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ABSTRACT
Semantic Sourcing is a well-studied area in web and product search
to improve the quality of search results. In the context of Seman-
tic Sourcing in e-commerce search, transformer-based models like
BERT (fine-tuned for relevance) can be used to encode the rep-
resentation of queries into a semantic space where the semanti-
cally equivalent entities (i.e., queries for Query Reformulation (QR)
or products for direct Semantic Sourcing application) are in the
neighbourhood of the given query. Although BERT achieves state-
of-the-art performance, this comes at a latency cost to compute
the embedding, making it unsuitable for real-time reformulations
where a Deep Semantic Search Model (DSSM)- a simple architec-
ture comprised of word embedding layer followed by mean-pool
layer, is more suitable. In this work, we demonstrate that (1) apply-
ing knowledge distillation to transfer the knowledge from SBERT
(BERT fine-tuned for relevance) to DSSM shows improvement in
AUC of 2.03% in the query-product relevance task compared to
training DSSM directly on the relevance data and (2) HISS: Hybrid
Inference architecture in Semantic Search: DSSM (from knowledge
distillation) if used in conjunction with BERT on alignment loss,
shows improvement in AUC of 0.8-1.2% over DSSM (from KD) only
model.

CCS CONCEPTS
• Information systems → Web searching and information
discovery; Document representation.

KEYWORDS
Information Retrieval, Query Reformulation, Semantic Sourcing,
Semantic Search, Hybrid Inference

1 INTRODUCTION
Sourcing products for large e-commerce systems (such as Amazon,
Walmart etc) is a challenging problem due to inconsistency between
the user query and product information (title, description etc.). For
instance, consider the multilingual marketplace like India, where
customers speak a diverse set of languages (Hindi, Tamil, Telugu
etc.) while both the marketplace and the catalogue are predomi-
nantly in English. In this scenario, sourcing relevant products are
challenging due to:
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• queries having incorrectly spelled words (e.g. – ’mixer grain-
der’).

• queries having product attributes that are spoken in common
parlance but unlikely to be present in product title/description,
also referred to as natural language queries (e.g., attribute
‘fancy’ in query ‘fancy kurtis’).

• queries having words from a vernacular language (e.g –
‘jeera’ – substitute for ‘cumin seeds’ in English).

The above challenges are further intensified in the real-time
scenario, where customers expect relevant products to be retrieved
in just a fraction of a second.

This problem can be naturally solved using two approaches (1)
Query Reformulation (QR) - In this approach, customer query not
so rich in relevant products can be reformulated to a semantically
equivalent query that contains a rich set of relevant products (2)
Semantic Sourcing (SS) - given a customer query, directly retrieve
K nearest neighbour products form the shared embedding space
of query and products. Although QR is an efficient approach to
retrieving semantically equivalent products without changing the
indexing system, this approach does not work well on tail queries
where the queries are unique, rare, and comprise a considerable
amount of traffic. On these queries, it will be more effective to
source products directly using the SS approach compared to QR. In
this paper, we limit our discussions to SS, although our methods
are equally effective and applicable to QR as well. Note that hosting
an online SS system requires building (1) semantic index - large
scale indexing system to index products based on the product rep-
resentation (2) query processor - where a given customer query
is converted to a query representation in real-time and (3) KNN
search - the query is matched to nearest neighbour products in
real-time. In this paper, we focus on learning better representation
models for both queries and products so that they can be used for
SS and omit details of engineering systems.

Our approach to semantic match is to represent queries and prod-
ucts independently into an n-dimensional semantic space where the
semantically equivalent queries (or) products can be found in the
neighbourhood of the semantic representation of the query under
consideration. Transformer models such as BERT[8] have recently
become ubiquitous in NLP applications and has been successfully
applied to the Search Sourcing problem [26, 6, 2]. The success of
transformers has been primarily attributed to self-supervised learn-
ing and self-attention mechanism. The self-supervised learning
approach improves the model due to the training on abundantly
available unsupervised datasets while the self-attention mechanism
increases the complexity of the models. We fine-tune BERT (called
SBERT)[26] to independently represent queries and products into a
rich n-dimensional semantic space. Our SBERT model can be used
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to implement offline sourcing strategies like caching of products
to be sourced for popular queries either by Query Reformulation
or KNN product search and retrieving them in real-time from the
cache during online serving. However, for real-time SS, the query
processor has a low latency requirement making the transformer
based models infeasible to use.

Nigam et al. introduced DSSM [25], a simple architecture com-
prised of word embedding layer followed bymean-pool layer, which
is more suitable for real-time scenarios with low latency require-
ments. Although this model can be leveraged in place of transformer
models to represent queries or products, it suffers from perfor-
mance due to the lack of self-supervised learning and complexity
in representation. In order to bridge the gap, we leverage Knowl-
edge Distillation (KD) [12, 38] techniques where we use DSSM as
a student model to learn the rich semantic representation from
the SBERT model by (1) imitating the soft relevance probabilities
from the teacher model instead of hard ground truth labels and
(2) aligning the representation from DSSM and BERT models for
interoperability of representations. This process enables the trans-
fer of rich semantic knowledge from the high capacity teacher
model to the low latency student model that cannot be trained
using self-supervision.

Once the student model is trained using the KD technique, the
high capacity teacher model is typically discarded in the inference
pipeline. However, in this work, we empirically demonstrate that
a student model amalgamated with the teacher model in the real-
time sourcing applications outperforms a student-only inference
network.

Our contributions are as follows. 1) We propose a methodol-
ogy to distil the query-product relevance knowledge encoded in
BERT to low latency simple architecture like DSSM, which can be
further used to represent entities (query and product) in a shared
embedding space for sourcing applications. 2) We propose an align-
ment loss that enforces the student and teacher network to map
the queries (and product) representation to a model-agnostic em-
bedding space. 3) We also propose a HISS: Hybrid Inference ar-
chitecture in Semantic Search- a blend of highly accurate teacher
model-SBERT and low latency student model-DSSM, achieving the
best of both worlds for real-time retrieval systems. Our experiments
show that the heterogeneous model outperforms the DSSM(from
KD) only model by 0.8-1.2%.

