
An Embedding-Based Grocery Search Model at Instacart
Yuqing Xie∗†

yuqing.xie@uwaterloo.ca
University of Waterloo

Canada

Taesik Na∗
taesik.na@instacart.com

Instacart
USA

Xiao Xiao
xiao.xiao@instacart.com

Instacart
USA

Saurav Manchanda
saurav.manchanda@instacart.com

Instacart
USA

Young Rao
young.rao@instacart.com

Instacart
USA

Zhihong Xu
zhihong.xu@instacart.com

Instacart
USA

Guanghua Shu
guanghua.shu@instacart.com

Instacart
USA

Esther Vasiete
esther.vasiete@instacart.com

Instacart
USA

Tejaswi Tenneti
tejaswi.tenneti@instacart.com

Instacart
USA

Haixun Wang
haixun.wang@instacart.com

Instacart
USA

ABSTRACT
The key to e-commerce search is how to best utilize the large yet
noisy log data. In this paper, we present our embedding-based
model for grocery search at Instacart. The system learns query
and product representations with a two-tower transformer-based
encoder architecture. To tackle the cold-start problem, we focus on
content-based features. To train the model efficiently on noisy data,
we propose a self-adversarial learning method and a cascade train-
ing method. On an offline human evaluation dataset, we achieve
10% relative improvement in RECALL@20, and for online A/B test-
ing, we achieve 4.1% cart-adds per search (CAPS) and 1.5% gross
merchandise value (GMV) improvement. We describe how we train
and deploy the embedding based search model and give a detailed
analysis of the effectiveness of our method.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking.

KEYWORDS
Embedding, Deep Learning, Search, Information Retrieval

1 INTRODUCTION
Instacart provides grocery shopping services for customers who
order groceries from retailers, while shopping is done by individ-
ual shoppers. Millions of products are listed for everyday grocery
purchases. A high-quality search system is critical to system effi-
ciency and user experience. We build a search embedding model
to learn the semantic relationship between queries and products.
The model produces vector representations for queries and prod-
ucts, with the goal of minimizing/maximizing the vector distance
of related/irrelevant <query, product> pairs.
∗Both authors contributed equally to this work.
†This work was performed when the author was at Instacart.

0 6 14 24 70

0.856
0.858
0.860
0.862
0.864
0.866
0.868
0.870
0.872
0.874
0.876

Training Examples (Millions)

RE
CA

LL
@
20

Vanilla
Proposed Method

Figure 1: Vanilla training with a larger dataset doesn’t guar-
antee better performance due to the noise in the data. Our
methods utilize the knowledge learned from the vanilla train-
ing by performing cascade training with self-adversarial loss.

With the development of embedding-based retrieval models,
much work has been done on embedding models for e-commerce.
Amazon[12], Taobao[9] and JD [27] shared their embedding-based
product search systems. We follow this line of research but utilize
pre-trained transformer models [3] unlike previous approaches.

The first problem we tackle is cold-start. New products or un-
seen queries historically don’t perform well due to the lack of user
engagements. Furthermore, according to our user research, new
users tend to send unseen queries because they are not familiar with
the e-commerce search engine. It’s critical to show high-quality
results for these queries so that we can retain these new users. Addi-
tionally, retailers expect good ranking results for newly introduced
products. We can manually boost some of the new products to meet
business needs, but manual boosting doesn’t scale at all.

Previous works either include historical features, such as clicks,
cart adds (conversions), purchases in the model input, or highly

1

SIGIR eCom’22, July 15, 2022, Madrid, Spain Xie and Na, et al.

rely on these data in offline evaluation. If a system takes historical
features as inputs, it will favor the products that have higher en-
gagement. Continuous training on a regular cadence using these
historical features will make the cold-start problem even worse,
entering a self-fulfilling circle. Similar behavior will occur if the
offline evaluation highly relies on the user engagement log.

To address this challenge, we propose to use only content-based
features such as query text itself and product information including
product name, brand name, categories and attributes from our
catalog. This way, the model will focus on semantic relationships
rather than historical engagement relationships. We also propose
to use permutations of product information as synthetic queries
for a product, and include those in the training dataset. This helps
the model generalize on cold-start products when given attribute
related queries. For offline evaluation, instead of relying on user
engagement log data, we propose to evaluate the system on a scaled
human annotated dataset, which contains a set of hot and cold
products.

The second problem we tackle is noisy data. We follow previous
approaches [9, 10], and use the user engagement data to collect
positive query-product examples. We treat converted 1 products for
queries as positive training samples. However, for grocery search,
user engagement data could be particularly noisy. People come to
Instacart to shop for multiple items. When irrelevant items show
up in the search results, people may add these items to their cart
just because they happen to need them regardless of the original
search intent.Whenwe take these conversions as training examples,
it results in false positive labels. Another source of noise is that
users may have very different tolerances for search results: Some
users may add items that don’t fully satisfy their search intent,
while others may be very strict due to allergies or religious reasons.
Therefore, conversions can imply a wide range of relevance, ranging
from somewhat relevant to strongly relevant.

To show the effect of noise in the training set, we trained embed-
ding based search models with different sizes of training data. As
the training set gets larger, we potentially add more relevant but
cold examples at the expense of including more noisy examples. As
shown in Figure 1, the performance of the model decreases after a
point. This shows training with more data doesn’t necessarily give
better model performance due to the inclusion of noise.

To address the noisy data problem, we propose cascade training:
We first warm-up the model with a noisy but large dataset. This
way, we transfer the pretrained model’s knowledge to the grocery
domain by letting the model see as much data as possible. And then
we train the model on a smaller yet high quality data. In this step,
we best utilize learned knowledge to achieve better performance
by training on the high quality data. We also show that cross archi-
tecture training, first training the two-tower shared encoder and
then training with un-tied parameters, is useful in cascade training.
Shared encoder allows the model to learn common grocery knowl-
edge, and two towers with un-tied parameters allows the model to
best fine-tune for each expertise (query and product knowledge).

1In our case, a user converts a product in a search query means the user adds the
product presented in the search results for the query to cart.

