–1839.

[21] Zheng Liu, Xing Xie, and Lei Chen. 2018. Context-aware academic collaborator
recommendation. In KDD. 1870–1879.

[22] Yuan Lyu, Daichi Amagata, Takuya Maekawa, Takahiro Hara, Hao Niu, Kei
Yonekawa, and Mori Kurokawa. 2019. Behavior Matching between Different
Domains based on Canonical Correlation Analysis. In ECNLP. 361–366.

[23] Dominic Masters and Carlo Luschi. 2018. Revisiting small batch training for deep
neural networks. arXiv preprint arXiv:1804.07612 (2018).

[24] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value memory networks for directly reading
documents. arXiv preprint arXiv:1606.03126 (2016).

[25] Jun Murao, Kei Yonekawa, Mori Kurokawa, Daichi Amagata, Takuya Maekawa,
and Takahiro Hara. 2021. Concept Drift Detection with Denoising Autoencoder
in Incomplete Data. In MobiQuitous. 541–552.

[26] Duc Nguyen, Hao Niu, Kei Yonekawa, Mori Kurokawa, Chihiro Ono, Daichi
Amagata, Takuya Maekawa, and Takahiro Hara. 2020. On the Transferability of
Deep Neural Networks for Recommender System. In IAL. 22–37.

[27] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory
networks. In NIPS. 2440–2448.

[28] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In CIKM. 1441–1450.

[29] Hanxin Wang, Daichi Amagata, Takuya Maekawa, Takahiro Hara, Hao Niu, Kei
Yonekawa, and Mori Kurokawa. 2019. Preliminary investigation of alleviating
user cold-start problem in e-commerce with deep cross-domain recommender
system. In ECNLP. 398–403.

[30] Hanxin Wang, Daichi Amagata, Takuya Makeawa, Takahiro Hara, Niu Hao, Kei
Yonekawa, and Mori Kurokawa. 2020. A DNN-Based Cross-Domain Recom-
mender System for Alleviating Cold-Start Problem in E-Commerce. IEEE Open
Journal of the Industrial Electronics Society 1 (2020), 194–206.

[31] Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi Huang.
2018. Neural memory streaming recommender networks with adversarial train-
ing. In KDD. 2467–2475.

[32] Weiqing Wang, Hongzhi Yin, Ling Chen, Yizhou Sun, Shazia Sadiq, and Xiaofang
Zhou. 2015. Geo-SAGE: A geographical sparse additive generative model for
spatial item recommendation. In KDD. 1255–1264.

[33] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory networks.
arXiv preprint arXiv:1410.3916 (2014).

[34] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In WSDM. 495–503.

[35] Kei Yonekawa, Hao Niu, Mori Kurokawa, Arei Kobayashi, Daichi Amagata,
Takuya Maekawa, and Takahiro Hara. 2019. Advertiser-Assisted Behavioral
Ad-Targeting via Denoised Distribution Induction. In IEEE Big Data. 5611–5619.

[36] Kei Yonekawa, Hao Niu, Mori Kurokawa, Arei Kobayashi, Daichi Amagata,
Takuya Maekawa, and Takahiro Hara. 2019. A heterogeneous domain adversarial
neural network for trans-domain behavioral targeting. In PAKDD. 274–285.

[37] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM CSUR 52, 1 (2019),
5.


	Abstract
	1 Introduction 
	2 Related Work
	2.1 Collaborative Filtering RSs
	2.2 Memory Networks

	3 Neural memory recommender network
	3.1 Discriminator
	3.2 Interaction-wise Memory Update
	3.3 Generator
	3.4 Top-K recommendations 

	4 MB-NMRN: Market-based neural memory recommender network
	4.1 Batch-wise Memory Updating
	4.2 Simplified Pairwise Hinge-Loss
	4.3 Training Algorithm

	5 Experiment
	5.1 Dataset 
	5.2 Setting
	5.3 Comparison Results
	5.4 Impact of Some Hyper-Parameters

	6 Conclusion
	References