2 RELATEDWORK
Embedding based retrieval or Dense retrievalWord2Vec[23]
opened up a new era in the NLP by representing words in a dense
vector such that two semantically similar words will have simi-
lar representation. Post that, many works have been carried out
in semantic sourcing to represent queries and documents into a
dense vector and leverage them for document retrieval. Some re-
lated works in this space are DSSM [25, 14], CDSSM [30],Multi-Task
DNN [19]. Recent advances in pre-trained language models like
BERT[8], RoBERTa [20] achieved state-of-the-art in various NLP
tasks. Sentence-BERT [26] became popular in Information Retrieval
domain.

Query Reformulation (QR) is a well-studied research area in

Information Retrieval(IR) to enable semantic sourcing. The works
in this area can be classified into the following categories (but are
not limited to these) i) Term expansion [41, 5, 37] ii) Term dropping
and substitution [4, 17] iii) Machine Translation [27, 40] iv) Rein-
forcement Learning [24] and v) Representation learning [32, 9, 11].
Representation learning based QR is one of the embedding based
product retrieval methods.

Efficient Transformers Although transformer models like BERT
accomplished state-of-the-art in various NLP tasks, they cannot be
deployed in real-time sourcing applications because of their high
inference cost. Hence, in the last two years, building an efficient
transformer model has been an active research area. These effi-
cient transformer models fall under the following 6 categories (i)
early exit[42, 36], (ii) knowledge diffusion[10, 7], (iii) efficient self-
attention[33], (iv) architectural innovations[26, 16], (v) knowledge
distillation[12, 28], and (vi) model compression[3].

Knowledge Distillation In the past few years, the neural IR com-
munity has proposed various network architectures for effective
document retrieval and ranking using knowledge distillation(KD)[12].
SomeKDmethods such as TinyBert[15], DisitlBERT[28],MiniLM[34]
are also proposed to reduce the computation cost especially in BERT.
Also, the recent works in KD based dense retrieval such as topic
aware sampling(TAS)[13] and TwinBERT [21] have shown a drastic
drop in latency for the retrieval task when compared to the baseline
BERT.

Even with these advances, efficient transformer and knowledge
distilled models are unsuitable for large-scale real-time applications
because they require GPU(s) for millisecond inference. In order to
overcome the utilization of high compute resource, we propose a
novel KD framework comprising alignment loss to distil the knowl-
edge from BERT to low latency architecture (inspired by feature
matching loss in [39]). We also propose HISS inference network
where we retrieve semantically similar documents in less than 5ms
(on CPU) but with a slight drop in performance(AUC) metric.

3 OUR APPROACH
In this section, we describe our proposed knowledge distillation
approach. Here, the objective is to learn the student model’s pa-
rameters such that the student model’s performance is close to that
of the teacher but with a significant reduction in inference time.
However, to apply knowledge distillation, first, we must learn our
teacher model’s parameters for the semantic sourcing task. While
our objective is to source semantically relevant products for a given
query from the shared representation space, our proposed model is
robust enough to also be used for the Query Reformulation task.
Themotivation for us to build a multi-application model is to reduce
maintenance/production related costs.

In QR, our objective is to map a given query to several semanti-
cally equivalent queries, but we do not have access to supervised
query-query pertinent pairs. Instead, we have a copious amount of
user behavioural data like purchases, clicks, glance views and also
have access to human audited query-product relevance data. In sec-
tion 3.2 we introduce various loss functions suitable for the above
data to learn the query-product relevance in the teacher model,
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which is leveraged to generate query-query similarity. Further, in
section 3.2.3 we exploit the semantics in product categorization,
such as browse taxonomy, to control relevance in the teacher model.

In section 3.4 we introduce our KD-DSSM method- to map
queries and products into a model-agnostic embedding space where
semantically equivalent entity pairs are closer and irrelevant entity
pairs are compelled to be apart. Entity pairs here include query-
query, query-product and product-product. Furthermore, we in-
troduce alignment loss to enable model interoperability, this loss
enforces the embedding generated by student and teacher models
for the same entity to be close to each other in the semantic space .

Finally, in section 3.5, we explain the HISS-heterogeneous infer-
ence architecture, that leverages model interoperability and com-
bines the best of both (the Student and Teacher) models to build a
real-time inference pipeline.

Figure 1: Teacher Model Architecture-SBERT

Figure 2: Student Model Architecture-DSSM

TeacherModel: Figure 1 depicts the Siamese BERT(SBERT)- teacher
model architecture. SBERT first computes fixed size contextual rep-
resentation for an entity using the BERT model’s ‘cls’ token output,
followed by a dense layer with ‘tanh’ activation to get entity em-
bedding 𝑒𝑚𝑏𝑖 . We use the same BERT model for representing both
query and product to enable the transfer of language semantics be-
tween them. Finally, the similarity𝑦𝑖 between entities is determined
by the cosine distance between the embeddings. Note that, although

we use BERT, any transformer model can act as an alternative to
the BERT model.
Student Model: Figure 2 depicts the Deep Semantic Search Model
(DSSM) - student model architecture. The high-level architecture of
DSSM is similar to that of SBERT. The only difference is that, we use
embedding lookup and mean-pool layer instead of BERT encoder to
generate the intermediate representation. We use the same DSSM
model to generate embeddings for the query and product like in
SBERT.