Wealso propose a self-adversarial negative sampling/re-weighting
method to select informative negative samples. Arguably, the straight-
forward approach to generate negative samples is to draw them
from a uniform distribution. Such uniform negative sampling is
not efficient enough because many negative samples can be easily
distinguished from the positive ones after a few training epochs.
The proposed self-adversarial learning method adjusts the loss term
weights for individual negative samples according to their scores
in the current training step. This way, the model will be punished
more, when it predicts high scores for the negative query product
pairs, resulting in more efficient training. The main contributions
of this paper are as follows:

• Wepropose cross architecture cascade training, and a self-adversarial
negative sampling/re-weightingmethod, to efficiently train search
embedding models on noisy data.
• We propose to only use content-based features, and add catalog

synthesis data to help with the cold-start problem.
• The proposed model outperforms the previous baseline by 10% in
RECALL@20 on an offline human evaluation dataset. In online
A/B testing, the new system improves CAPS and GMV by 4.1%
and 1.5% respectively.
• We share our knowledge in model architecture, training details,
system deployment and downstream applications. We also con-
duct extensive ablation study and analysis to share our insights.

2 RELATEDWORK
2.1 Embedding Based Search Systems
Many embedding based retrieval approaches, such as [11, 24] have
been introduced to solve e-commerce search problems. Facebook
systematically shared their knowledge in modeling, serving and
full-stack optimization in [5, 10]. Taobao[9] and JD [27] shared their
exploration in personalized product search systems. We also apply
embedding based methods for product search, while we focus more
on building a semantic relevance model.

2.2 Effective Negative Sampling Strategies.
Training large models often relies on good optimization strategies,
of which negative sample strategies are one of the most important
for representation learning. Yih et al. [26] introduces the in-batch
negative sampling, taking other samples within a mini-batch as
negative samples. This method doesn’t require explicitly labeled
negative data and can reduce computation by re-using other in-
batch sample representations. However, uniformly selecting nega-
tive samples is not the optimal choice. Wieting et al. [23] proposes
self-adversarial training, which takes the in-batch negative with the
highest score as a hard negative, thus, achieving improved results
for paraphrastic sentence embeddings. Later, self-adversarial nega-
tive sampling is proven useful for relation-aware graph attention
models[13] and knowledge graph (KG) embeddings [18]. In this
paper, we introduce a self-adversarial negative sampling strategy
to help improve the training efficiency with noisy data.

2.3 Pre-trained Models and Transfer Learning
Over the past few years, pre-trained language models have large
impact on natural language processing. Models such as BERT[3],

2

An Embedding-Based Grocery Search Model at Instacart SIGIR eCom’22, July 15, 2022, Madrid, Spain

XLNet[25], T5[14], BART[8], GPT-3[1] effectively transfer the knowl-
edge in large general domain corpus to target domains or down-
stream tasks. However, these large models can hardly be used in in-
dustry due to the high computation cost. DistilBERT[17], TinyBERT[6]
and MiniLM[21] propose to distill from large pre-trained models
into smaller models. To take advantage of both the generalization
ability and the compressed size, we start from these distilled pre-
trained models.

2.4 Curriculum Learning
Wepropose a cascade trainingmethod, which uses different training
sets in two steps. This is similar to curriculum learning, a strategy
that trains a model from easier to harder data, imitating the learning
order in human curricula[22]. However, we focus more on best
utilizing noisy data through scheduling according to data quality
instead of difficulty.

3 TRAINING DATASET
3.1 Cascade Training
We collect conversions as positive training query-product samples.
We gather one years worth of user engagement log, and only keep
the query-product pairs that are converted by at least two users.
As shown in Figure 1, including more pairs does not necessarily
improve the model performance due to data noise. To filter out sam-
ples that are likely noise, we rank the products by the conversion
rate in descending order and remove ones below a threshold. On
one hand, we need to provide the model with more accurate rele-
vance signals, so that it can learn a better relevance representation.
On the other hand, we also need to train the model on as many
unique queries or products as possible to transfer the pre-trained
model’s ability to our domain.

To meet both requirements, we propose cascade training: Start-
ing from a pre-trained model, we first train the model on a warm-up
dataset to transfer the model to the grocery domain. Then we train
it on a cascade training dataset to achieve better performance. The
entire training procedure is summarized in Figure 2.

The warm-up training step: We first collect a relatively large
warm-up dataset with lower conversion rate threshold. For a query
𝑞𝑖 , we select top 𝑘𝑞𝑖%2 products as positive pairs. To balance the
training examples, we apply smaller/larger 𝑘𝑞𝑖% s for queries with
higher/lower frequencies in the log. We finally gathered 14 million
unique query-product pairs for the warm-up dataset.

The cascade training step: We then collect a smaller but less
noisy cascade training dataset. We repeatedly include positive pairs
with higher conversion rate threshold. We start with threshold 𝑘0𝑞𝑖%,
which is much smaller than 𝑘𝑞𝑖% in the warm-up dataset, so that
there are less noisy conversion signals. At step 𝑛, we add all the
products ranked above top 𝑘𝑛𝑞𝑖% into the dataset. Then we decrease
𝑘𝑛𝑞𝑖 = 𝑘𝑛−1𝑞𝑖

∗ \ and repeatedly add sample pairs until there are no
positive pairs. We finally gathered 6 million training samples for
cascade training. Details of constructing the cascade training dataset
can be found in Algorithm 1.

2Using 𝑘𝑞𝑖 % = 100 % means we include all the conversions for query 𝑞𝑖 .

