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ABSTRACT
Tagging product information in search queries from user inputs
remains a challenging issue despite recent advancements in general
name entity recognition (NER) tasks. It is primarily due to the short-
length nature of input search queries typically containing only a few
keywords. For Japanese search queries in particular, this problem is
further exacerbated by lack of public and reliably annotated datasets,
as most product-related query information is kept confidential by
major E-Commerce platforms. In this paper, we mitigate this issue
by demonstrating a complete workflow of Japanese query text
augmentation based on a variational auto-encoder (VAE). Once the
training of the VAE is completed amassive amount of search queries
which we call “virtual queries” can automatically be synthesized
without expensive manual effort in annotation. Experiments show
that training a sequence tagging model using purely synthesized
datasets delivers consistently better NER performance in term of
four product attributes, compared to manually labeled ground truth
datasets in low-resource scenarios. Both the trained model of VAE
and synthesized corpora will be released to help contribute to future
NER-related research on short Japanese text.
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1 INTRODUCTION
The classic name entity recognition (NER) [11] task has achieved
quite a few milestones of groundbreaking success, thanks to recent
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contributions [2] [1] [5] to sequence labeling problems from the
NLP research community. While NER has gained impressive perfor-
mance on benchmark datasets like CoNLL2003 [14] numerous chal-
lenges remain in practical use cases. This paper tackles the resource
problem in detecting product information from Japanese search
queries collected from user inputs. Within the scope of this paper,
four attributes are covered: product brand, item color, material and
size depiction. In addition to dealing with short texts, there also ex-
ist several language-specific issues. For instance, the same product
brand may possess several valid synonyms including Latin letters
(Romaji) and Katakana symbols. Expression patterns of item sizes
depend on item category because Japanese language follows sepa-
rate rules of applying quantifiers depending on objects. Formulated
as a general NER task, product attribute tagging for raw search
queries remains a tough task since it requires massive amounts
of well-labeled training examples. It further requires the training
data to cover a wide range of synonyms due to aforementioned
reasons. Unfortunately, search query data of both diversity and
comprehensiveness is only practically available from E-Commerce
platforms with a large user base. Very rarely would platforms like
those willingly release non-trivial real-world search query logs as
are commonly considered proprietary and confidential. The com-
plexity of manually labeling Japanese search queries further leads
to even rarer publicly accessible training data of high quality. In this
paper, we propose an augmentation scheme tailored for Japanese
product attributes to mitigate the issue of corpus scarcity. It is illus-
trated through experiments that purely augmented search query
data is still of considerable quality on par with real data, given that
only a limited amount of ground truth examples are useable.

Our data augmentation scheme is based on a simple variational
auto-encoder (VAE) [10] that is trained on only 9,000 manually
annotated samples followed by a much larger pool of raw search
queries, among which product attributes are only approximately
labeled using our pre-built Japanese product brand dictionaries.
Given proper sampling noise, the decoder part of the VAE is capa-
ble of generating a magnitude more search queries than the labeled
examples we feed into the VAE. As an interesting characteristic
those synthesized search queries contain both real product brands
and non-existent brands which can hardly be discerned by human
observation without knowledge from external references. Nonethe-
less, a sequence tagger trained with a large volume of synthesized
samples still exhibits quite decent performance on recognizing
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brands, color/material and item size information. Consistently bet-
ter metrics on all 4 attributes have been achieved, compared to
either one or both baseline models used in our experiments.

The rest of this paper briefly introduces related works regarding
low-resource sequence labeling tasks, then describes how the VAE
is trained and used for generation. Next it mentions some impor-
tant preprocessing and postprocessing steps that are critical to the
quality of augmented dataset. Details on experiment and evaluation
metrics are then discussed before we come to conclusion.

2 TASK DEFINITION
The core problem of this paper is to develop a sustainable way of
synthesizing virtual queries that resemble the search queries col-
lected by typical ECommerce search engines. Functionally, we re-
quire that virtual queries possess sufficient data integrity to be qual-
ified as reasonable training data. With absolutely no real datasets,
we desire to train a better sequence tagger than one we do with
limited amounts of ground truth labels.