3.1 Problem Definition
We have SBERT-Teacher and DSSM-student represented by S and
KD, respectively. The SBERTmodel parameters are characterized by
a function 𝑆 (𝑥 ;𝜃 ) where 𝑥 is entity (query or product) and 𝜃 repre-
sents model parameters. Our objectives in KD-DSSM are to i) learn
new parameters 𝜃 ′ corresponding to the DSSM model 𝐾𝐷 (𝑥 ;𝜃 ′),
such that the performance of KD-DSSM on relevance classification
task is close to that of SBERT. ii) Enable model interoperability to
build hybrid inference architecture (HISS).

3.2 Teacher Training Objective
Let’s assume our training samples are represented by (𝑒1

𝑖
, 𝑒2
𝑖
, 𝑦𝑖 ),

where 𝑒1
𝑖
is a query entity and 𝑒2

𝑖
can be query or product entity

depending on the data source, and 𝑦𝑖 is the ground truth label. Let
𝑐𝑜𝑠 (𝑣𝑖 , 𝑣 𝑗 ) be the function that returns the cosine similarity between
two vectors 𝑣𝑖 and 𝑣 𝑗 . We devise the following loss functions by
exploiting the cosine similarity 𝑦𝑖 = 𝑐𝑜𝑠 (𝑆 (𝑒1

𝑖
), 𝑆 (𝑒2

𝑖
)) to encode

the semantics in the model.

3.2.1 Ranking Loss. In this step, we leverage the data generated
by human annotators who classify the query-product pairs into
the following three classes based on relevance: i) Strictly Relevant
ii) Standard Relevant, and iii) Irrelevant. Let’s call this dataset as
𝐷𝑎𝑢𝑑𝑖𝑡 . The fundamental idea behind ranking loss is, an embedding
space should capture relevance gradation. For instance, the query
"Puma shoes" in the semantic space should be closer to a strictly
relevant products such as "Puma running shoes" compared to a
standard relevant products such as "Nike Shoes". This gradation of
relevance ensures strictly relevant products are prioritized over
the standard relevant products when available. Since query and
product share the SBERTmodel, it transfers the relevance gradation
to query-query similarity. The ranking loss is defined in equation
1, where 𝜃𝑠𝑚𝑖𝑛 and 𝜃𝑠𝑚𝑎𝑥 are hyperparamters.

𝐿𝐿𝑅𝐿 =
∑︁

(𝑒1
𝑖
,𝑒2
𝑖
,𝑦𝑖 ) ∈𝐷𝑎𝑢𝑑𝑖𝑡

(
1𝑦𝑖=𝑠𝑡𝑟𝑖𝑐𝑡 (𝑦𝑖 − 1)2+

1𝑦𝑖=𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑚𝑖𝑛((0, 𝑦𝑖 − 𝜃𝑠𝑚𝑖𝑛))
2 + (𝑚𝑎𝑥 (0, 𝑦𝑖 − 𝜃𝑠𝑚𝑎𝑥 ))2)+

1𝑦𝑖=𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑦𝑖 )
2
)
(1)

3.2.2 NPMI Based Loss. Generating human audited relevance
data is time consuming and expensive process. Practically, it is
not feasible to generate the audit data to cover the entire semantic
space of e-commerce. However, we have copious amounts of cus-
tomer behaviour data (search query followed by purchase) which
implicitly contains the relevance signal. Let us call this dataset as
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𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 = {(𝑞1, 𝑝1, 𝑐1), (𝑞2, 𝑝2, 𝑐2) ..} where 𝑐𝑖 represents the to-
tal number of purchases made by customers after firing a query 𝑞𝑖
and bought product 𝑝𝑖 . Note that, although the customer data is
abundant, it is noisy and has to be applied in conjunction with the
relevance audit data to build a strong relevance model.

Inspired by Laus[18] to use Normalized Point-wise Mutual Infor-
mation(NPMI) to measure topic co-occurrence, we apply NPMI met-
ric to construct query-query pertinent pairs by leveraging𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒
data. We measure how likely we are to see the two queries co-occur,
given their individual probabilities, and compare to the case when
the two queries are entirely independent. A probability distribu-
tion across queries can be calculated by normalizing the purchase
count in 𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 . The joint distribution of any given two queries
is measured by the strength of common products between them.
Leveraging this definition, we construct the semantically similar
query-query data 𝐷𝑄𝑄+ using the query-product customer data
having NPMI (equation 2) scores greater than 𝜏𝑛𝑝𝑚𝑖 . In Table 1, we
show a few examples obtained through this process.

Table 1: Few QQ positive pairs generated by applying the
NPMI (described in section 4.1) on user behaviour data. This
data helps us to capture semantics between entities even
when there are no common terms between them.

Query 1 Query 2
payal for women women anklets

puma shoes puma sneaker
necklace wedding jewellery

omedone extractor white heads remover
range extender wifi repeater booster

stylus touch pen

𝑁𝑃𝑀𝐼 (𝑞𝑖 , 𝑞 𝑗 ) =
log

𝑃 (𝑞𝑖 , 𝑞 𝑗 )
𝑃 (𝑞𝑖 ), 𝑃 (𝑞 𝑗 )

− log 𝑃 (𝑞𝑖 , 𝑞 𝑗 )
(2)

𝑃 (𝑞𝑖 , 𝑞 𝑗 ) =
𝑍∑︁
𝑘=0

𝑃𝐶 (𝑞𝑖 , 𝑝𝑘 )∑𝑍
𝑦=0 𝑃𝐶 (𝑞𝑖 , 𝑝𝑦)

·
𝑃𝐶 (𝑞 𝑗 , 𝑝𝑘 )∑𝑍
𝑦=0 𝑃𝐶 (𝑞 𝑗 , 𝑝𝑦)

(3)

𝑃𝐶 is the functionwhich returns the purchase count from𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒
for a given query 𝑞𝑖 and product 𝑝 𝑗 pair. 𝑍 represents the total num-
ber of distinct products in𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 . Leveraging the𝐷𝑄𝑄+ data, we
define the following loss function to learn𝑄𝑢𝑒𝑟𝑦−𝑄𝑢𝑒𝑟𝑦 semantics,
where 𝜃𝑄𝑄+ is a hyperparameter and 𝑦𝑖 = 𝑐𝑜𝑠 (𝑆 (𝑒1𝑖 ), 𝑆 (𝑒

2
𝑖
)).