Algorithm 1 Cascade Training Dataset Construction
𝑄 ← the query set
𝐶<𝑞𝑖 ,𝑝 𝑗> ← the number of conversions of < 𝑞𝑖 , 𝑝 𝑗 >,
𝑃𝑞𝑖 ← the converted products of 𝑞𝑖 , sorted by 𝐶<𝑞𝑖 ,𝑝 𝑗> ,
𝑛 ← 0, 𝐷𝑐𝑎𝑠𝑐𝑎𝑑𝑒 ← ∅, 𝑘𝑞𝑖 ← 𝑘0𝑞𝑖 , \ ← 0.5,
repeat

𝐷 ′ ← ∅
for 𝑞𝑖 ∈ 𝑄 do

𝐷 ′ append {< 𝑞𝑖 , 𝑝 𝑗 > |𝑝 𝑗 ∈ 𝑃𝑞𝑖 , 𝑗 ≤ 𝑙𝑒𝑛(𝑃𝑞𝑖) ∗ 𝑘𝑛𝑞𝑖%},
𝑘𝑛+1𝑞𝑖

← 𝑘𝑛𝑞𝑖 ∗ \
end for
𝑛 ← 𝑛 + 1
𝐷𝑐𝑎𝑠𝑐𝑎𝑑𝑒 ← 𝐷𝑐𝑎𝑠𝑐𝑎𝑑𝑒 + 𝐷 ′,

until 𝐷 ′ = ∅
return 𝐷𝑐𝑎𝑠𝑐𝑎𝑑𝑒

3.2 Augmentation with Catalog Data
Our users often combine different product keywords to create the
queries. Suppose a user wants to by a product that has product name
"Organic 2% Reduced Fat Milk", product brand name "GreenWise",
category "Milk", and attributes "organic, kosher, gluten free", the
user might send one of the following queries: “GreenWise Milk”,
“Organic”, “Organic 2% Reduced Fat Milk”, “GreenWise”. Our catalog
contains these product meta data. 3 So we can apply this heuristic to
augment the training dataset to help address the cold start problem.

We synthesize positive queries using the combination of one
or more product feature sources, including product name, prod-
uct attributes, categories and brand names. We randomly sample
synthetic data, and merge these with the dataset created from the
user engagement data. Although the synthetic data can be clean,
we keep the ratio of the synthetic data relatively low because it
changes the actual search distribution.

3.3 Features
We use the query text as the input of the query encoder. For the
product encoder, we input the concatenation of product name,
brand name, size information, categories and attributes. In this way,
the model can only capture semantic relationships and generalize
to cold start products or queries. We use special tokens to explicitly
indicate the start of different features. This provides a grammar
rule so that a model can easily identify different features.

An example of the query and product features would be “[QRY]
milk” and “[PN] Organic 2% Reduced Fat Milk [PBN] GreenWise [PCS]
Milk [PAS] organic, kosher, gluten free” respectively. In the above
examples, we use [QRY], [PN], [PBN], [PCS] and [PAS] tokens to
indicate the next token is a query, product name, product brand
name, product categories and product attributes respectively.

4 NEGATIVE SAMPLING STRATEGIES
In grocery search, many products can satisfy the same query intent
but the users just favor some of the them. So, unlike in [5], we do
not collect products that are presented in the search results but not

3We use hierarchical taxonomy, and map products into one of taxonomy nodes.

3

SIGIR eCom’22, July 15, 2022, Madrid, Spain Xie and Na, et al.

Query encoder

Parameter
sharingWarm-up

dataset

Cascade
training
dataset

Step 1: Warm-up training Step 2: Cascade training
Initialize

Product
embeddings

Query
embeddings

BCE loss

Vanilla in-batch
negative loss

Total loss

Query encoder

Product encoder

Two tower

Product
embeddings

Query
embeddings

Product encoder

BCE loss

Self adversarial
loss

Total loss

Figure 2: Cascade training overview. In step 1, we train a shared encoder model on the warm-up dataset. In step 2, we train the
two encoders with un-tied parameters on the cascade training set with self-adversarial online negative sample re-weighting.

p1 p2 pb

q1

...

q2

qb

...

p3 p4

q3

q4

(a) Vanilla In-batch Negative.

p1 p2 pb

q1

...

q2

qb

...

p3 p4

q3

q4

(b) In-batch Negative with Random Sampling.

p1 p2 pb

q1

...

q2

qb

...

p3 p4

q3

q4

(c) In-batch Negative with Self-adversarial Re-
weighting

Figure 3: Figure of different in-batch negative sampling. Positive samples are colored in green and negative ones are colored in
red. 3(a) shows we include all the other in-batch samples as negative samples; 3(b) shows we randomly select negative samples
in the batch, dropped ones are colored in grey. 3(c) shows the score re-weighted for adversarial negative samples, different
levels of red represents the different weight applied to the samples.

converted as hard negatives. We only collect converted pairs and
use in-batch negative samplings during training. 4

4.1 Vanilla In-Batch Negatives
The vanilla in-batch negative strategy is to take all other in-batch
products as negative samples, following Yih et al. [26]. Figure 3(a)
demonstrates the samples we included in a mini-batch. For a train-
ing batch, we have (𝑞1, 𝑞2,, 𝑞𝑏) and (𝑝1, 𝑝2, ..., 𝑝𝑏), where 𝑏 repre-
sents the batch size, and 𝑞𝑖 and 𝑝𝑖 are query and product embed-
dings for a positive training example 𝑖 respectively. We take the
dot products of the embeddings followed by a sigmoid activation
𝜎 (·) as the relevance score, and then we apply binary cross entropy
loss 𝐵𝐶𝐸𝐿𝑜𝑠𝑠 (·)5 to train the model. The objective is defined by:
𝐿𝑟𝑒𝑙 = 𝐿𝑝𝑜𝑠 + _𝑛𝑒𝑔 ∗ 𝐿𝑛𝑒𝑔 , where 𝐿𝑝𝑜𝑠,𝑛𝑒𝑔 are binary cross entropy
losses, and _𝑛𝑒𝑔 is a hyper-parameter to adjust negative loss weight.

4We experimented on adding hard negative products (presented in search results but
not converted). But this gives worse performance on our human evaluation dataset
due to the bias we manually introduce.
5We also experiment with other loss functions, such as Cosine similarity, Marginal
loss, however, the BCE gives best performance.

