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ABSTRACT
Query understanding plays a key role in the search process, and
accurate understanding of search queries is the first step toward
high-quality search results on e-commerce websites. While head
queries with abundant historical data can be easier to interpret, tail
queries pose a challenge to accurate understanding. To tackle the
challenge, we focus on query rewriting to transform a tail query
into a query with similar linguistic characteristics as head queries
and preserve the shopping intent. In this work, we present a new
training data construction process and extend the vanilla Seq2Seq
model with multiple auxiliary tasks to achieve some desirable fea-
tures for e-commerce applications. For the training data of query
rewriting, we only rely on widely available search logs to generate
(source, target) query pairs and additional shopping intent informa-
tion. This additional information provides two auxiliary prediction
tasks on product name and category into our model to fully capture
the shopping intent. For the model, we propose a query matching
loss based on a novel co-attention scheme to improve the source
query representations, so that the overall model can be built and
trained end-to-end with standard components and training proto-
cols. The resulting model provides significant advantages over the
vanilla Seq2Seq model in a range of experiments on rewriting qual-
ity. We also demonstrate the practical value of our query rewriting
model with an application in sponsored search.
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1 INTRODUCTION
E-commerce platforms process billions of queries on a daily basis,
and query understanding is the key to return high-quality search
results. Popular queries are generally easier to interpret due to rich
historical data available. However, it is far more challenging to
understand tail queries and infer their shopping intents. Web query
understanding researches [9, 20] and recent investigations in the
e-commerce field [13] suggest that most tail queries express the
same intents as related head queries, but with different linguistic
characteristics like uncommon wording or typos. This opens the
door to understanding tail queries via query rewriting, whereby a tail
query is transformed into one that has the linguistic characteristics
of a head query so that the search engine can generate high-quality
recommendations.

For e-commerce applications, it is desirable to have query rewrit-
ing models which are able to 1) handle queries for new products,
2) correctly capture the shopping intents, and 3) require no addi-
tional input data beyond standard search log. Works based on map-
ping each tail query to a head query via semantic query matching
[26] cannot handle queries relating to new products: for example,
“iPhome 14” cannot be rewritten to “iPhone 14” as the latter has not
been seen before. Despite the enormous success of deep learning in
Natural Language Processing, including language translation [2],
text summarization [10, 15], and text classification [8], building
query rewriting systems that achieve all of the above features
remains challenging. Approaches based on machine translation
models such as Seq2Seq can handle new products, but will have dif-
ficulty correctly inferring the shopping intent unless a vast amount
of data is available. For example, works such as [18, 24] modify
vanilla Seq2Seq models, yet [24] requires extra query annotations
as the model input.

In this work, we propose a new training data construction pro-
cess and a novel transformer-based query rewriting Seq2Seq model
that incorporates multiple improvements to achieve the above de-
sired features. Specifically, we shift from noisy and limited users’
query rewriting behavioral data to commonly available search logs
and introduce a new process for constructing source and target
query pairs. This process is designed to extract additional informa-
tion about the shopping intent, which allows us to add two auxiliary
prediction tasks into our model with the goal of learning query
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representations that can capture the shopping intent. To further
improve the representation quality and the generalizability of our
model, we propose a semantic query matching loss using a novel
co-attention mechanism. In contrast to the model proposed by [18]
which has a complicated training protocol that is not desirable for
production, our model is built and trained end-to-end using stan-
dard deep learning components and training protocols. It achieves
significant practical advantages over the vanilla Seq2Seq model
and its extensions as demonstrated on various metrics of query
rewriting. We also show the practical value of our model with an
application in sponsored search.

The paper is organized as follows. After reviewing the related
work in Section 2, we provide an overview of our problem setting
and model design in Section 3. We then go through the details of
the data construction process and the proposed model in Section 4.
We provide a range of experiments evaluating our model perfor-
mance on rewriting quality and include a production experiment
of sponsored search in Section 5.

2 RELATEDWORK
2.1 Query Rewriting
A series of query rewriting works rely on a two-phase framework
[6]. The first phase aims to generate a number of possible query
candidates, and the second phase includes a ranking model which
ranks the candidates from the first phase. Specifically, in [6], the
first phase is trained using the product name corresponding to the
source query as the target query label, and the second phase uses
the discounted cumulative gain (DCG) as the label to rank the candi-
dates. Many follow-up works improve this model in different ways.
For the first phase, related works include the utilization of a search
dataset [25], a synonym dictionary [14], part-of-speech prediction
[22], and query-product N-gram pairs [11]. For the second phase,
the improvements include using co-training [25], a random forest
classifier with handcrafted features [14], and pretrained language
models [11, 22].

Another type of query rewriting works only relies on a Seq2Seq
model to generate rewritten queries [21], which does not involve a
ranking phase. One advantage of this framework is that it can be
trained in a fully end-to-end way with all the learning parameters
differentiable, as opposed to the two-phase method where in the
candidate generation phase, usually beam search or other candidate
generation methods are applied. This framework has been widely
used in many NLP applications, such as neural machine translation
[2], text summarization [15], and visual question answering (VQA)
[1]. To achieve these, many Seq2Seq structures are proposed. Re-
lated works involve recurrent neural networks like LSTM [7] and
GRU [4], fully attention-based models like Transformers [23], as
well as its variants BERT [5] and GPT [19].