𝐿𝑄𝑄+ =
∑︁

(𝑒1
𝑖
,𝑒2
𝑖
) ∈𝐷𝑄𝑄+

(𝑚𝑖𝑛(0, 𝑦𝑖 − 𝜃𝑄𝑄+))2 (4)

Typically, we set 𝜃𝑄𝑄+ and 𝜃𝑠𝑚𝑖𝑛 to same value. Note that in the
loss function 4, the cosine score 𝑦𝑖 is not bound with an upper limit,
unlike the loss defined for the standard relevant pair in equation
1. The fundamental intuition behind this loss function is that the
pertinent query-pairs in 𝐷𝑄𝑄+ does not express the gradation in
relevance(Strict vs Standard relevant).

3.2.3 Taxonomy Based Loss. E-commerce websites categorize
the billions of products available within their service into prede-
fined multi-level product taxonomy or browse nodes. This tax-
onomy encodes relevance among products and can be exploited
to infer various relationships among them. In addition to that,
many e-commerce companies have built query classification model
[29, 31]. Let us call this model Q2BN, which assigns distribution
scores for a query over the taxonomy tree expressed above, and let
the dataset generated using Q2BN be 𝐷𝑐𝑎𝑡 = {(𝑞1, 𝑏𝑛11, 𝑏𝑛

2
1 ..𝑏𝑛

𝑗

1),
(𝑞2, 𝑏𝑛12, 𝑏𝑛

2
2 ..𝑏𝑛

𝑙
2), ..}, where 𝑞𝑖 is a query and 𝑏𝑛

𝑧
𝑖
is a browse node

corresponding to 𝑞𝑖 . For instance, query "puma women shoes" will
be classified as 𝑏𝑛1="shoes->women shoes->running shoes", 𝑏𝑛2=
"shoes->women shoes->boots" and 𝑏𝑛3="shoes->women shoes-
>casual shoes".

Here, two queries expressing two different intents will have
entirely different scores over the taxonomy tree. We found this in-
formation particularly useful for recovering user intent with search
queries containing ambiguous tokens, for example, Car bumpers vs
Gym bumpers. We leverage this intuition to generate a set 𝐷𝑄𝑄−
(explained in section 3.3 ) of query pairs where the queries involved
in a pair express different intents as per the browse association in
𝐷𝑐𝑎𝑡 and define the following taxonomy loss to encode this intent
disparity as follows.

𝐿𝑄𝑄− =
∑︁

(𝑒1
𝑖
,𝑒2
𝑖
) ∈𝐷𝑄𝑄−

𝑦𝑖
2 (5)

Where 𝐷𝑄𝑄− is the query-query negative dataset and 𝑦𝑖 =
𝑐𝑜𝑠 (𝑆 (𝑒1

𝑖
), 𝑆 (𝑒2

𝑖
)).

3.3 Training
To learn the semantics in teacher model, we first initialize our BERT
model with pretrained weights. This serves as a good initialization
point for our model. Further, for the first epoch we leverage the
𝐷𝑎𝑢𝑑𝑖𝑡 and 𝐷𝑄𝑄+ (generated from user behaviour data) to learn
our model parameters by optimizing for loss terms in equation 1
and 4.

𝐿1 = 𝛼1𝐿𝑅𝐿 + 𝛼2𝐿𝑄𝑄+ (6)
where 𝛼1 and 𝛼2 controls the importance of loss terms 𝐿𝑅𝐿 and

𝐿𝑄𝑄+ respectively.
For the next set of epochs we leverage taxonomy tree which

encodes relevance among products as described in section 3.2.3 to
generate hard negatives. In each epoch, we find queries that are
close in the current embedding space but have no common browse
node among them and add them to 𝐷𝑄𝑄− as hard negatives to
optimize for the following equation

𝐿2 = 𝛼1𝐿𝑅𝐿 + 𝛼2𝐿𝑄𝑄+ + 𝛼3𝐿𝑄𝑄− (7)
Where 𝛼3 is a weight scalar, which controls the importance of

taxonomy loss.

3.4 Knowledge Distillation
Figure 3 shows our proposed Knowledge Distillation-DSSM(KD-
DSSM) method. Traditional KD approach forces student model
to imitate only prediction output of teacher model. The key idea
behind this is that soft probabilities from a teacher model is more
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Figure 3: KD-DSSM: Our proposed knowledge distillation method. i) Alignment loss: Enforces the DSSM model to project
embeddings to SBERT embedding space. ii) Interaction loss: Forces DSSM model to mimic SBERT model’s prediction

informative than the hard labels. Unlike traditional KDmethods, our
student model is trained to (i) Imitate the soft probabilities obtained
by the teacher. (ii) Project entities into a teacher representation
space by minimizing the cosine loss between final embeddings
generated by the student and teacher model for the same entity.

We define the imitation or interaction loss as,

𝐿𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑒1𝑖 , 𝑒
2
𝑖 ) = −1 ∗ (𝑦𝑆𝑖 log(𝑦

𝐷
𝑖 )) (8)

Where 𝑦𝑆
𝑖
= 𝑐𝑜𝑠 (𝑆 (𝑒1

𝑖
), 𝑆 (𝑒2

𝑖
)) and 𝑦𝐷

𝑖
= 𝑐𝑜𝑠 (𝐷 (𝑒1

𝑖
), 𝐷 (𝑒2

𝑖
)) are

predictions of SBERT 𝑆 and DSSM 𝐾𝐷 model respectively.