4.2 Sampled In-Batch Negatives
For a certain query, instead of adding all negative loss terms into
the final loss, we also try uniform sampling of negative products 𝑆𝑖
(Figure 3(b)). Each negative example 𝑖 has a sampling probability
of 𝑃 (𝑝 𝑗 ∈ 𝑆𝑖 , 𝑖 ≠ 𝑗) = 1

𝑏−1 . The loss function becomes:

𝐿𝑟𝑒𝑙 = 𝐿𝑝𝑜𝑠 + _𝑛𝑒𝑔 ∗ 𝐿𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑛𝑒𝑔, (1)

𝐿𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑛𝑒𝑔 =
∑︁
𝑖

∑︁
𝑝 𝑗 ∈𝑆𝑖

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 (𝜎 (𝑞𝑖 · 𝑝 𝑗), 0) . (2)

4.3 Self-Adversarial Negatives
Uniform negative sampling is not an optimal strategy: many neg-
ative samples can be easily distinguished after a few epochs of
training. We hope the model can focus more on the difficulty sam-
ples. The difficulty of a certain negative sample to the current model
can be measured by the model’s prediction score. We adopt self-
adversarial negative product sampling or re-weighting, shown in
Figure 3(c). We take the prediction score of the current model for
the negative sample as a weight term. We then apply either loss
re-weighting or re-sampling based on the weight.

4

An Embedding-Based Grocery Search Model at Instacart SIGIR eCom’22, July 15, 2022, Madrid, Spain

Filtering &
Retrieval

Keywords based recall

Catalog store

Ranking

Query embedding
generation

ANN
service

Query

Offline training

Query encoder

Product encoder

ANN index
generation

Product
embedding

precomputation

OFFLINE

ONLINE

Figure 4: Overall system architecture that utilizes the embed-
ding model for retrieval and ranking.

Self-Adversarial Negative Sample Re-weighting: We first
compute the dot product of the query and product embedding
vectors and pass the score through an activation function 𝑎𝑐𝑡 () to
get the relevance score. We multiply each sample’s loss with its
relevance score. Take the BCELoss version for example, the new
loss function becomes:

𝐿𝑟𝑒𝑙 = 𝐿𝑝𝑜𝑠 + _𝑛𝑒𝑔 ∗ 𝐿𝑠𝑒𝑙 𝑓 _𝑎𝑑𝑣_𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡 , (3)

𝐿𝑠𝑒𝑙 𝑓 _𝑎𝑑𝑣_𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡 =
∑︁
𝑖

∑︁
𝑝 𝑗 ∈𝑆𝑖

𝑤𝑖, 𝑗 ∗ 𝐵𝐶𝐸𝐿𝑜𝑠𝑠 (𝜎 (𝑞𝑖 · 𝑝 𝑗), 0), (4)

𝑤𝑖, 𝑗 = 𝑎𝑐𝑡 (𝑞𝑖 · 𝑝 𝑗). (5)

We experiment with various activation functions 𝑎𝑐𝑡 () including
identity, sigmoid and ReLU functions. Identity activation function
gives the best performance.6

Self-Adversarial Negative Sampling: Another way of apply-
ing the self-adversarial learning is to take the similarity score as
the sampling probability:

𝐿𝑟𝑒𝑙 =𝐿𝑝𝑜𝑠 + _𝑛𝑒𝑔 ∗ 𝐿𝑠𝑒𝑙 𝑓 _𝑎𝑑𝑣_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, (6)

𝐿𝑠𝑒𝑙 𝑓 _𝑎𝑑𝑣_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =
∑︁
𝑖

∑︁
𝑝 𝑗 ∈𝑆𝑖

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 (𝜎 (𝑞𝑖 · 𝑝 𝑗), 0), (7)

𝑃 (𝑝 𝑗 ∈ 𝑆𝑖) =
{
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤𝑖, 𝑗/𝑇) ∗ (𝑇 2), 𝑖 ≠ 𝑗,

0, 𝑖 = 𝑗,
(8)

where 𝑇 is the self-adversarial sampling temperature and 𝑤𝑖, 𝑗 is
the similarity score as in Equation 5.

5 SYSTEM DEPLOYMENT
We use the trained embedding model for retrieval and ranking.
We utilize an approximate nearest neighbor search (FAISS[7]) for
retrieval. We use similarity scores of the query and product em-
beddings as one of the features for our ranking model. Figure 4
demonstrates the overall system architecture.

6Details can be found in Appendix B.

5.1 Daily Offline Computation Pipeline
Once we train the embedding model, we pre-compute product em-
beddings, train the ANN indices offline daily. At Instacart, we have
thousands of retailers and they don’t share the same product set,
and users first choose a retailer they want to shop at. 7 This poses
different options for building the ANN indices. A straightforward
way is to build a single index containing all the products available.
It is simple and requires less memory since there are no dupli-
cated embeddings in the index. This option cannot guarantee the
retrieved products belong to the retailer that the users choose. We
could retrieve a large number of products and do a post filtering,
but this increases search time.

Another option is to build an individual index for each retailer.
We can avoid retrieving products from irrelevant retailers, but the
overall ANN model size will increase due to repeated products. The
total size of all the indices is less than 4x of the combined index
enough to be fitted in a single server instance, so we choose to build
per-retailer ANN indices. The pre-computed product embeddings
are also indexed into the catalog store daily, so they can be used
during online serving.

5.2 Online Serving
During serving time, we compute the query embedding with the
query encoder and use the ANN service to retrieve top 𝑘 nearest
neighbors in the product embeddings set.

Embedding based retrieval (EBR) is efficient especially for non-
keyword matching cases which will be discussed in later Section
7.2. However, EBR can include irrelevant products occasionally if
we use the top 𝑘 method. To address this challenge, we apply the
following rules.

• First we retrieve top 𝑘 products from the ANN service.
• We drop products if the similarity scores are below a certain

threshold regardless of the ranking.
• We construct a white list categories based on the most top several
products, and drop the products falling outside the white list
categories.
• We apply availability filtering based on warehouse data.
• We finally merge the retrieved products with the keyword-based

retrieval results.

We return the similarity scores for all the products regardless of
the retrieval source by using the pre-indexed product embedding in
the catalog. We perform final re-ranking for the merged retrieved
products with similarity score as a feature.

6 EXPERIMENTS
6.1 Training Details
We base all our experiments on a pre-trained language model. We
choose to use MiniLM-L3-v28 since it achieves relatively good per-
formance and also provide the fastest speed, which can be beneficial
for online inference.

7We also allow users to search first before they choose a retailer, which we call cross
retailer search. We provide a list of retailers given a query, once users click one of the
retailers from the list, we send a request to retrieve items from ANN service.
8https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2

5

SIGIR eCom’22, July 15, 2022, Madrid, Spain Xie and Na, et al.