Unlike classic neural machine translation tasks, e-commerce
query rewriting involves many intrinsic difficulties, especially the
lack of contextual information for the query. Therefore, Wang et al.
[24] incorporate part-of-speech information for each word in the
query and utilize the combined representation to decode the target
popular entry. Qiu et al. [18] extract product name information for
each query via search logs and use a cyclic training framework to

learn two Seq2Seq models, namely from query to product name
and from product name to query, simultaneously.

2.2 Semantic Matching among Queries
For better query information retrieval, another line of works focuses
on query semantic matching, which aims to compute the similarity
of two queries by learning latent representations. Yang et al. [26]
use a BiLSTM model to learn representations for the source query
and the rewritten query with handcrafted features as side informa-
tion. In addition, to handle the issue of limited human-labeled data,
they use uncertainty and novelty sampling schemes to augment
their dataset in an active way. In fact, Yang et al. [26] also adopt the
semantic matching model to generate rewritten queries by select-
ing the query of the highest similarity with the original product.
However, this method can not generate unseen popular queries
for new coming products, which is a disadvantage compared to
methods discussed in Section 2.1.

Maji et al. [13] point out that using a single fixed vector to rep-
resent a query and further measure the query similarity may be
problematic. A co-attention mechanism introduced in visual ques-
tion answering (VQA) [12] is used to construct different embedding
vectors for one query when comparing to different queries.

2.3 Query Product Relevance Model
Measuring the relevance between the source query and the product
name is another way of query understanding which directly helps
products or ads recommendation. Yao et al. [27] use a single encoder
to learn embeddings for both queries and product names. Then,
a multi-aspect attention module is applied to the two representa-
tions separately, and the relevance score is computed by applying
a Multi-Layer Perceptron model to the output representations. [3]
introduces a model which uses non-displayed products as unsuper-
vised data and learns embeddings for queries and products with
multiple loss components including the difference between the rep-
resentation correlations among frequently displayed products and
non-displayed products to improve the performance on tail prod-
ucts. Similar to query rewriting, context information can also be
incorporated in query-product relevance models. Zhang et al. [28]
use a single convolutional network to generate the representations
for both the query and the product. Instead of directly computing
the distance between the two representations, they combine an aux-
iliary query taxonomy and a product taxonomy classification with a
progressively hierarchical structure to learn better representations
for products and queries.

3 OVERVIEW: PROBLEM SETUP AND MODEL
DESIGN

Given our emphasis on capturing the shopping intent, the vanilla
Seq2Seq model is not sufficient. We intend to inject the shopping
intent information via auxiliary tasks. The additional information is
extracted by our data construction process, which can build an en-
riched training dataset. Our training data is derived from aggregated
search logs and provides tuples of the form 𝑄 = {(𝑞𝑜

𝑖
, 𝑞𝑖 , 𝑠𝑖 , 𝑦𝑖 )}𝑚𝑖=1.

Here,𝑚 is the number of data points, 𝑞𝑜
𝑖
denotes the 𝑖-th source

query, and 𝑞𝑖 is the 𝑖-th target query. Additionally, for every target
query 𝑞𝑖 , we are able to capture the name string 𝑠𝑖 of the most
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Figure 1: An overview of our model. Both the source query and the target query are fed into the model and are encoded by
the same Transformer Encoder. Each column of the embedding represents one token in the query. The rest of the model
includes four main modules which combine four different tasks. The main task is the query transformer decoder which
generates the target query sequence. To improve this vanilla model, we introduce the three modules in the red dotted box. The
co-attention block produces a query-matching loss with a distance function based on the source and target query embeddings.
A Transformer decoder is used to decode the source query embedding into a product name sequence. A softmax layer is used to
predict the category of the above-mentioned product. Finally, the four losses are combined together to train the model.

popular relevant product and this product’s category label 𝑦𝑖 . As an
example, a training data point may look like this (“0 organik milk”,
“fat-free organic milk”, “bouncy cow brand fat free organic milk”,
“grocery”). Of course, at inference time, only the source query is
available and the model will output the target query.

Our approach to query rewriting is based on a Seq2Seq model
with transformers [23] used for both encoder and decoder compo-
nents. This Seq2Seq model with a parameter vector 𝜽 takes {𝑞𝑜

𝑖
}𝑚
𝑖=1

as inputs and learns to output the corresponding queries {𝑞𝑖 }𝑚𝑖=1
by minimizing the negative log likelihood:

Lquery (𝜽 ) = −
𝑚∑︁
𝑖=1

log Pr(𝑞𝑖 | 𝑞𝑜𝑖 , 𝜽 ) .

The encoder provides embeddings of queries in a high-dimensional
space. We intuitively expect the embedding of a source query to
capture some shopping intent and to map related queries nearby so
that the decoder can output a query with the same intent that car-
ries the linguistic characteristics of head queries. However, without
additional loss terms, the Seq2Seq model’s encoder has no incen-
tive to infer the shopping intent. In addition, it is possible that the
encoder can map related queries to disparate regions and rely on
the powerful decoder to decode them into the same target query.
We speculate that this can harm generalization, whereby a new
related query gets mapped into a “hole" in the embedding space
and the decoder ends up producing nonsensical output. To capture
the shopping intent and favorably shape the embedding space, we
take advantage of our enriched training dataset and modify the
vanilla Seq2Seq model with several auxiliary tasks.