3.4.1 Training Objective . We learn the parameters 𝜃
′
of the

KD-DSSM model 𝐾𝐷 by optimizing the following equation 9 given
𝐷𝑎𝑙𝑙 = {𝐷𝑎𝑢𝑑𝑖𝑡 ∪ 𝐷𝑄𝑄+ ∪ 𝐷𝑄𝑄−}

𝐿𝐾𝐷 =
∑︁

(𝑒1
𝑖
,𝑒2
𝑖
) ∈𝐷𝑎𝑙𝑙

(𝐿𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑒1𝑖 , 𝑒
2
𝑖 ) + 𝐿𝑎 (𝑒

1
𝑖 ) + 𝐿𝑎 (𝑒

2
𝑖 )) (9)

Where 𝐿𝑎 (𝑒 𝑗 ) = (1 − 𝑐𝑜𝑠 (𝑟𝑆
𝑗
, 𝑟𝐾𝐷
𝑗

)) is the alignment loss and
𝑟𝑆
𝑗
= 𝑆 (𝑒 𝑗 ), 𝑟𝐾𝐷𝑗 = 𝐾𝐷 (𝑒 𝑗 ) are embeddings generated for an entity

𝑒 𝑗 by SBERT 𝑆 and KD-DSSM 𝐾𝐷 respectively. This ensures that
embedding generated by the two models 𝑆 and𝐾𝐷 are close to each
other in the model agnostic embedding space for a given entity.
The detailed training steps are outlined in Algorithm 1.

3.5 HISS: Hybrid Inference Semantic Sourcing
Architecture

The key idea of embedding based sourcing is to project queries
and products into shared semantic space. When customer fires a
query, first convert the incoming query to embedding and fetch the
relevant products that are indexed in the space to retrieve them.
Broadly, the embedding based retrieval pipeline consists of the
following three steps:

• Semantic Index: Let 𝑀1 be the model that translates the
queries into embedding and 𝐷𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 be the set of products.
In this step, we leverage HNSW [22] to create an index 𝐼𝐻𝑄 of
𝐷𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 using𝑀1, which is further used to retrieve nearest
relevant products for a given customer query.

• Query Processor: We translate the customer query into
embedding 𝑒𝑚𝑏𝑖 using model𝑀2 in real-time.

• KNN search: In this step, we use 𝑒𝑚𝑏𝑖 as a key to source
top-K relevant products from 𝐼𝐻𝑄 in real-time.

Typically, the models used during Indexing𝑀1 and Query Pro-
cessor step𝑀2 step would be the same (either 𝑆 or 𝐾𝐷). However,
in this work, we show that the heterogeneous inference pipeline
( 𝑀1 = 𝑆 (𝑥 ;𝜃 ) and 𝑀2 = 𝐾𝐷 (𝑥 ;𝜃 ′) ) can be used to leverage the
best of 𝑆 and 𝐾𝐷 . The heterogenous inference pipeline is feasible
because

• The creation of semantic index is an offline step with no
latency constraint. Therefore, SBERT 𝑆 which is a high ca-
pacity model, despite having a high inference time, can be
used to build high quality index.

• During the knowledge distillation process, we optimize for
the alignment loss 𝐿𝑎 which ensures the embeddings gen-
erated by 𝐾𝐷 and 𝑆 are close to each other for the same
entity in the semantic space. Hence, in query processor step,
we can use either 𝑆 or 𝐾𝐷 to project query into a shared
embedding space.

3.5.1 Other Applications. The proposed hybrid inference archi-
tecture can also be leveraged in other applications as follows.

• Query Reformulation: In this approach, when a customer
fires a query, we project the query into an embedding space
and retrieve top-K relevant queries (which are indexed) using
approximate KNN algorithms[22] in real-time.

• Product to Query sourcing: This application corresponds
to the seller ad service where the seller selects a product/s to
participate in the ad auction, and the keyword recommenda-
tion engine responds in real-time with the relevant queries
the seller can target.

The above applications have three main components i) Seman-
tic Index, ii) Query(for QR) or Product(for keyword recom-
mendation) Processor and iii) KNN Search, similar to query-to-
product sourcing pipeline. Hence, we can leverage a highly accurate
teacher model for component (i), and low latency student model
for component (ii).
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Algorithm 1: Training KD-DSSM Model

Require :𝐷𝑎𝑢𝑑𝑖𝑡 , 𝐷𝑄𝑄+, 𝐷𝑐𝑎𝑡 , 𝑁 𝑡𝑒𝑎𝑐ℎ𝑒𝑟−𝑡𝑟𝑎𝑖𝑛𝑒𝑝𝑜𝑐ℎ𝑠
, 𝑁 𝑠𝑡𝑢𝑑𝑒𝑛𝑡−𝑡𝑟𝑎𝑖𝑛

𝑒𝑝𝑜𝑐ℎ𝑠
and model hyper-parameters

1 Initialize: BERT model parameters in SBERT 𝑆 (𝑥 ;𝜃 ) with pre-trained model weights, dense layer in SBERT and DSSM 𝐾𝐷 (𝑥 ;𝜃 ′)
parameters with random weights;

2 𝐷𝑎𝑙𝑙
𝑄𝑄− = [];

44 Teacher Training
66 update 𝜃 by optimizing loss 𝐿1 using the 𝐷𝑎𝑢𝑑𝑖𝑡 and 𝐷𝑄𝑄+ dataset;
88 for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑁 𝑡𝑒𝑎𝑐ℎ𝑒𝑟−𝑡𝑟𝑎𝑖𝑛

𝑒𝑝𝑜𝑐ℎ𝑠
do

9 Generate 𝐷𝑄𝑄− using embedding from 𝜃 and taxonomy data from 𝐷𝑐𝑎𝑡 ;
10 update 𝜃 by optimizing 𝐿2 using the 𝐷𝑎𝑢𝑑𝑖𝑡 , 𝐷𝑄𝑄+ and 𝐷𝑄𝑄−;
1212 𝐷𝑎𝑙𝑙