NDCG@5 NDCG@10 NDCG@20 RECALL@5 RECALL@10 RECALL@20

BM25 [16] 0.5413 0.5785 0.6389 0.6365 0.6372 0.6371
Wide & Deep [2] 0.7609 0.7714 0.7936 0.8326 0.8112 0.7955
Que2Search [10] 0.8158 0.8242 0.8367 0.8938 0.8772 0.8650
Proposed 0.8150 0.8246 0.8372 0.9013 0.8863 0.8751

Table 1: Offline Evaluation Results. Our proposed method outperforms various baseline models.

We initialize both the query and the product encoders with the
MiniLM-L3 model. As described in Section 3, we train the model
with two steps. In the best setting, We train the model with shared
parameters in both towers in the first warm-up training step. We
train the model on the “warm-up dataset” with binary classifica-
tion loss, using all other in-batch products as negative samples.
In the second cascade training step, we continue training the two
towers but with un-tied parameters. We train the model on the “cas-
cade training dataset” with self-adversarial negative re-weighting
training strategy. More training details can be found in Appendix A

6.2 Offline Evaluation Metrics
We create an offline evaluation dataset to measure the model perfor-
mance so we don’t have to launch online testing for every training
trial. The user engagement log is not an ideal testing distribution
because: first, it comes from the same source as the training data;
second, it just reflects the conversion relationships instead of rele-
vance representation ability; and third, when evaluating on the test
data collected from the user engagement log, we get 0.999 NDCG@5
for most training trials.

Other than the previous proposed evaluation metric RECALL@K
in [5, 10], we propose to also monitor NDCG@K on a human evalu-
ation dataset as offline evaluation. We collect sampled search log to
human annotators, query product pairs are labeled into 5 categories:
• Strongly relevant: The product is exactly the (type of) product

the query is looking for.
• Relevant: The product is the type of the product the query is

looking for, but there are likely others that fit better.
• Somewhat relevant: The product is not exactly what the query

is looking for but I understand why it was shown.
• Not Relevant: The product is not what the query is looking for,

and I can’t imagine why it was shown.
• Offensive: The product is unacceptable and creates a bad expe-

rience.
After filtering out records that raters do not achieve agreement on,
meaning 3 out of 5 raters gives the same rate, we got 158k query
product pairs. We take “strongly relevant” as a score of 3, “relevant”
as 2, “somewhat relevant” as 1 and the other levels as zero. We
then compute NDCG@K based on these scaled scores. Also, we
take the levels with positive scores as positive labels and compute
RECALL@K as other metrics.

6.3 Offline Evaluation Results
We show how the proposed method outperforms various baseline
models in table 1. We include BM25 [16] algorithm, Wide & Deep
[2] model (our previous production model), and Que2Search [10] as
baseline models. Wide & Deep uses historical conversion features

and text matching scores as features for the wide component, and
product raw text data and query text as features for the deep com-
ponent. The deep component is LSTM-based [4] network followed
by 2 stage dense layers. For Que2Search [10], we tried symmetrical
scaled cross entropy loss in the 1st stage and applied margin rank-
ing loss in the 2nd stage training. We performed extensive hyper
parameter search for fair comparison. We tried scale between 15
and 20 for the symmetrical cross entropy loss, and margin between
0.1 and 0.2 for the margin ranking loss as in [10]. We didn’t observe
improvement using margin ranking loss, thus we only report the
best results obtained with the symmetrical scaled cross entropy
loss.

BM25 performs worst compared to any other models which
shows the effectiveness of representation learned from the deep
learning models. Compared with the previous production model
(Wide & Deep), the proposed method has shown significant im-
provement. Que2Search shows pretty good results, but our pro-
posed method outperforms Que2Search especially for RECALL@K
metrics that are critical when used in retrieval.

6.4 Ablation Study
We study the effect of proposed methods using the ablation study.
The results are shown in table 2.

The Self-Adversarial Negative Learning Method Helps:
Comparing row Vanilla Embedding and row +Self-Adv, we can
see the proposed self-adversarial method can boost the model’s
performance, especially on ranking metrics (NDCG).

Comparing row Vanilla Embedding and +Data in Table 1, we find
vanilla all in-batch negative training can benefit from adding more
data, by changing the training set from the the cascade training set
(6M) to the warm-up set (14M). However, the model could not gain
further benefit while we combine with a self-adversarial training
strategy, comparing row +Self-Adv and +Data&+Self-Adv. This is
because although the warm-up dataset is larger, it is also nosier,
thus is not an ideal training ground truth.

Effect of cascade training: After adding the cascade training,
row +Cascade outperforms previous rows with a large gap. Another
interesting point is that row +Cascade* outperforms row +Cascade.
The second cascade training experiment first makes full use of all
the in-batch negative samples at the warm-up stage and then learns
more accurate information in the cascade training stage through
self-adversarial negative re-weighting.

Effect of cross architecture cascade training:We also observe
that two tower model architecture in the cascade training stage
gives better performance than Siamese network architecture, see
row +Two Tower. In the cascade training stage, further fine-tuning

6

An Embedding-Based Grocery Search Model at Instacart SIGIR eCom’22, July 15, 2022, Madrid, Spain

2-Tower Data & Negative NDCG@5 NDCG@10 NDCG@20 RECALL@5 RECALL@10 RECALL@20

Vanilla Embedding N Cas 0.8051 0.8160 0.8301 0.8855 0.8692 0.8574
+Data N Warm 0.8121 0.8215 0.8347 0.8915 0.8756 0.8638
+Self-Adv N Cas(Adv) 0.8151 0.8232 0.8362 0.8921 0.8748 0.8623
+Data & +Self-Adv N Warm(Adv) 0.8074 0.8181 0.8319 0.8880 0.8724 0.8607
+Cascade N Warm(Adv)→Cas(Adv) 0.8102 0.8210 0.8342 0.8989 0.8845 0.8728
+Cascade* N Warm→Cas(Adv) 0.8139 0.8242 0.8367 0.9006 0.8853 0.8739
+Two Tower Y Warm→Cas(Adv) 0.8150 0.8246 0.8372 0.9013 0.8863 0.8751

Table 2: For negative sampling, if not specified, we use all in-batch negative samples. If labeled as Adv, we are applying the
self-adversarial negative re-weighting strategy.Warm and Cas in the Data & Negative column means warm-up and cascade
training dataset respectively.