An overview of our model is shown in Figure 1. Specifically, we
include three additional losses: two to capture the shopping intent
and one to enforce contiguity for related queries. First, we add a
product name prediction task with a product name lossLproduct (𝜽 ):
namely the embedding of the source query 𝑞𝑜

𝑖
is used to generate

the product name 𝑠𝑖 with a transformer decoder. This provides
extra supervision as there is usually a gap between queries and
product names [13]. Second, a softmax layer is placed on top of
the source query embedding to predict the category label 𝑦𝑖 with a

taxonomy loss Lcls (𝜽 ). Third, for a query rewriting pair (𝑞𝑜
𝑖
, 𝑞𝑖 ),

as the queries 𝑞𝑜
𝑖
and 𝑞𝑖 carry similar shopping intents, we expect

the embeddings of both queries are close. Thus, we add a query-
matching loss Lsim (𝜽 ) with a novel co-attention scheme which
generalizes the classic attention scheme in [23].

With all the above three losses, the loss function of our model is
as follows:

L(𝜽 ) = 𝜇1Lquery (𝜽 ) + 𝜇2Lproduct (𝜽 ) + 𝜇3Lcls (𝜽 ) + 𝜇4Lsim (𝜽 ),

where {𝜇𝑖 }4𝑖=1 are the hyper parameters. These parameters are
chosen based on a grid search according to the performance on the
validation set.

4 METHODOLOGY
In this section, we provide the details of data construction process
and the proposed model. Section 4.1 introduces our dataset con-
struction process from standard search logs. Section 4.2 describes
two auxiliary tasks for product name and category predictions;
Section 4.3 introduces the query-matching loss and our novel co-
attention scheme.

4.1 Data Construction
Since one of key factors for a successful model is the training data,
it is desirable to have a data construction process that relies on rou-
tinely collected logs in e-commerce, avoids manual effort to produce
large amounts of data, controls the amount of noise, and captures
the shopping intent. The first requirement is crucial in making the
approach widely applicable to different e-commerce platforms, and
the rest contributes to the improved model performance. Existing
approaches include the use of search logs [22, 25, 27, 28], query
and product name pairs [6], query autoencoding [18], synonym
generation [11, 14], users’ rewriting behaviours [24], or human
active labeling [26]. These methods fail to satisfy all of the above
requirements, and it leads us to propose a novel data construction
approach from search logs.
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Figure 2: An overview of our dataset construction methodology based on a search log. The above sample graph is a bipartite
graph between 4 queries and 4 product names, where an edge between a query 𝑞 and a product 𝑖 with weight 𝑝𝑞,𝑖 means that
users have used query 𝑞 to have access to product 𝑖 with popularity 𝑝𝑞,𝑖 . 𝑝𝑞 ≜

∑4
𝑖=1 𝑝𝑞,𝑖 denotes the total popularity of a query 𝑞

with 4 products. Here, we use ℓ1 distance as an example. Setting the popularity distance threshold 𝜎 = 0.2 and overall popularity
threshold 𝜏 = 48, we have dist𝑠,ℓ1 (𝒘1,𝒘3) = 0.1 ≤ 𝜎 , dist𝑠,ℓ1 (𝒘1,𝒘2) = dist𝑠,ℓ1 (𝒘1,𝒘4) = 1 > 𝜎 . As 𝑝1 < 𝑝3, we will rewrite query 1 to
query 3 and query 3 will be rewritten to itself. In addition, although dist𝑠,ℓ1 (𝒘2,𝒘4) = 0 ≤ 𝜎 and 𝑝4 > 𝑝2, query 2 and query 4 will
both be rewritten to themselves as 𝑝2 and 𝑝4 are larger than 𝜏 , indicating that both queries are popular enough and should be
well understood by the search engine.

A search log aggregates user behaviors to obtain the relation-
ships between queries and products. It can be conceptualized as
a bipartite graph between queries and products. An edge means
the query has historically led to clicks or purchases of the prod-
uct. The weighted sum of clicks and purchases is used to obtain
edge weights. Additionally, based on a popularity threshold, we
categorize queries into head and tail queries. We posit that two
queries that have high overlap in relevant products should have
the same shopping intent. Next, for every tail query, we find the
most popular query with high enough overlap, and emit this query
pair together with some extra shopping intent information as one
training data point. Figure 2 illustrates the construction process
with details provided below.

To be more precise, we want to rewrite a tail query to a popular
one with similar shopping intent. Moreover, the popular queries
should be rewritten to themselves since they can be already well
understood by e-commerce systems. To this end, we first compute
the edge weight 𝑝𝑞,𝑖 of a query-product pair (𝑞, 𝑖) as the weighted
sum of clicks and purchases of product 𝑖 by using query 𝑞. Second,
we sort the products that are connected to 𝑞 by edge weight and
select the top 𝑡 products 𝑆𝑞 = {𝑖𝑞,1, . . . , 𝑖𝑞,𝑡 } for each query 𝑞. This
truncation is done because tail products may lead to noisy signals.
Also it resolves the computational issues as the quantities below
are computed via joins. Now, for each query, we build the sparse
vector𝒘𝑞 ∈ R𝑛productwhere 𝑛product is the total number of products,
and the 𝑖-th entry of𝒘𝑞 is defined as the normalized edge weight

𝑤𝑞,𝑖 =

{
0 if 𝑖 ∉ 𝑆𝑞,

𝑝𝑞,𝑖∑
𝑖∈𝑆𝑞 𝑝𝑞,𝑖

if 𝑖 ∈ 𝑆𝑞 .