𝑄𝑄− += 𝐷𝑄𝑄−;
13 end
14 Freeze SBERT - 𝜃 parameters
15 Student Training
1717 for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑁 𝑠𝑡𝑢𝑑𝑒𝑛𝑡−𝑡𝑟𝑎𝑖𝑛

𝑒𝑝𝑜𝑐ℎ𝑠
do

1919 𝐷𝑎𝑙𝑙 = {𝐷𝑎𝑢𝑑𝑖𝑡 ∪ 𝐷𝑄𝑄+ ∪ 𝐷𝑎𝑙𝑙
𝑄𝑄−};

20 get predictions 𝑦𝑆
𝑖
and 𝑦𝐷

𝑖
from SBERT 𝑆 and DSSM 𝐷 respectively for each pair (e1

𝑖
, 𝑒2
𝑖
) ∈D𝑎𝑙𝑙 ;

21 get representations 𝑟𝑆
𝑖
and 𝑟𝐷

𝑖
from 𝑆 and 𝐷 respectively for each entity e1

𝑖
∈D𝑎𝑙𝑙 ;

22 get representations 𝑝𝑆
𝑗
and 𝑝𝐷

𝑗
from 𝑆 and 𝐷 respectively for each entity e2

𝑖
∈D𝑎𝑙𝑙 ;

2424 update 𝜃
′
by optimizing 𝐿𝐾𝐷 ;

25 end

4 EXPERIMENTS AND RESULTS
4.1 Dataset Generation
We collected customer behaviour data during the period between
July’20 and Dec’20 from the anonymized session logs of Amazon
India marketplace. We are mainly interested in purchase sessions
for our use case, where a customer searched for a query ’q’ and
bought a product ’p’. The number of such independent buying ses-
sions shows the strength of intent similarity between query ’q’
and product ’p’. Next, we alleviated noise by omitting all query-
product pairs that do not have sufficient strength(<10). Let us call
this data 𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 = {(𝑞1, 𝑝1, 𝑐1), (𝑞2, 𝑝2, 𝑐2) ..}, where 𝑞𝑖 , 𝑝𝑖 rep-
resents query and product entity, and 𝑐𝑖 represents the total number
of purchases made by customers after firing a query 𝑞𝑖 and bought
product 𝑝𝑖 . We used 𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 to generate 𝐷𝑄𝑄+ as described in
section 3.2.2

We collected 3M <Query, Product> human audited relevance
data 𝐷𝑎𝑢𝑑𝑖𝑡 from Amazon. Then, we randomly sampled 2 datasets
(validation 𝐷𝑣𝑎𝑙 and test 𝐷𝑡𝑒𝑠𝑡 ) of 30K,20K and 10K query-product
pairs belonging to strict,standard and irrelevant labels respectively
from relevance judgements, and removed these 120𝐾 pairs from
the training data 𝐷𝑎𝑢𝑑𝑖𝑡 .

We also randomly sampled 500K queries from the distinct queries
in 𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 and gathered their browse node associations using
the Query Classification Q2BN model. Query to product taxonomy
mapping is used as a source to generate 𝐷𝑛𝑒𝑔 to keep irrelevant
query-query pairs apart in the embedding space (section 3.2.3).

In the final step of data generation, we randomly sampled 5M
unique products 𝐷𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠_5𝑀 from the Amazon catalogue and
100K unique queries 𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 from anonymised customer

query logs to report precision@K and latency numbers. Further,
we leveraged the Query Classification Q2BN model to generate a
query to product taxonomy(or browse node) mapping scores on
𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 . We use this dataset to report Query-Query neigh-
bourhood quality.

4.2 Experiments
4.2.1 Implementation Details and hyperparameters. We im-
plemented all the experiments using Tensorflow [1] and Hugging-
Face [35]. The backbone for the SBERT model is pre-trained bert-
base-uncased [8]. Output embedding dimensions for all experiments
were fixed to be 512. Both the models were trained using Adam
optimizer with a learning rate of 1e-3 for a maximum of 20 epochs
with early-stopping criteria. We set 𝜏𝑛𝑝𝑚𝑖 = 0.45 to filter out noisy
Query-Query similar pairs after applying NPMI on 𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 . For
teacher training, we set 𝜃𝑠𝑚𝑖𝑛 and 𝜃𝑠𝑚𝑎𝑥 to 0.7 and 0.85, respec-
tively and similarly, we set 𝜃𝑄𝑄+ to 0.7. Along with that, we also set
all our loss weight hyperparameters 𝛼 ’s to 1. All the experiments
were performed on a single GPU on p3.8xlarge EC2 instance on
AWS. For training the DSSM (without KD), we used the same set of
hyperparameters as in the case of SBERT training. Note that all the
hyperparameters were chosen empirically based on the experiments
performed.

4.2.2 Results. We report the AUC on𝐷𝑡𝑒𝑠𝑡 tomeasure the efficacy
of our KD approach on the query-product relevance classification
task, and we used DSSM (without KD) as our baseline. Table 2 cap-
tures the AUC of teacher and student model on 𝐷𝑡𝑒𝑠𝑡 dataset. From
the table, we can infer that the KD-DSSM model performs better
than the DSSM. Hence we can transfer the knowledge encoded in
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Table 2: ROC-AUC and QQ Irrelevance of various models.

Model AUC QQ Irrelevance
SBERT-without Taxonomy loss 0.935 24.3%
SBERT-with Taxonomy loss 0.928 11.5%

DSSM-without Taxonomy loss 0.892 27.08%
DSSM-with Taxonomy loss 0.886 14.2%

KD-DSSM 0.9038 12.45%

BERT to smaller networks like DSSM. Table 2 also shows the AUC
of the teacher model on 𝐷𝑡𝑒𝑠𝑡 without and with taxonomy loss
even though optimizing on taxonomy loss (equation 5) harms AUC,
the model with taxonomy loss can handle product type errors and
disambiguates homonym words based on context better than the
model without taxonomy loss. Further, in the ablation study 4.3, we
describe the importance of taxonomy loss for sourcing applications.