MRR CAPS GMV

Wide & Deep [2] - - -
+ Vanilla Embedding +0.7% +2.0% +0.5%
+ Proposed +1.2% +4.1% +1.5%

Table 3: Online A/B testing results. MRR: Mean Reciprocal
Rank of the first converted item, CAPS: Cart Adds Per Search,
GMV: Gross Merchandise Value

model parameters individually makes the model to efficiently learn
customized information for each encoder.

6.5 Online Evaluation Results
We deploy our system to production and conduct A/B testing to
prove the effectiveness of the proposed methods. In Table 3 we
show the relative improvement of the proposed methods compared
with our baseline wide and deep model. When we use the embed-
ding model trained with vanilla in-batch negative samples (Vanilla
Embedding in table 3), we observe 0.7 % improvement in MRR, 2.0%
gain in CAPS, and 0.5% of GMV increase. With all the proposed
methods applied, we achieve 1.5 % improvement in MRR, 4.1% gain
in CAPS, which turns into 1.2% of GMV increase.

7 ANALYSIS
7.1 Semantic Relevance
To analyze how the embedding model performs, we visualize the
product embedding vectors. We randomly sampled product embed-
dings and colored them according to their pre-labeled categories.
We apply T-SNE [19] to project the embedding vectors into a 2D
space. As shown in Figure 5, products with the same category labels
are well clustered, and different clusters are well separated with a
large margin.

We also plot the model predicted similarity score distribution on
our human evaluation dataset in Figure 6. We color samples based
on the human rated relevance levels. As can be seen, higher rele-
vance groups are distributed to the right side, which means higher
relevance score predictions. The non-relevant group is located at
the most left area, with a much lower relevance score, separated
from the relevant groups. This distribution shows the proposed
method can help predict the semantic relevance very well.

Figure 5: Embedding Visualization. Colored by different prod-
uct categories. We sampled products from food and the light
orange color represents the sub-category pantry.

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Pr
od

uc
t C

ou
nt

s (
0.

1k
)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

m
ila

te
d

pe
rc

en
ta

ge
 (%

)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

Figure 6: Score distribution over the human evaluation
dataset.

7.2 Learned Semantic Signals outperforms
Historical Engagement Signals

We first show the learned representation performs well with an
example query: “Milk”. Users usually send this query for products
under our “Plain Milk” category. We compare the scores under
this category with another category “Milk Chocolate”, which also

7

SIGIR eCom’22, July 15, 2022, Madrid, Spain Xie and Na, et al.

0 100 200 300 400 500
Rank (Query: 'milk')

0.0

0.1

0.2

0.3

0.4

Cl
ick

 T
hr

ou
gh

 R
at

e

Plain Milk CTR
Milk Chocolate CTR

0.0

0.2

0.4

0.6

0.8

Em
be

dd
in

g
Sc

or
e

Plain Milk Embedding
Milk Chocolate Embedding

(a) Score Distribution.

Figure 7: Comparing Embedding Scores with Click Through
Rate for query “milk”.

0 100 200 300 400 500
Rank (Query: 'red wine')

0.00

0.05

0.10

0.15

0.20

0.25

Cl
ick

 T
hr

ou
gh

 R
at

e

Cabernet Sauvignon CTR
Chardonnay CTR

0.2

0.0

0.2

0.4

0.6

0.8

Em
be

dd
in

g
Sc

or
e

Cabernet Sauvignon Embedding
Chardonnay Embedding

(a) Score Distribution.

Figure 8: Comparing Embedding Scores with Click Through
Rate for query “red wine”.

contains the word “Milk” and might cause failure in keyword based
systems. We collect the click through rates (CTRs) and the embed-
ding scores for randomly selected products under both categories
given “milk” as a query. Figure 7(a) shows CTRs and embedding
scores in descending order. From the figure, we observe that almost
all the products in the “Plain Milk” category have higher embed-
ding scores than “Milk Chocolate” products. That means embedding
score can be used as a good indicator for differentiating between
“Plain Milk” products and “Milk Chocolate” products. Half of the
“Plain Milk” products have zero CTRs and some “Milk Chocolate”
products have non-zero CTRs. If we rank items with CTRs, half
of the relevant milk products get ranked lower than several milk
chocolate products. That shows CTR is not a good search relevance
indicator.

We then show how the proposed methods perform on the cold-
start products with the example query “red wine”. There are hun-
dreds of different red wines in our product set, and very few of them
are purchased through search. We compare similarity scores for
products under “Cabernet Sauvignon” (one of red wine categories)
and “Chardonnay” (one of white wine categories). We collect the
CTRs and the embedding scores for randomly selected products

under the two categories given “red wine” as a query. There are
only about 10 % products under the “Cabernet Sauvignon” with
positive CTRs, meaning all the other products are cold but relevant
products. Figure 8(a) shows that embedding scores can be used for
separating products in “Cabernet Sauvignon” from the products in
“Chardonnay” while CTRs suffer from the cold start problem.

8 APPLICATIONS
We envision that the search embedding model can be used as a
component for other downstream tasks.

Ads relevance model: The search embedding model is used as
a checkpoint for fine-tuning ads relevance models at Instacart. The
Ads relevance has different application scenarios but can be easily
transferred from the search relevance model.

Semantic deduplication for auto suggestion: To increase
the diversity of auto suggestion in the search bar, we perform
deduplication on the candidate query set using the embedding
model: If the similarity score of two candidate queries is very high,
we remove one of them in auto suggestion.

Semantic query clustering:Historical features like click through
rate (CTR) are important features in our search ranking. We ob-
serve that engagement data used for CTR calculation are highly
imbalanced across queries, while more user engagement log usu-
ally means more accurate information. We apply embedding based
similarity scores to merge log data for queries that are semanti-
cally similar. By sharing the user engagement data, less popular
queries can perform equally well as their more popular neighboring
queries.