This work presents 2-fold contributions. First, the augmented
corpus with labels will be released so that fellow researchers work-
ing on Japanese product attribute tagging would have easier access
to a versatile yet virtual dataset for training a moderately functional
sequence tagger. Second, we provide some insights about how VAE
could help relieve resource limitation for short-text NER problems.
Our well-tuned VAEwill also be released so that anyone with access
to the model is able to synthesize virtual queries of much higher
quantities than what are used in our experiments.

3 RELATEDWORKS
Recent works regarding NER tasks on E-Commerce search queries
are mostly focused on English data, represented by: TripleLearn [4]
that iteratively trains a model on multiple training sets of different
quality; and the framework by Wen et al. [15] as an effective aspect
recognition system to optimize search relevance. As for NER appli-
cation under resource constraint, Hedderich et al. devised a noise
layer on top of BiLSTM outputs [8] so that automatically labeled
noisy datasets still enable a 35% F1 increase on CoNLL2003 [14] test
set. Other low-resource settings mainly involve cross-lingual knowl-
edge sharing relying on either translation [16] or cross-lingual
knowledge extraction [7] [13] through shared features in neural
networks. New architecture has also been investigated [17] where
adversarial training helps improve NER performance for Dutch
and Spanish. A data augmentation technique is also introduced as
DAGA [6] which is made of a simple RNN languagemodel. However,
no evaluation metrics for NER tasks on DAGA-generated Japanese
corpora are ever reported. While general purpose NER corpora in
Japanese are already available [9], they are not closely related to
product attribute detection. Our VAE is trained directly on pseudo-
labeled search queries and differs from a stand-alone RNN language
model learning only to reconstruct training samples. Instead we
enforce input sequences at the character level during the training
phase and introduce sampling noise into decoding phase to avoid
repeating identical sequences from the training data.

4 LANGUAGE MODEL, AUTO-ENCODER AND
CORPUS AUGMENTATION

A simple language model is trained to learn the conditional proba-
bility distribution from example. Given an example sentence𝒘 =

(𝑤1, ...,𝑤𝑡 , ...), the language model is supposed to learn 𝑝 = Π𝑡

𝑃𝑟 (𝑤𝑡 |𝑤<𝑡 ,𝑤>𝑡 ), where (𝑤<𝑡 ,𝑤>𝑡 ) refers to the context surround-
ing the 𝑡th word in the same sentence. For sentence reconstruc-
tion, the language model is expected to make prediction on word
𝑤𝑡 based on inference probability 𝑝 = Π𝑡𝑃𝑟 (𝑤𝑡 |𝑤<𝑡 ,𝑤>𝑡 ) so that
𝑤𝑡 = argmax𝑤Π𝑡𝑃𝑟 (𝑤𝑡 |𝑤<𝑡 ,𝑤>𝑡 ). A general RNN-based language
model [12] can be trained by minimizing the cross-entropy loss
L(𝑝, 𝑝) = −∑

𝑖 𝑝𝑖 log𝑝𝑖 over the training set. For corpus augmen-
tation purpose, we train a similar language model through VAE,
which is basically a encoder-decoder structure based on double-
layered BiLSTM cells. After an input sentence 𝒘 = (𝑤1, ...,𝑤𝑡 , ...)
is embedded as 𝒙 = (𝑥1, ..., 𝑥𝑡 , ...), it is fed into the encoder 𝑓𝑒𝑛𝑐
through embedding lookup so that the final hidden encoder state
is 𝑐 = 𝑓 ℎ𝑒𝑛𝑐 (𝒙), which is mapped into an array of distributions
N(𝝁,𝝈2). To ensure differentiability over the entire VAE, the fol-
lowing reparameterization tricks are applied.