We also report Query-Query neighbourhood quality based on
irrelevance on 𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 to estimate the impact of taxonomy
loss. In order to calculate this metric, first, we create a semantic in-
dex using𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 and for each query in𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 we get
top-K (K=50) neighbours from the semantic space resulting in 5M
<query, query> pairs (Note that, we fetched top-51 nearest queries
and removed top-1 since this will be same as the original query).
We report the neighbourhood quality metric by measuring the num-
ber of irrelevant queries pairs in the generated 5M <query,query>
dataset. We classify two queries as irrelevant if they do not share
any common browse nodes in the taxonomy tree. This ‘no com-
mon browse node’ approach is similar to the one used to generate
𝐷𝑄𝑄−. In Ablation Section 4.3.5, we explain why we cannot use
the taxonomy tree to generate relevant pairs. From Table 2 we can
observe although there is a drop in AUC on the <query, product>
relevance task, there is a significant decrease in QQ-irrelevance
with taxonomy loss.

HISS We also used𝐷𝑡𝑒𝑠𝑡 dataset to measure the performance of hy-
brid inference architectures. Table 5 shows that both the variants of
hybrid architectures perform better in terms of AUC than Student
only architecture on the Query-Product relevance dataset. Table 4
shows few examples where hybrid architecture correctly captures
the irrelevant <query,product> pairs where as the student only
model fails to do so. Further we also report precision numbers of
various inference architectures, for each query in 𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 we
retrieve K(50 and 100) nearest products in the semantic space of 5M
products 𝐷𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠_5𝑀 . We measure the precison@K by measuring
the number of relevant <query, product> pairs in this retrieved
dataset. Table 5 shows that HISS performs better than Student-only
model.
Latency We also measured the retrieval latency of BERT and
DSSM models in online settings for embedding based sourcing
applications. We leveraged HNSW library[22] for the indexing step
(mlinks=64 and ef_construction=256). We report latency by taking
the average retrieval time for queries in 𝐷𝑞𝑢𝑒𝑟𝑖𝑒𝑠_100𝐾 using only
CPU cores(on p3.8x machine); the reported latency includes feature
engineering, embedding generation and KNN (k=100) retrieval. The
results in Table 5 clearly demonstrates that BERT requires higher

Table 3: Effect of KD-loss terms

Model+loss AUC
DSSM 0.886

KD-DSSM+ Alignment loss 0.9033
KD-DSSM + Interaction Loss 0.9069

KD-DSSM+ Alignment + Interaction Loss 0.9038

Table 4: Examples of <query,product> pairs correctly identi-
fied as negative by HISS(Query->KD-DSSM, product->SBERT)
which the student-only model missed

Query Product Title
hyundai stickers AutoRetail Car Body Cover

for car for Hyundai Eon(Silver Matty)
Ikea wooden HomeTown Bolton Queen Size

sofa Engineered Wood Bed With Box
and side table

inference latency and hence requires more hardware to reach the
same TPS (transactions per second) as that of the DSSM model. In
many real-world applications, the BERT latency is not acceptable
for online inference. Hence, there is a need for KD-DSSM andHISS
inference architecture in online serving to achieve a good trade-off
between latency and performance metric.

4.3 Ablation studies
4.3.1 How does taxonomy loss influence the quality of em-
bedding space?
We compared the top 10 neighbouring queries (based on cosine sim-
ilarity) from the model output of SBERT trained with and without
taxonomy loss for a set of randomly sampled queries. Below are
some manually identified negatives of the model trained without
taxonomy loss that get corrected after applying taxonomy loss :
(thread cutter scissors, nut cutters), (v11 cover, bag cover), (men hand-
bag, hand purse for women), (gown for women, bathing clothes for
women) and (puma shoes, puma backpack). These are typical queries
with homonym words with very different meanings that have to be
derived from the context, and we use output of Query Classification
model as a cue for disambiguation. This shows that the taxonomy
loss is essential to control irrelevance.

4.3.2 Isn’t it better to jointly train the teacher and student
model?
The objective of the KD method is to allow the student model to
learn parameters by imitating the teacher’s prediction. The pro-
posed approach can also be applied by allowing the student and
teacher network to train jointly, instead of pretraining the teacher
model and freezing the teacher weights during the KD process.
Our experiments show that jointly training the teacher and student
model hurts both teacher (AUC falls from 0.928 to 0.89) and student
(AUC falls from 0.9038 to 0.881)) performance drastically.

4.3.3 Do we require both alignment loss and interaction
loss in our KD method?
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Table 5: ROC-AUC, Latency and Precision@K(50,100) of various inference architecture

Inference Architecture AUC Latency P@50 P@100
Teacher Model Only

Query→SBERT, ASIN→SBERT 0.9283 18.46ms 0.912 0.898
Student Model Only

Query→ KD-DSSM, ASIN→KD-DSSM 0.9038 4.8ms 0.903 0.8795
Hybrid Architecure 1 : Direct Semantic Sourcing

Query→ KD-DSSM, ASIN→ SBERT 0.9112 4.92ms 0.9076 0.89
Hybrid Architecure 2 : Keyword Recommendation

Query->SBERT, ASIN→ KD-DSSM 0.9153 5ms 0.905 0.886

Our experiments show that the model trained only with either
alignment loss or interaction loss shows improvement on top of
student model trained without KD. However, Table 3 shows that
combing alignment and interaction loss dropped AUC by 0.34%
when compared to the model trained only with interaction loss.
Nonetheless, alignment loss is required for model interoperability.
Section 3.5 describes the importance of model interoperability.