9 CONCLUSION
In this paper, we propose to use only content-based features, and
add catalog synthesis data to help with cold starts. We propose cross
architecture cascade training, as well as self-adversarial negative
sampling/re-weighting, to efficiently train the model on the noisy
data. The proposed model outperforms the previous baseline by
10% in RECALL@20 on an offline human evaluation dataset. In
online A/B testing, the new system improves CAPS and GMV by
4.1% and 1.5% respectively. We share our knowledge in model archi-
tecture, training details and system deployment. We also share our
insights on how to further utilize the embedding model in various
applications including ads relevance model, auto suggestion, and
click through rate (CTR) computation.

REFERENCES
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.).

[2] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. https://doi.org/10.
48550/ARXIV.1606.07792

8

https://doi.org/10.48550/ARXIV.1606.07792
https://doi.org/10.48550/ARXIV.1606.07792

An Embedding-Based Grocery Search Model at Instacart SIGIR eCom’22, July 15, 2022, Madrid, Spain

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 NAACL. ACL, Minneapolis, Minnesota, 4171–4186.

[4] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[5] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based Retrieval in Facebook Search. Proceedings of the 26th ACM SIGKDD.

[6] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, FangWang,
and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language Understand-
ing. In Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor
Cohn, Yulan He, and Yang Liu (Eds.). ACL, 4163–4174.

[7] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. CoRR abs/1702.08734 (2017). arXiv:1702.08734

[8] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th ACL, Online, July
5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.).
ACL, 7871–7880.

[9] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu,
and Qianli Ma. 2021. Embedding-Based Product Retrieval in Taobao Search. In
Proceedings of the 27th ACM SIGKDD (Singapore) (KDD ’21). ACM, New York,
NY, USA, 3181–3189.

[10] Yiqun Liu, Kaushik Rangadurai, Yunzhong He, Siddarth Malreddy, Xunlong Gui,
Xiaoyi Liu, and Fedor Borisyuk. 2021. Que2Search: Fast and Accurate Query and
Document Understanding for Search at Facebook. In Proceedings of the 27th ACM
SIGKDD (Singapore) (KDD ’21). ACM, New York, NY, USA, 3376–3384.

[11] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Ding, Ankit
Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic Product Search.
CoRR abs/1907.00937 (2019). arXiv:1907.00937

[12] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Allen Ding,
Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic Product
Search. In Proceedings of the 25th ACM SIGKDD, Anchorage, AK, USA, August 4-8,
2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and
George Karypis (Eds.). ACM, 2876–2885.

[13] Xiao Qin, Nasrullah Sheikh, Berthold Reinwald, and Lingfei Wu. 2021. Relation-
aware Graph Attention Model with Adaptive Self-adversarial Training. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021. AAAI Press, 9368–9376.

[14] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[15] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 EMNLP-IJCNLP. ACL,
Hong Kong, China, 3982–3992.

[16] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance frame-
work: BM25 and beyond. Foundations and Trends in Information Retrieval 3, 4
(2009), 333–389.

[17] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 [cs.CL]

[18] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[19] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[20] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv:1804.07461 [cs.CL]

[21] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. 2020.
MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of
Pre-Trained Transformers. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

[22] Xin Wang, Yudong Chen, and Wenwu Zhu. 2021. A Survey on Curriculum
Learning. arXiv:2010.13166 [cs.LG]

[23] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Towards
Universal Paraphrastic Sentence Embeddings. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[24] Tao Wu, Ellie Ka In Chio, Heng-Tze Cheng, Yu Du, Steffen Rendle, Dima Kuzmin,
Ritesh Agarwal, Li Zhang, John R. Anderson, Sarvjeet Singh, Tushar Chandra,

Ed H. Chi, Wen Li, Ankit Kumar, Xiang Ma, Alex Soares, Nitin Jindal, and Pei Cao.
2020. Zero-Shot Heterogeneous Transfer Learning from Recommender Systems
to Cold-Start Search Retrieval. CoRR abs/2008.02930 (2020). arXiv:2008.02930

[25] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY,
USA.

[26] Wen-tau Yih, Kristina Toutanova, John C. Platt, and Christopher Meek. 2011.
Learning Discriminative Projections for Text Similarity Measures. In Proceed-
ings of the 15th Conference on Computational Natural Language Learning. ACL,
Portland, Oregon, USA, 247–256.

[27] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun Xiao,
Weipeng Yan, and Wenyun Yang. 2020. Towards Personalized and Semantic Re-
trieval: An End-to-End Solution for E-commerce Search via Embedding Learning.
In Proceedings of the 43rd International ACM SIGIR, China, July 25-30, 2020, Jimmy
Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen,
and Yiqun Liu (Eds.). ACM, 2407–2416.

9

https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1907.00937
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2010.13166
https://arxiv.org/abs/2008.02930

SIGIR eCom’22, July 15, 2022, Madrid, Spain Xie and Na, et al.

A TRAINING DETAILS
We experiment with different pre-trained models including distil-
bert 9, MiniLM 10, TinyBERT 11. We also experiment with their
semantically fine-tuned checkpoints, for example the ones fine-
tuned on sts-b or QQP in GLUE [20], or other NLI and paraphrase
datasets.

Our implementation is based on the sentence transformer [15]12.
The base model outputs a hidden vector for each input sentence. We
project the hidden vector into a lower (100) dimension with dense
layers to meet the memory requirements. We randomly initialize
all other model parameters.

We use grid search to find the best hyper parameters:
• Training Epochs: 1,2,3,4,5,6;
• Warmup Percentage: 0%, 5% , 8%, 10% 20%, 50%;
• Learning Rate: 1e-5,4e-5, 8e-5, 1.6e-4, 3.2e-4, 1.2e-3;
• Batch Size: we fix it to 512, the largest allowed size;
We train the model with Adam optimizer, and amp (automatic
mixed precision) enabled. We conduct our experiments on Amazon
ml.p3.8xlarge EC2 instances, which contains 64G V100 GPUs .

B DIFFERENT ACTIVATION FOR
SELF-ADVERSARIAL NEGATIVE SAMPLING.