𝝁 = 𝑐𝑊 𝜇 , 𝝈 = 𝑐𝑊 𝜎

𝒛 = 𝝁 + 𝜖𝝈 , 𝜖 ∼ N(0, 1)
𝒉 = 𝒛𝑊 𝑧

The decoder 𝑓𝑑𝑒𝑐 takes the hidden and cell states to compute the
final decoder outputs as 𝑥 = 𝑓 𝑐

𝑑𝑒𝑐
(𝒉, 𝒛).1 To train the VAE, we re-

quire that the auto-encoder to learn input sentence patterns and the
variational parameters 𝝁 and 𝝈 to move towards N(0, 1). For each
training sample𝑤 , this leads to a loss function consisting of cross-
entropy L𝑐𝑒 (𝑤𝑡 , 𝑥𝑡 ) =

∑
𝑡 −𝑤𝑡 log𝑥𝑡 and 𝐾𝐿[N (0, 1),N(𝝁,𝝈)],

yielding the total loss L(𝑤𝑡 , 𝑥𝑡 ), 𝑤𝑡 being one-hot encoded. The
training loss is summarized as

L(𝑤, 𝑥) =
∑︁
𝑡

L𝑐𝑒 (𝑤𝑡 , 𝑥𝑡 ) + 𝐾𝐿[N (0, 1),N(𝝁,𝝈)]

where

𝐾𝐿[N (0, 1),N(𝝁,𝝈)] = −log𝝈 + 𝝈2 + 𝝁2

2
− 1
2

For sequence augmentation, only the decoder part is used. Note
that during the generation phase 𝒛 and 𝒉 become stochastic. The
output token is selected on top of another fully connected layer fol-
lowed by softmax. We also perform double sampling on 𝒛 for every
output sentence such that 𝑤̂ = 1

2 [𝑓
𝑐
𝑑𝑒𝑐

(𝒉, 𝒛) + 𝑓 𝑐
𝑑𝑒𝑐

(𝒉, 𝒛)]𝑊 𝑜 . The
final word is determined by the vocabulary index 𝑤̃ = argmax𝑖𝑤̂
where 𝑤̂𝑖 =

𝑒𝑤̂𝑖∑
𝑗 𝑒

𝑤̂𝑗
, 𝑗 ∈ |𝑉 |.

5 PREPROCESSING AND POST PROCESSING
Very little preprocessing is needed for training a VAE. We break
up brands in every tagged sentence into characters following BIO-
based tagging convention, as is shown in Figure 1. Note that the
same process is done on every brand regardless of representation
including alphanumeric brands and brands in Kanji/Katakana. This

1The input sequence is omitted from the notation for simplicity. Teacher forcing is
adopted so the input to each decoder cell is the previous token in the same sentence.
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Tagged Brands Tagged Brand Characters

小林製薬 <B-BRAND>
小 <B-BRAND> 林 <I-BRAND> 製 <I-BRAND> 
薬 <I-BRAND>

ＩＰＨＯＮＥ <B-BRAND>
Ｉ <B-BRAND> Ｐ <I-BRAND> Ｈ <I-BRAND> 
Ｏ <I-BRAND> Ｎ <I-BRAND> Ｅ <I-BRAND>

アイフォン <B-BRAND>
ア <B-BRAND> イ <I-BRAND>
フ <I-BRAND> ォ<I-BRAND>ン <I-BRAND>

Figure 1: Brand as Character Sequences

enables the VAE to synthesize non-existing brands with Japanese
brand style.

We apply postprocessing with the following 3 criteria.
(1) All the augmented brands require a minimum length of 3

characters.
(2) Augmented brands of purely numeric characters are not

allowed.
(3) Augmented brands of purely alphanumeric characters must

have 5 characters at minimum.
Augmented search queries which do not comply with any of the
three criteria are discarded, in order to eliminate outrightly ridicu-
lous brands generated by the VAE.

6 EXPERIMENTS
6.1 Dataset Overview
Every non-synthesized dataset involved in this paper comes from
raw user inputs that are logged by the search engine of our main
ECommerce service. Table 2 lists out a few raw samples together
with tagged ones.