Next, we compute the similarity between two queries 𝑞1 and 𝑞2
by computing a distance dist𝑠 (𝒘𝑞1 ,𝒘𝑞2 ) between𝒘𝑞1 and𝒘𝑞2 . Here,
one can pick any distance metric. In the main experiments, we use
the cosine distance, but we have also experimented with ℓ1 distance
(see Appendix).

Finally, a distance threshold 𝜎 > 0 is set and we construct a
source-target query pair (𝑞𝑜 , 𝑞) where 𝑞 is the query of the highest
overall popularity under the condition dist𝑠 (𝒘𝑞𝑜 ,𝒘𝑞) ≤ 𝜎 . Note
that using this method, a query 𝑞𝑜 will be rewritten to itself if
𝑞𝑜 itself is the query of the highest popularity under the weight

distance constraint. One exception to the rule is that if 𝑞 has total
popularity (weighted degree) 𝑝𝑞 ≜

∑𝑛product
𝑖=1 𝑝𝑞,𝑖 ≥ 𝜏 (popularity

threshold), the query 𝑞 is rewritten to itself instead as this query
has enough historic clicks/purchases and so is well understood.

An important aspect of our constructions is that it provides side
information for the queries. First, for each pair (𝑞𝑜 , 𝑞), a product set
𝑆𝑞 corresponding to 𝑞 is available, which can be interpreted as the
potential target products for the original query 𝑞𝑜 as we assume
𝑞𝑜 and 𝑞 are close. Second, e-commerce platforms commonly have
product attributes including product name and various taxonomies.
We incorporate this extra information into our query rewriting
dataset with the product name string 𝑠 and the product category 𝑦
of the product with highest weight in 𝑆𝑞 . The final training data
point is the tuple (𝑞𝑜 , 𝑞, 𝑠,𝑦).

4.2 Capturing Shopping Intent
In this subsection, we introduce two auxiliary tasks for capturing
the shopping intent in queries. These tasks utilize the additional
information associated with the query: product name and product
category. Intuitively, auxiliary tasks help the encoder to learn a
better query representation by capturing the shopping intent in the
embedding space.

Product NameGeneration. For each training data point (𝑞𝑜 , 𝑞, 𝑠,𝑦),
besides the target query 𝑞, we have a product name 𝑠 related to the
target query in the search log. This indicates that the source query
𝑞𝑜 should also be closely related to the product, which can serve as
extra information to help query rewriting.

To utilize this information, we use a separate decoder to decode
the product name based on the source query embedding (i.e. the
output of the encoder). This helps the encoder to learn a better
embedding of the source query as the encoded feature needs to
be informative enough to decode the product name successfully.
Formally, we introduce the product name prediction loss:

Lproduct (𝜽 ) = −
𝑚∑︁
𝑖=1

log Pr
(
𝑠𝑖 |𝑞𝑜𝑖 , 𝜽

)
,

where𝑚 is the size of the dataset and 𝑠𝑖 is the product name corre-
sponding to the source query 𝑞𝑜

𝑖
.
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A number of prior works also utilize the product name informa-
tion in query rewriting. Among recent work is [18], which proposes
an autoencoder model for queries with product name decoding as
the bottleneck task. Compared to that model, our model has two
main advantages. First, our model is trained in a fully end-to-end
way. [18] requires a warm-up training stage because the initial
model fails to generate meaningful product names and their bot-
tleneck beam search process for product name generation is not
differentiable. Second, [18] uses the autoencoder framework, which
takes the source query as the target label query to train both the
encoder and the decoder. In contrast, the target query is explicit in
our dataset, which provides more direct supervision for the query
rewriting task.

Category Prediction. Taxonomies are commonly available in dif-
ferent e-commerce platforms. Product taxonomies can help un-
derstand shopping intents and enrich search results [28]. In this
work, we use the category label as an auxiliary task to help the
encoder include more information about the source query. Specif-
ically. we use our existing product types as the class of the input
query, including hardlines (e.g. electronics, wireless), softlines (e.g.
shoes), consumables (e.g. grocery). Some sampled classes are “mp3
player”, “hardware plugs”, “fashion sneakers”, “soy milks”. Given
the embedding 𝑽𝑞𝑜 of the source query 𝑞𝑜 , we select the embedding
vector 𝒗𝑞𝑜 , [𝑠𝑜𝑠 ] of the first token “[sos]” and feed it directly into a
softmax layer to obtain a distribution (in probability simplex) of
the predicted category 𝑢𝑞𝑜 , 𝑗 ∈ Δ𝑟 , where 𝑟 is the total number of
classes. Formally, we construct the following cross-entropy loss
function for the category label:

Lcls (𝜽 ) =
𝑚∑︁
𝑖=1

𝑟∑︁
𝑗=1

−𝑦𝑖, 𝑗 log𝑢𝑞𝑜
𝑖
, 𝑗 ,

where 𝑦𝑖 ∈ Δ𝑟 is the true category (or true category distribution in
case of multiple labels) of the source query 𝑞𝑜

𝑖
.