Similar to Section 7.1, we plot the score distribution on our hu-
man evaluation dataset in Figure 9. We group different query and
product pairs based on the human labels, then we plot their score
distributions. We experiment with different activation functions for
self-adversarial negative re-weighting as explained in Section 4.3.
• Identity activation:𝑤𝑖, 𝑗 = 𝑞𝑖 · 𝑝 𝑗 ;
• Sigmoid acitvation:𝑤𝑖, 𝑗 =

1
1+𝑒−𝑞𝑖 ·𝑝𝑗 ;

• ReLU acitvation:𝑤𝑖, 𝑗 = max(𝑞𝑖 · 𝑝 𝑗 , 0).
As can be seen from the Figure 9, using all proposed activation
functions can somehow separate the four categories of relevance
items in distribution. However, we can find the identity activation
function is giving the best separation effect: the not relevant group
is clustered more to the low-relevance score end, while the other
three categories are distributed to the right side, which means
higher relevance scores.

C EFFECT OF THE TWO-TOWER MODEL
We compare different results when we turn the model in to a two-
tower fashion. We can see, for each group in Table 4, the model
all shows a better performance when we separate the encoder
parameters in query and product towers.

D ABLATION STUDY ON SELF-ADVERSARIAL
NEGATIVE STRATEGIES.

In Section 4.2 and 4.3 we introduced different methods of negative
sampling. Table 5 shows the detailed experiment result. We note
different experiments according to their different negative sample
strategies:

9https://huggingface.co/distilbert-base-uncased
10https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2
11https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4
12https://www.sbert.net/

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Pr
od

uc
t C

ou
nt

s (
0.

1k
)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

m
ila

te
d

pe
rc

en
ta

ge
 (%

)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

(a) Identity Adversarial.

0.4 0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

Pr
od

uc
t C

ou
nt

s (
0.

1k
)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

m
ila

te
d

pe
rc

en
ta

ge
 (%

)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

(b) Sigmoid Adversarial.

0.4 0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

Pr
od

uc
t C

ou
nt

s (
0.

1k
)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
cu

m
ila

te
d

pe
rc

en
ta

ge
 (%

)

Strongly Relevant
Relevant
Somewhat Relevant
Not Relevant

(c) ReLU Adversarial

Figure 9: Score distribution over different categories in the
human evaluation dataset.We compare three self-adversarial
re-weighting activation functions: identity function and sig-
moid function.

• All in-batch negative: we include all the in-batch negative
samples in the loss.
• Random - 𝑘 : we randomly sampled 𝑘 in-batch negative samples

from a batch size of 512.
10

An Embedding-Based Grocery Search Model at Instacart SIGIR eCom’22, July 15, 2022, Madrid, Spain

2-Tower Data RECALL@5 RECALL@10 RECALL@20

N Cas 0.8855 0.8692 0.8574

N Warm(Adv)→Cas(Adv) 0.8989 0.8845 0.8728
Y Warm(Adv)→Cas(Adv) 0.8996 0.8850 0.8739

N Warm→Cas(Adv) 0.9006 0.8853 0.8739
Y Warm→Cas(Adv) 0.9013 0.8863 0.8751

Table 4: Ablation study for two-tower architecture.

Negative Sampling NDCG@5 NDCG@10 NDCG@20 RECALL@5 RECALL@10 RECALL@20

Baseline (All In-batch Negative) 0.8051 0.8160 0.8301 0.8855 0.8692 0.8574

Random - 1 0.8086 0.8189 0.8322 0.8871 0.8713 0.8595
Random - 16 0.8113 0.8210 0.8343 0.8907 0.8746 0.8627
Self-adv Re-weight 0.8083 0.8198 0.8332 0.9004 0.8862 0.8746
Self-adv Sampling - all 0.8051 0.8160 0.8301 0.8855 0.8692 0.8574
Self-adv Sampling - 16 0.8151 0.8232 0.8362 0.8921 0.8748 0.8623

Table 5: For Negative Sampling, trained with shared tower parameters and cascade training dataset.

• Self-adv Re-weight: we apply the self-adversarial negative re-
weighting method, that multiply all the samples in the batch with
their prediction scores as a re-weighting factor.
• Self-adv Sampling - 𝑘 : we apply the self-adversarial negative

sampling method and sampled 𝑘 in-batch negative samples from
a batch of 512.
From the results in Table 5, we can see that reducing the nega-

tive samples included in the loss function to an appropriate size can
already help improve the model’s performance. Further applying
the self-adversarial negative sampling can help boost the training

the most. With this mechanism, the model is able to adjust each
individual sample’s contribution as the training goes. One interest-
ing observation is that, the self-adversarial re-weighting strategy
provides more gain to recall while the self-adversarial sampling
strategy provides more gain to NDCG. We hypothesize that this is
because re-weighting would ignore the degree of hardness between
samples by punishing more on the hard negatives so that they are
classified correctly (positive or negative). However, the re-sampling
strategy doesn’t punish more on the hard negatives, thus the model
would learn the different level of relevance, which results in better
performance in ranking metrics.

11

	Abstract
	1 Introduction
	2 Related Work
	2.1 Embedding Based Search Systems
	2.2 Effective Negative Sampling Strategies.
	2.3 Pre-trained Models and Transfer Learning
	2.4 Curriculum Learning

	3 Training Dataset
	3.1 Cascade Training
	3.2 Augmentation with Catalog Data
	3.3 Features

	4 Negative Sampling Strategies
	4.1 Vanilla In-Batch Negatives
	4.2 Sampled In-Batch Negatives
	4.3 Self-Adversarial Negatives

	5 System Deployment
	5.1 Daily Offline Computation Pipeline
	5.2 Online Serving

	6 Experiments
	6.1 Training Details
	6.2 Offline Evaluation Metrics
	6.3 Offline Evaluation Results
	6.4 Ablation Study
	6.5 Online Evaluation Results

	7 Analysis
	7.1 Semantic Relevance
	7.2 Learned Semantic Signals outperforms Historical Engagement Signals

	8 Applications
	9 Conclusion
	References
	A Training Details
	B Different activation for self-adversarial negative sampling.
	C Effect of the Two-Tower Model
	D Ablation Study on Self-Adversarial Negative Strategies.