Experiments in this paper are designed to validate the effective-
ness of synthesized datasets in low-resource setting. Three inde-
pendent search query datasets are prepared and used as candidate
training sets for training sequence tagging models. They include
a small manually labelled dataset, a pseudo-labelled dataset and a
purely virtual dataset augmented by the VAE. The pseudo-labelled
dataset comes from raw search queries without annotation, whose
keywords are then automatically matched and tagged in a non-
comprehensive approach based on our internal product attribute
dictionary. All the samples in our datasets are collected from recent
search query logs except the augmented ones. Human annotation
only covers 9,000 real search queries. Whereas several different
types of characters constitutes all our datasets, as is mentioned
in Section 1, some basic patterns of query words are analyzed in
Table 4.

Distinct Count Brand Size Color Material
Manual 1,673 159 64 261

Dict. Matched
Keywords 11,331 306 162 546

Augmented 202,728 3,296 239 597
Evaluation 965 86 42 113
Table 1: Attribute Value Counts per Dataset

Raw Search 
Queries

Annotated Search Queries

子供ドレス
150cm 

子供 ドレス １５０ＣＭ <B-
SIZE>

パブロン風邪
薬キッズ

パブロン <B-BRAND> 風邪薬
キッズ

蛍光灯直管 蛍光灯 直管

スマホグーグ
ルPixel6保護
フィルム

スマホ グーグル <B-BRAND>
ＰＩＸＥＬ<B-BRAND> ６保護
フィルム

こだわり安眠
館布団カバー
ガーゼ

こだわり <B-BRAND> 
安眠館 <I-BRAND> 布団カバー
ガーゼ <B-MATERIAL>

白い翡翠 白い <B-COLOR> 翡翠

Table 2: Examples of the RawQuery Log and Labeled Samples

Table 1 displays distinctive value counts of all 4 attributes in
every candidate dataset. The augmented set stands out with a mag-
nitude higher count of distinctive brands and sizes. In case of brands,
it is expected behavior since every input brand was disassembled
before training the VAE model. This results in a high number of
virtual brands that possess brand-ish patterns meanwhile never
existing in the real-world. As for size attribute, the main cause
is its frequent involvement with numbers, which tend to fuse di-
versity into token generation process, the simplest example being
“10ML”→“100ML”,“1000ML”.

To further investigate attribute value patterns among augmented
search queries, Table 3 tracks for each attribute how many distinc-
tive values are purely synthesized, i.e., augmented attribute values
that never exist in real datasets. As is shown by examples, it is not
surprising to see that a majority of brand/size attribute values in
the augmented training set are imaginary values. Yet they share
common patterns with input phrases from real users, despite a few
non-idiomatic tokens that do not make perfect sense.

Attribute Total Examples

Brand 199,135
ＺＡＮＨＯ, 銀鳥フーズ, 田乃谷純銅, 犬のＨＯＮ

ＥＹ, 小ふるさと製薬, ...

Size 2,955
１セット××１０ＭＭ, 四つ折り, ７７２ＭＬ, 

１フィート, ...

Color 80 黒金,緑黄, ホワイトオーク, ＷＨＩＴＥＲ, ...

Material 114 過炭酸, 人工皮革, 炭酸脂肪, ...

Table 3: Purely Synthesized Attribute Values

Dataset Name
(# Query Examples)

Average Word 
Length

% Kanji 
Characters

% Hiragana/Katakana 
Characters

% Alphanumeric 
Characters

Manual (9,000) 3.23 0.12 0.71 0.17

Dict. Matched 
Keywords (28,000) 2.94 0.12 0.72 0.16

Augmented
(673,967) 2.74 0.15 0.61 0.23

Evaluation (2,250) 3.21 0.14 0.71 0.15

Table 4: Word/Char Patterns among Datasets
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Training Data Attributes (P/R/F1)
Brand Size Color Material