4.3 Query Matching Loss via Co-Attention
The query matching loss is to achieve contiguity in the embedding
space where related queries are mapped near each other. This is
not straightforward as the encoder provides an embedding for each
token in the query, and, therefore, the query embedding can be
thought of as a matrix with a fixed number of rows (embedding
dimension) but a varying number of columns (one per token). While
equal-weighted aggregation over columns to obtain an overall rep-
resentation of the query is an option, this can be sub-optimal as
pointed out by [13]. Indeed, when comparing two queries, there
are correspondences over subsets of words and some words should
carry more weight than others depending on each individual query
pair.

Before introducing our co-attention method, we first review
the co-attention method in Maji et al. [13] which was originally
proposed in the context of visual question answering in [12]. Given
two queries 𝑞 and 𝑞′, the encoder computes their embeddings 𝑽 =

[𝒗1; . . . ; 𝒗𝑛] ∈ R𝑛×𝑑 and 𝑽 ′ = [𝒗 ′1; . . . ; 𝒗
′
𝑛′] ∈ R

𝑛′×𝑑 , where 𝑛 (resp.
𝑛′) is the length of the query 𝑞 (resp. 𝑞′), and 𝑑 is the embedding
dimension. To compute a semanticallymeaningful distance between
𝑽 and 𝑽 ′, Maji et al. [13] use a learnable attention matrix𝑾 ∈ R𝑑×𝑑

and define the similarity matrix 𝐶 as follows:

𝑪 = tanh
(
𝑽𝑾𝑽 ′⊤)

∈ R𝑛×𝑛
′
. (1)

The (𝑖, 𝑗)-th entry of matrix 𝑪 intuitively measures how the 𝑖-
th token of query 𝑞 is correlated to the 𝑗-th token of query 𝑞′.
Then, the overall query embeddings for 𝑞 and 𝑞′ are computed as
𝒉 =

∑𝑛
𝑖=1 𝜶𝑖𝒗𝑖 and 𝒉

′ =
∑𝑛′
𝑖=1 𝜶

′
𝑖
𝒗 ′
𝑖
, where

𝜶 = softmax(max
𝑗

(𝑪:, 𝑗 )); 𝜶 ′ = softmax(max
𝑖

(𝑪𝑖,:)) . (2)

Now that we have a single 𝑑-dimensional vector per query, we
can use any distance function between 𝒉 and 𝒉′ as a measure of
(dis-)similarity between 𝑞 and 𝑞′.

Although it seems reasonable at first glance, that model does
not fit into the classic attention mechanism introduced by [23]
as the co-attention is not symmetric. In our work, we introduce a
new co-attention mechanism, which fits the idea of [23]. Formally,
given a query-projection matrix𝑾𝑄 ∈ R𝑑×𝑑𝑘 and a key-projection
matrix𝑾𝐾 ∈ R𝑑×𝑑𝑘 , we construct a similarity matrix 𝑪 for query
𝑞 based on query 𝑞′ and a matrix 𝑪 ′ for query 𝑞′ based on query 𝑞
as follows:

𝑪 = tanh

(
𝑽𝑾𝑄 (𝑽 ′𝑾𝐾 )⊤√︁

𝑑𝑘

)
, (3)

𝑪 ′ = tanh

(
𝑽 ′𝑾𝑄 (𝑽𝑾𝐾 )⊤√︁

𝑑𝑘

)
. (4)

Specifically, to know what tokens query 𝑞 should focus on, we
match the representation of each token in 𝑞 with the key of each
token in 𝑞′ by doing a scaled inner product. Intuitively, the higher
the (𝑖, 𝑗)-th entry of 𝐶 is, the more relevant the 𝑖-th token of query
𝑞 is to the 𝑗-th token of query 𝑞′. 𝐶 ′ can be interpreted in a similar
way. Here, tanh operator is used to rescale the similarities in the
range of [−1, 1] as suggested in [12, 13].

Now, we compare Equation 3 and Equation 4 with Equation 1 to
understand the difference. According to Equation 1 and Equation 2,
the similarity matrix 𝑪 ′ for query 𝑞′ based on query 𝑞 is

𝑪 ′ = 𝑪⊤ = tanh
(
𝑽 ′𝑾⊤𝑽⊤)

∈ R𝑛
′×𝑛 . (5)

We can find that Equation 1 and Equation 5 do not match Equation 3
and Equation 4 unless𝑾 is symmetric.

After obtaining the similarity matrices 𝑪 and 𝑪 ′, we compute
the representations 𝒉̃ of 𝑞 and 𝒉̃′ of 𝑞′ as 𝒉̃ =

∑𝑛
𝑖=1 𝜶𝑖𝒗𝑖 and 𝒉̃′ =∑𝑛′

𝑖=1 𝜶
′
𝑖
𝒗 ′
𝑖
, where

𝜶 = softmax(max
𝑗

(𝑪:, 𝑗 ));𝜶 ′ = softmax(max
𝑗

(𝑪 ′
:, 𝑗 )) .