4.3.4 How do query lengths affect the performance of vari-
ous models?
We carried out query level analysis to understand the performance
of KD-DSSM, DSSM and HISS architecture. Table 7 presents the per-
formance of the models for varying query lengths. Here we observe
that at lower query-length (1,2) student-KD-DSSM outperforms the
teacher-SBERT model. This behaviour is intuitive as the probabil-
ity of contextual words impacting semantics is less in queries of
length 1 and 2. The study also demonstrates that the performance
gap between SBERT and KD-DSSM increases as the query length
increases. It is worth noting that the hybrid architecture is mod-
erately resilient to this effect and hence bridges the performance
gap between non-hybrid architectures and SBERT. Empirically, we
show that KD-DSSM is suitable for lower query lengths(<3) but
hybrid architectures is better suited for higher query lengths(>=3).

4.3.5 Why can’t we use taxonomy tree to generateQuery-
Query positive pairs?
As described in Section 3.2.3, E-commerce companies generally
categorise products into a predefined multi-level product taxonomy.
However, we cannot exploit this taxonomy tree to generate Query-
Query or Product-Product relevant pairs because of the following
two reasons (i) the nodes in the taxonomy tree are very coarse for
many categories. For instance, in browse node: Health & Personal
Care->Sports-Supplements->Gym Workouts (leaf node) will have
varying products ranging from caffeine capsules to Amino-blend
powders. So, showing muscle building powder products when the
entered customer query is "caffeine capsules" leads to a terrible
customer experience. (ii) Even when the leaf browse node is a fine-
grained category for instance: Smartphones -> backcase, all the
products within this category are not relevant to each other (Apple
8 backcase vs Apple 10xr backcase).

4.3.6 Why do we need to build a Query-Query similarity
dataset using NPMI? Why can’t we use a 𝐷𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 dataset
directly?
Queries are usually shorter in length compared to product title and

Table 6: Examples of <query,product> pairs retrieved after
leveraging 𝐷𝑄𝑄+ dataset

Query Product Title
payal Shining Diva Fashion Oxidised Silver

Floral Single Stylish Anklet for Women & Girls
geezer Crompton Arno Neo 10-L 5 Star Rated

Storage Water Heater with Advanced safety
omedone Havells SC5060 Pore Cleanser, Blackhead/
extractor Whitehead Remover, 3 Suction Modes-

Low/Medium/High Fast Charge (White)

generally not polluted by superfluous words. Hence, by leverag-
ing the Query-Query dataset, the model learns better embeddings
by learning to concentrate only on the relevant tokens. Our ex-
periments also showed that our model could correctly retrieve
semantically similar products even when the queries are expressed
in vernacular terms by leveraging the Query-Query dataset. In
contrast, when we leveraged the same query-product (purchased)
directly, our model failed to retrieve them. Table 6 shows some
<query,product> pairs which are retrieved after leveraging 𝐷𝑄𝑄+
dataset.

5 CONCLUSION
In this paper, we applied KD to distil information from SBERT to
DSSM, and showed that the performance of DSSM model is compa-
rable to SBERT. Further, we proposed a novel alignment loss func-
tion in KD method to enable model interoperability. Through ex-
periments we showed the importance and applications of enabling
model interoperability to build HISS-hybrid inference architecture
such that we can leverage the best of SBERT-high capacity model
and DSSM-low latency model in real-time inference pipeline.
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A APPENDIX
A.0.1 How do query lengths affect the performance of vari-
ous models? We carried out query level analysis to understand
the performance of KD-DSSM, DSSM and HISS architecture. Table 7
presents the performance of the models for varying query lengths.
Here we observe that at lower query-length (1,2) student-KD-DSSM
outperforms the teacher-SBERT model. This behaviour is intuitive
as the probability of contextual words impacting semantics is less
in queries of length 1 and 2. The study also demonstrates that the
performance gap between SBERT and KD-DSSM increases as the
query length increases. It is worth noting that the hybrid archi-
tecture is moderately resilient to this effect and hence bridges the
performance gap between non-hybrid architectures and SBERT.
Empirically, we show that KD-DSSM is suitable for lower query
lengths(<3) but hybrid architectures is better suited for higher query
lengths(>=3).

A.0.2 Effect of alignment loss. Figure 4(Left) shows that SBERT
and KD-DSSM (trained with interaction loss only) project the en-
tities into their respective clusters in semantic space. Therefore
embeddings generated for the same entity are not close to each
other. However, Figure 4(Right) shows that there are no model-wise
clusters formed when we train KD-DSSM with alignment loss. As a

https://github.com/onnx/onnx
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Table 7: ROC-AUC of Query-Product relevance task at varying levels of query length. The best performing model among
SBERT, DSSM, KD-DSSM and hybrid inference architectures for each query length is highlighted.

Number of tokens
in Query SBERT KD-DSSM DSSM Query ->SBERT

Ad ->DSSM
Query ->DSSM
Ad ->SBERT

1 0.9258 0.9285 0.9264 0.9287 0.9227
2 0.9292 0.9223 0.9109 0.9202 0.9204
3 0.932 0.9065 0.8894 0.9177 0.9137
4 0.9284 0.9096 0.8789 0.9069 0.9194
5 0.9325 0.9088 0.871 0.9146 0.9202
6 0.9204 0.8894 0.8545 0.9057 0.9018
7 0.9228 0.8735 0.8575 0.8922 0.8937
8+ 0.9052 0.8654 0.8462 0.8994 0.8944

Figure 4: T-SNE plots using embeddings from both SBERT and KD-DSSM generated for 4000 entities. Blue indicates SBERT
embeddings and Red indicates KD-DSSM embeddings. Left : KD-DSSM without alignment loss and Right: KD-DSSM with
alignment loss

result, embeddings generated for the same entity are closer to each
other, thereby illustrating model interoperability.
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