Baseline Model 9K Manually Labeled
0.58
0.59
0.59

0.49
0.39
0.44

0.81
0.55
0.65

0.58
0.39
0.47

Baseline Model (Better) 9K Manual + 28K Keyword Match
0.67
0.56
0.59

0.63
0.85
0.72

0.93
0.86
0.89

0.87
0.72
0.78

Target Model 673K Augmented Queries
0.59
0.68
0.63

0.75
0.86
0.80

0.88
0.84
0.86

0.93
0.89
0.92

Table 5: Evaluation Metrics per Dataset

6.2 Training Details
As the building blocks of the VAE encoder/decoder, we stack two
layers of BiLSTM cells with hidden size 1024 and a dropout rate
of 0.5 in between. The embedding dimension is constantly 300.
The input data for training the VAE include both manually labeled
and pseudo-labeled datasets. In addition to preprocessing steps
mentioned in Section 4, we truncate the maximum vocabulary size
to 50,000. A mini-batch size of 24 is selected. During the generation
phase, the maximum length of output sequences is restricted at 24.

For sequence tagging models, we adopt the same architecture
as was used for NER tasks with contextual string embedding [1].
We stack three layers of embeddings above the general BiLSTM-
CRF structure: trainable character embedding of hidden size 25,
pretrained fastText [3] word embedding and pretrained Flair em-
bedding. Both the fastText word vectors and Flair embedding are
learnt from massive amounts of Japanese product description text.
The Flair embedding we pretrained contains both forward and back-
ward representations. The upper limit of training epochs is 100 per
sequence tagging model. A mini-batch size of 64 is chosen regard-
less of which training set is used. The sequence tagging model is
trained with a simple SGD optimizer of decay rate 0.5 while the
learning rate starts from 0.1. No development set is held out in ad-
vance as the devopment score is computed on random 10% samples
from training data. Early stop is also enforced when the learning
rate drops below 10−4.

6.3 Evaluations and Discussions
The comparative experiments are respectively conducted on sep-
arate datasets described in Section 5.1. Sequence tagging perfor-
mance is evaluated on our own benchmark dataset that consists
of 2250 real search queries with reliable NER tags from human
annotations. This evaluation set features intentional emphasis on
product brands, such that a significant proportion of brands are
rarely known in real life and nor do they ever exist in any of the
three training sets. Table 1 also lists out distinctive counts of all four
attributes in the evaluation set. The second row counts attribute
values that are only present in the test set without being visible in
any training samples. To emphasize, more than one third brands
are exclusive to evaluation, which makes “brand" the most difficult
attribute to recognize among all the four attributes.

Details of evaluation metrics (precision/recall/F1) are listed in
Table 5. The first model stands for a typical low-resource scenario
where ground truth samples are limited to 9,000. The second model

is trained with a similar dataset but all its 28,000 samples are pseudo-
labeled. While the training set is still quite limited, significantly
better scores show up for three attributes excluding brands. Recall
of brands remain a problem, which is expected behavior caused by
rare brands. The target model trained with and only with a large
chunk of 673K purely augmented search queries achieves the best
scores other than “color" that loses a small margin to the second
baseline. Its drastic increase in brand recall verifies the efficacy of
augmented “virtual" brands at the inevitable cost of some precision.2
On the other, size/material attributes turn out to be remarkable
success. It is likely due to the clear textual patterns indicating
those two attributes, which is definitely not the case for brands.
Another possible reason of the success of “virtual" dataset is that
augmented samples tend to be more focused on kanji/alphanumeric
words (Table 4) complementing what are fewer in real datasets. The
overall evaluations validate the usefulness of purely synthesized
search query datasets for product-related NER tasks.

7 CONCLUSION
In this paper, we bring forward the persistent issue of language
resource constraint as a hurdle against Japanese short-text NER
tasks. We take advantage of existing product attribute information
we have and craft pseudo-labeled datasets. With the help of the
pseudo-labeled datasets alongwith very fewmanually labeled exam-
ples, a variational auto-encoder can be trained into a search query
synthesizer that is capable of generating quasi-unlimited search
queries as training data.3 Comparative experiments indicate that a
sequence tagging model is able to attain impressive performance
on four product-related attributes without direct involvement of
real datasets. Henceforth we confirm that the synthesized corpora
are valid resource for tagging Japanese search queries when large
volumes of user queries are not accessible or ground truth labels are
prohibitively expensive to obtain. We also consider expanding our
scope into many more product attributes such as item condition,
person names, target users, etc. in future.
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