In this way, the similarity between 𝑞𝑖 and 𝑞′𝑖 can be computed
with a classic distance function on 𝒉̃𝑞𝑖 and 𝒉̃𝑞′𝑖 and we can introduce
the query matching loss as:

Lsim (𝜽 ) =
𝑚∑︁
𝑖=1

dist(𝒉̃𝑞𝑖 , 𝒉̃𝑞′𝑖 ).

In contrast to the attention scheme in [23], we do not use a value
projection matrix on the output embeddings 𝑽 and 𝑽 ′. The reason
is that we do not construct negative query pair samples, which is
different from other query semantic matching works [3, 13, 27].
Specifically, we are computing the representations of the source
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BLEU4 Jaccard1 Jaccard2 F1 score F2 score

baseline 0.2691 0.3289 0.2165 0.4465 0.2999
+ query taxonomy 0.271 0.3312 0.2166 0.4489 0.2995
+ product name decode (sequentially) 0.2792 0.3384 0.2253 0.4573 0.3106

+ attn (fixed attn) (separately) 0.283 0.3415 0.2288 0.4605 0.3149
+ attn [13] (separately) 0.2883 0.3473 0.2363 0.4627 0.3187
+ attn (Section 4.3) (separately) 0.307 0.3669 0.2537 0.4816 0.3368

Table 1: Ablation study on the test dataset with cos distance.
The first three rows are added sequentially, which means the
third row shows the performance of the model with both
query taxonomy loss and product name decoding loss. The
last three rows show the results of the models with all the
four losses but different attention mechanisms. The results
show that the auxiliary tasks indeed improve the perfor-
mance and our novel co-attention mechanism performs bet-
ter than the existing co-attention mechanism.

query and the target query, which are always positively related.
Suppose a value projection is applied; then we may encourage a
trivial all-zero value projection matrix which makes all queries to
have the same representation, reducing the query-matching loss to
zero. Note that the lack of negative samples is not a problem in our
setting because the source query embedding is used by the decoder
to output the target query. This signal keeps the query embeddings
separate without requiring negative query pairs.

5 EXPERIMENTS
To construct the dataset from the search log for model training, we
apply the process introduced in Section 4.1 on a 180-day search
log via two distance metrics: cos distance and ℓ1 distance on the
normalized popularity weight. To define the shopping intent for the
query, for a rewriting pair (𝑞𝑜 , 𝑞), we assign the product name of
the top popular product in 𝑆𝑞 as the product name 𝑠 for the source
query 𝑞𝑜 . We also assign the product category of the top popular
product in 𝑆𝑞 as the category label 𝑦 of query 𝑞𝑜 . All data used are
aggregated, anonymized, and no identifiable customer information
is used in the experiments. We defer the detailed configurations
of the dataset and dataset samples to Appendix. We also defer the
detailed model configurations to Appendix due to page limit.

To generate the rewritten sequences, we use standard beam
search with beam size 4 and set the final top-1 sequence as the
output. In the following subsections, we show the empirical re-
sults of our method. The evaluation of a query rewriting model
is generally hard as there is no straightforward way to quantify
the quality of the rewriting [18]. To that end, we first measure the
performance of our model on the test dataset from the search log,
and then we conduct real-world experiments in sponsored search
to further demonstrate the advantage of the proposed method.

5.1 Query Rewriting Quality Evaluation
To measure the performance of our model on the test dataset con-
structed by the process introduced in Section 4.1, we use the fol-
lowing three standard metrics that are widely used in NLP: BLEU
score, F𝑛 score, and Jaccard𝑛 score (see Appendix for details).

5.1.1 Ablation Study. Table 1 shows the results of the three metrics
of our model on the cos-distance-based datasets with an ablation
study. The results of ℓ1-distance-based datasets are listed in Table 7
in the Appendix. Generally, our model performs better in all of the
three metrics with more shopping intent information combined
during the training process. This confirms our intuition that both
the query taxonomy task and the product name decoding task
help the encoder to learn an embedding of the source query better.
Moreover, we can observe from the table that, with a similarity
loss between the source query and the target query, we have a
significant boost in all of the metrics, which shows the advantage
of learning better query embeddings.

In addition, to see whether the representation generated by co-
attention actually improves the query rewriting quality, we com-
pare the performance of the models with different similarity losses,
where we use the embedding of the first token of the encoded query
as the representation. We can see from Table 1 that the model with
a co-attention scheme indeed outperforms the one with fixed rep-
resentation, which confirms our intuition discussed in Section 4.3.
To show the advantage of our co-attention scheme introduced in
Section 4.3, we also implement the model with the co-attention
scheme used in [13]. The empirical results in both datasets show
that our model performs better.

5.1.2 Similarity of the query embeddings. Recall that the motiva-
tion of introducing the query matching task with a co-attention
scheme is to help the encoder to generate an embedding nearby for
a similar query. To show this, we use query embeddings to compare
the similarities among queries. Specifically, we choose four queries:
“apple”, “apple vinegar”, “apple airpods”, “airpods case”. For these
queries, “apple” is the most ambiguous query, which may be inter-
preted in two different ways: a brand in electronics or a kind of
fruit. Therefore, the query “apple” is related to all the other three
queries but with different meanings. “apple vinegar” is a query
which is related to the general query “apple” but unrelated to the
electronic products “apple airpods” and “airpods case”. In addition,
when we compare “apple airpod” with the general query “apple”, its
representation should focus more on the brand “apple”, while when
compared with the specific query “airpods case”, its representation
should focus more on the product “airpods”.

Figure 3 and Figure 4 demonstrate the query similarity matrices
using the co-attention scheme in [13] and ours. We can observe

Figure 3: Similaritywith at-
tention scheme in [13]

Figure 4: Similarity with
our attention scheme

that our co-attention scheme measures the similarity more properly.
Specifically, the query “airpods case” has higher similarity scores
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Input query Output query ([13] co-attention) Output query (our co-attention scheme)

hiking boots men 9 hiking boots men 9 hiking boots men
diamantina comestible edible gold edible glitter
alouse allolose allulose syrup
fila 5jwoo250 - 262 fila boots fila disruptor 2 women
everything but the gavel everything but the elote boot everything but the bagel seasoning

Table 2: Sample rewriting outputs. In the table, “hiking boots men 9” is too specific. “diamantina comestible” is non-English.
“alouse” is an ambiguous query with typos. “fila 5jwoo250 - 262” and “everything but the gavel” are queries with typos.

with queries “apple” and “apple airpods” in the model with our
co-attention scheme compared to the one with Maji et al. [13]’s
scheme, growing from 0.19 to 0.31 and from 0.71 to 0.79. More-
over, for the irrelevant query pairs (apple vinegar, apple airpods)
and (apple vinegar, airpods case), our model reduces the similarity
scores from 0.45 to 0.27 and from 0.24 to 0.09. This makes “apple
vinegar”, as opposed to “apple” in the model with the co-attention
scheme in [13], the least relevant query to “airpods case”.

5.1.3 Case Study. Table 2 shows five rewriting examples of our
model. We can see that our model is able to reasonably rewrite the
non-popular queries of different types, including typos, ambiguities,
wordy queries, and non-English queries. We can also see that the
model with our co-attention scheme performs better than the one
with the co-attention used in [13].

5.2 Application: Sponsored Search
Sponsored search aims at surfacing interesting and relevant spon-
sored contents like product or brand advertisements to customers
based on their search queries. The number of ads in auction (auction
density) and their quality are the main factors that affect customer
experiences. Naturally, abundant ads are generally sourced for head
queries while tail queries could benefit more from query rewriting
to improve auction density.

To verify this conjecture, we collect a one-week search log, which
contains all search queries and their auction densities.We uniformly
sample 500000 queries, separate them into 4 equally-sized groups
based on auction density, and name them the bottom, tail, torso,
and head groups. For each group, we rewrite a source query and
add the ads in the rewritten query’s auction into the source query’s
auction. The auction density lift for each group is shown in Table 3.
We can see that our model significantly boosts the auction density
of queries originally with low auction density.

Bottom Tail Torso Head

Auction density lift 359.07% 69.23% 25.72% 5.16%
Table 3: Results on auction density boost for four groups of
queries with different auction density bands.

To further evaluate the rewriting quality, we try to evaluate the
relevance between the source query and the added ads from the
rewritten query. We run an A/B test on production shopper traffic
for a 7-day period of time. As indicated in Table 3, the bottom group

includes queries with the lowest auction density, which means the
most opportunity. Hence, we focus on the experiments only for
that group. Intuitively, the original queries in the bottom group
are difficult to understand, and hence, difficult to be matched with
relevant ads. The rewritten query helps to bring in more relevant
ads into auction so that there is a better chance that a good ad
can win the auction. This has huge potential to improve customer
experience on tail queries.

Directly evaluating the quality of query rewriting is difficult
as we lack ground truth. Here, we rely on downstream business
metrics to measure the improvement due to our query rewriting
method. We look at the main business metrics including ad clicks,
auction density, CTR (click through rate), and CPC (cost per click).
The number of ad clicks shows overall customer engagement with
the sponsored contents; CTR is considered as a proxy of customer
satisfaction where a higher CTR indicates better customer expe-
rience; and CPC reflects the level of competition in auction. The

Clicks Auction Density CTR CPC

+6.72% +15.04% +5.55% +5.07%
Table 4: Production experiment results

improvement on all those metrics is included in Table 4. In par-
ticular, we observe auction density jumps most and it also drives
up CPC because of more competitions in auction. Clicks and CTR
both jump up because new ads added into auction via our query
rewriting method are able to win auctions and outperform the pre-
vious auction winners, which eventually deliver better customer
experiences. Our total traffic was ≈ 0.8 million ads impressions.
Theoretically, a boost of 1/

√
0.8𝑀 ≈ 0.11% is a significant improve-

ment under mild assumptions.

6 CONCLUSION AND FUTUREWORKS
In this work, we have introduced a novel seq2seq framework for the
task of query rewriting in e-commerce applications. Our approach
derives data from commonly available data sources in e-commerce
platforms making it generally applicable. Our model has a number
of enhancements to help capture the shopping intent and favorably
shape the query representation space. Finally, the resulting overall
model uses commonly available deep learning components and
has an easy end-to-end training protocol making it suitable for
production uses.
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Specifically, we first design a dataset construction method which
constructs reliable query rewriting pairs based on search logs. Sec-
ond, we combine two sources of shopping intent, namely query
taxonomy and item name sequence, in our model training. These
shopping intents are directly available based on our dataset con-
struction method and more importantly, they are only used as
auxiliary tasks during training process but not inference process,
which is more practical as we only need the source query as the
input of the model. Third, we introduce a novel co-attention scheme
and combine a query matching auxiliary loss between the repre-
sentations of the source query and the target query. Finally, we
combine all the above auxiliary tasks in a fully end-to-end model.
Our ablation study shows the effectiveness of our proposed model.

There are many future directions of this work. First, for query
rewriting, many previous works construct their dataset with their
own method and in this work, one of our main contribution is
that we propose a new method to construct a query rewriting
dataset from search logs. A more systematic method of dataset
construction may create a better dataset, which can improve the
model performance.

Second, as mentioned in Section 2.1, a query may have different
interpretations based on different contexts. Therefore, to better
rewrite a query, it is reasonable to take the context information as
input as well to see whether a query can be rewritten into queries
with different intents based on different contents. In fact, we have
already trained suchmodel with amodification of our current model
and it actually can do multi-direction decoding. However, as this
requires context information as the input, it is not practical in real
applications. An interesting direction is to design a model which
can automatically rewrite the input queries into different intents.

Third, in this work, we use the metric of BLEU value, Jaccard
similarity and F-score , which are standard in general machine
translation tasks, to measure the performance. However, they may
not be most optimal metrics for query rewriting. As pointed out in
[18], a more reasonable metric in the field of query rewriting needs
to be designed for offline dataset evaluation.

APPENDIX
DATASET CONFIGURATIONS AND EXAMPLES
In this section, we introduce the detailed configurations of our
dataset construction. We set the size of product set related to each
query to be 𝑡 = 20. The popularity distance thresholds are cho-
sen to be 𝜎cos = 0.3 and 𝜎ℓ1 = 0.375 based on manual checking.
The overall popularity threshold is chosen to be 𝜏 = 625 for both
datasets. The sizes of the two datasets shown in Table 5. Table 6
gives some examples of the query pairs with their popularity and
their distance of popularity weight vectors. We can see from the
table that our popularity threshold and distance thresholds indeed
construct meaningful query rewriting pairs.

MODEL PARAMETERS AND IMPLEMENTATION
To balance the model performance and the training speed, we com-
pare different sets of parameters. We set the batch size to be 96 and
use Adam optimizer with learning rate 𝜂 = 0.0001, 𝛽1 = 0.9 and
𝛽2 = 0.999. For the choice of {𝜇𝑖 }4𝑖=1, we fix 𝜇1 = 1 and have a grid
search for 𝜇2, 𝜇3 and 𝜇4. For our final model, we select 𝜇2 = 0.8,

Dataset Train Valid Test # of classes

cos distance 584816 73129 73001 1114
ℓ1 distance 583971 73028 72915 1110

Table 5: Description of offline datasets constructed from
users’ search log

Input query Output query Product Name Category

simply marvelous simply marvelous rub simply marvelous bbq cherry rub 3oz 72
hdmi cab hdmi cable CL3 rated high-speed hdmi cable 563

Table 6: Examples in the ℓ1 distance dataset.

𝜇3 = 1.3 and 𝜇4 = 0.7 based on the performance on the validation
set. When doing ablation study, we re-tune {𝜇𝑖 }4𝑖=1 to fit different
models. The distance metric for Lsim (𝜽 ) is defined as ℓ1 distance.
We set the number of layers for encoding, query decoding and
product name decoding to be 4; the dimension of embedding to be
512; the number of units in the fully-connected layer to be 2048;
the number of attention head to be 8 and the dropout rate to be 0.1.
The model is implemented using PyTorch [17] and is trained on a
single NVIDIA Tesla V100 GPU.

EVALUATION METRICS
For completeness, we explain the three standard metrics used in
our experiments.

• BLEU score [16]: In our experiment, we use BLEU4 score,
which considers the 1, 2, 3, 4-grams overlaps.

• 𝐹𝑛 score: The 𝐹 -score is defined as the harmonic mean of
the 𝑛-grams prediction precision and 𝑛-grams recall rate
between the output sequence and the label sequence. The
higher the 𝐹𝑛 score is, the better the rewriting sequence
matches the label sequence.

• Jaccard𝑛 score: Jaccard𝑛 calculates the ratio between the
number of 𝑛-grams appear in both two sequences and the
number of 𝑛-grams appear in either sequence. The higher
the Jaccard𝑛 score is, the more similar the sequences are.

RESULTS OF ℓ1-DISTANCE-BASED DATASET
Table 7 shows the ablation study of our models on the ℓ1-distance-
based dataset. The trend is the same as the one shown in Table 1.

BLEU4 Jaccard1 Jaccard2 F1 score F2 score

baseline 0.2528 0.3135 0.1949 0.4334 0.2773
+ query cls 0.2546 0.3153 0.1994 0.4357 0.2831
+ product name decode (sequentially) 0.2634 0.3225 0.205 0.4452 0.2912

+ attn (fixed attn) (separately) 0.2648 0.3236 0.2074 0.4449 0.2931
+ attn ([13]) (separately) 0.274 0.3332 0.2192 0.4522 0.3037
+ attn (Section 4.3) (separately) 0.2843 0.3467 0.2271 0.4651 0.3105

Table 7: Ablation study on the test dataset with ℓ1 distance.
Each row means the same model setup as shown in Table 1.
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